Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.663
Filtrar
1.
PLoS One ; 19(9): e0307390, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39240899

RESUMEN

Worldwide incidence of kidney diseases has been rising. Thus, recent research has focused on zebrafish, whose fast development and innate regeneration capacity allow identifying factors influencing renal processes. Among these poorly studied factors are extracellular matrix (ECM) proteins like Fibronectin (Fn) essential in various tissues but not yet evaluated in a renal context. We utilized early nat and han zebrafish mutant embryos and carrier adults to investigate Fn's role during kidney development and regeneration. The locus natter (nat) encodes Fn and the locus han encodes Hand2, which results in increased Fn deposition. Our results show that Fn impacts identity maintenance and morphogenesis during development and influences conditions for neonephrogenic cluster formation during regeneration. Histological analysis revealed disrupted pronephric structures and increased blood cell accumulation in Fn mutants. Despite normal expression of specification markers (pax2, ATPα1a.1), structural abnormalities were evident. Differences between wild-type and mutation-carriers suggest a haploinsufficiency scenario. These findings reveal a novel function for ECM in renal development and regeneration, with potential implications for understanding and treating kidney diseases.


Asunto(s)
Fibronectinas , Pronefro , Regeneración , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Pronefro/metabolismo , Pronefro/embriología , Fibronectinas/metabolismo , Fibronectinas/genética , Mesonefro/metabolismo , Mutación , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Túbulos Renales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Organogénesis/genética
2.
Development ; 151(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39133135

RESUMEN

Mutations in GATA6 are associated with congenital heart disease, most notably conotruncal structural defects. However, how GATA6 regulates cardiac morphology during embryogenesis is undefined. We used knockout and conditional mutant zebrafish alleles to investigate the spatiotemporal role of gata6 during cardiogenesis. Loss of gata6 specifically impacts atrioventricular valve formation and recruitment of epicardium, with a prominent loss of arterial pole cardiac cells, including those of the ventricle and outflow tract. However, there are no obvious defects in cardiac progenitor cell specification, proliferation or death. Conditional loss of gata6 starting at 24 h is sufficient to disrupt the addition of late differentiating cardiomyocytes at the arterial pole, with decreased expression levels of anterior secondary heart field (SHF) markers spry4 and mef2cb. Conditional loss of gata6 in the endoderm is sufficient to phenocopy the straight knockout, resulting in a significant loss of ventricular and outflow tract tissue. Exposure to a Dusp6 inhibitor largely rescues the loss of ventricular cells in gata6-/- larvae. Thus, gata6 functions in endoderm are mediated by FGF signaling to regulate the addition of anterior SHF progenitor derivatives during heart formation.


Asunto(s)
Diferenciación Celular , Endodermo , Factor de Transcripción GATA6 , Corazón , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/embriología , Pez Cebra/genética , Factor de Transcripción GATA6/metabolismo , Factor de Transcripción GATA6/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Endodermo/metabolismo , Endodermo/embriología , Endodermo/citología , Diferenciación Celular/genética , Corazón/embriología , Organogénesis/genética , Regulación del Desarrollo de la Expresión Génica , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Transducción de Señal , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Fosfatasa 6 de Especificidad Dual/metabolismo , Fosfatasa 6 de Especificidad Dual/genética , Factores de Transcripción GATA
3.
Cells ; 13(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39195278

RESUMEN

Retinal progenitor cells (RPCs) are a multipotent and highly proliferative population that give rise to all retinal cell types during organogenesis. Defining their molecular signature is a key step towards identifying suitable approaches to treat visual impairments. Here, we performed RNA sequencing of whole eyes from Xenopus at three embryonic stages and used differential expression analysis to define the transcriptomic profiles of optic tissues containing proliferating and differentiating RPCs during retinogenesis. Gene Ontology and KEGG pathway analyses showed that genes associated with developmental pathways (including Wnt and Hedgehog signaling) were upregulated during the period of active RPC proliferation in early retinal development (Nieuwkoop Faber st. 24 and 27). Developing eyes had dynamic expression profiles and shifted to enrichment for metabolic processes and phototransduction during RPC progeny specification and differentiation (st. 35). Furthermore, conserved adult eye regeneration genes were also expressed during early retinal development, including sox2, pax6, nrl, and Notch signaling components. The eye transcriptomic profiles presented here span RPC proliferation to retinogenesis and include regrowth-competent stages. Thus, our dataset provides a rich resource to uncover molecular regulators of RPC activity and will allow future studies to address regulators of RPC proliferation during eye repair and regrowth.


Asunto(s)
Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Transcriptoma , Xenopus laevis , Animales , Xenopus laevis/genética , Xenopus laevis/embriología , Transcriptoma/genética , Ojo/metabolismo , Ojo/embriología , Retina/metabolismo , Retina/crecimiento & desarrollo , Diferenciación Celular/genética , Proliferación Celular/genética , Organogénesis/genética , Células Madre/metabolismo , Células Madre/citología , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Transducción de Señal/genética
4.
Nat Commun ; 15(1): 6387, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39080318

RESUMEN

Legumes acquire nitrogen-fixing ability by forming root nodules. Transferring this capability to more crops could reduce our reliance on nitrogen fertilizers, thereby decreasing environmental pollution and agricultural production costs. Nodule organogenesis is complex, and a comprehensive transcriptomic atlas is crucial for understanding the underlying molecular events. Here, we utilized spatial transcriptomics to investigate the development of nodules in the model legume, Lotus japonicus. Our investigation has identified the developmental trajectories of two critical regions within the nodule: the infection zone and peripheral tissues. We reveal the underlying biological processes and provide gene sets to achieve symbiosis and material exchange, two essential aspects of nodulation. Among the candidate regulatory genes, we illustrate that LjNLP3, a transcription factor belonging to the NIN-LIKE PROTEIN family, orchestrates the transition of nodules from the differentiation to maturation. In summary, our research advances our understanding of nodule organogenesis and provides valuable data for developing symbiotic nitrogen-fixing crops.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lotus , Fijación del Nitrógeno , Proteínas de Plantas , Nódulos de las Raíces de las Plantas , Transcriptoma , Lotus/genética , Lotus/metabolismo , Lotus/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fijación del Nitrógeno/genética , Simbiosis/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Nodulación de la Raíz de la Planta/genética , Perfilación de la Expresión Génica , Análisis Espacio-Temporal , Organogénesis de las Plantas/genética , Organogénesis/genética
5.
Front Biosci (Landmark Ed) ; 29(7): 261, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39082344

RESUMEN

The neural crest (NC), also known as the "fourth germ layer", is an embryonic structure with important contributions to multiple tissue and organ systems. Neural crest cells (NCCs) are subjected to epithelial to mesenchymal transition and migrate throughout the embryo until they reach their destinations, where they differentiate into discrete cell types. Specific gene expression enables this precise NCCs delamination and colonization potency in distinct and diverse locations therein. This review aims to summarize the current experimental evidence from multiple species into the NCCs specifier genes that drive this embryo body axes segmentation. Additionally, it attempts to filter further into the genetic background that produces these individual cell subpopulations. Understanding the multifaceted genetic makeup that shapes NC-related embryonic structures will offer valuable insights to researchers studying organogenesis and disease phenotypes arising from dysmorphogenesis.


Asunto(s)
Diferenciación Celular , Cresta Neural , Organogénesis , Cresta Neural/citología , Animales , Diferenciación Celular/genética , Organogénesis/genética , Humanos , Regulación del Desarrollo de la Expresión Génica , Transición Epitelial-Mesenquimal/genética
6.
Nat Cell Biol ; 26(7): 1200-1211, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38977846

RESUMEN

Organogenesis is a highly complex and precisely regulated process. Here we profiled the chromatin accessibility in >350,000 cells derived from 13 mouse embryos at four developmental stages from embryonic day (E) 10.5 to E13.5 by SPATAC-seq in a single experiment. The resulting atlas revealed the status of 830,873 candidate cis-regulatory elements in 43 major cell types. By integrating the chromatin accessibility atlas with the previous transcriptomic dataset, we characterized cis-regulatory sequences and transcription factors associated with cell fate commitment, such as Nr5a2 in the development of gastrointestinal tract, which was preliminarily supported by the in vivo experiment in zebrafish. Finally, we integrated this atlas with the previous single-cell chromatin accessibility dataset from 13 adult mouse tissues to delineate the developmental stage-specific gene regulatory programmes within and across different cell types and identify potential molecular switches throughout lineage development. This comprehensive dataset provides a foundation for exploring transcriptional regulation in organogenesis.


Asunto(s)
Cromatina , Regulación del Desarrollo de la Expresión Génica , Organogénesis , Análisis de la Célula Individual , Pez Cebra , Animales , Organogénesis/genética , Cromatina/metabolismo , Cromatina/genética , Pez Cebra/genética , Pez Cebra/embriología , Pez Cebra/metabolismo , Ratones , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Linaje de la Célula/genética , Transcriptoma/genética , Embrión de Mamíferos/metabolismo , Femenino , Ratones Endogámicos C57BL
7.
Nat Commun ; 15(1): 5937, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009564

RESUMEN

How disruptions to normal cell differentiation link to tumorigenesis remains incompletely understood. Wilms tumor, an embryonal tumor associated with disrupted organogenesis, often harbors mutations in epigenetic regulators, but their role in kidney development remains unexplored. Here, we show at single-cell resolution that a Wilms tumor-associated mutation in the histone acetylation reader ENL disrupts kidney differentiation in mice by rewiring the gene regulatory landscape. Mutant ENL promotes nephron progenitor commitment while restricting their differentiation by dysregulating transcription factors such as Hox clusters. It also induces abnormal progenitors that lose kidney-associated chromatin identity. Furthermore, mutant ENL alters the transcriptome and chromatin accessibility of stromal progenitors, resulting in hyperactivation of Wnt signaling. The impacts of mutant ENL on both nephron and stroma lineages lead to profound kidney developmental defects and postnatal mortality in mice. Notably, a small molecule inhibiting mutant ENL's histone acetylation binding activity largely reverses these defects. This study provides insights into how mutations in epigenetic regulators disrupt kidney development and suggests a potential therapeutic approach.


Asunto(s)
Diferenciación Celular , Riñón , Mutación , Análisis de la Célula Individual , Animales , Ratones , Riñón/metabolismo , Riñón/patología , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Cromatina/metabolismo , Epigénesis Genética , Tumor de Wilms/genética , Tumor de Wilms/patología , Tumor de Wilms/metabolismo , Histonas/metabolismo , Acetilación , Humanos , Organogénesis/genética , Vía de Señalización Wnt/genética , Nefronas/metabolismo , Nefronas/patología , Nefronas/embriología , Transcriptoma/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Femenino , Masculino , Multiómica
8.
Exp Mol Med ; 56(8): 1826-1842, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39085358

RESUMEN

Abnormal cardiac development has been observed in individuals with Cornelia de Lange syndrome (CdLS) due to mutations in genes encoding members of the cohesin complex. However, the precise role of cohesin in heart development remains elusive. In this study, we aimed to elucidate the indispensable role of SMC3, a component of the cohesin complex, in cardiac development and its underlying mechanism. Our investigation revealed that CdLS patients with SMC3 mutations have high rates of congenital heart disease (CHD). We utilized heart-specific Smc3-knockout (SMC3-cKO) mice, which exhibit varying degrees of outflow tract (OFT) abnormalities, to further explore this relationship. Additionally, we identified 16 rare SMC3 variants with potential pathogenicity in individuals with isolated CHD. By employing single-nucleus RNA sequencing and chromosome conformation capture high-throughput genome-wide translocation sequencing, we revealed that Smc3 deletion downregulates the expression of key genes, including Ets2, in OFT cardiac muscle cells by specifically decreasing interactions between super-enhancers (SEs) and promoters. Notably, Ets2-SE-null mice also exhibit delayed OFT development in the heart. Our research revealed a novel role for SMC3 in heart development via the regulation of SE-associated genes, suggesting its potential relevance as a CHD-related gene and providing crucial insights into the molecular basis of cardiac development.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Elementos de Facilitación Genéticos , Corazón , Ratones Noqueados , Animales , Ratones , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Corazón/embriología , Corazón/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Síndrome de Cornelia de Lange/genética , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/etiología , Cardiopatías Congénitas/patología , Mutación , Organogénesis/genética , Proteoglicanos Tipo Condroitín Sulfato
9.
Cells ; 13(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38920678

RESUMEN

Successful heart development depends on the careful orchestration of a network of transcription factors and signaling pathways. In recent years, in vitro cardiac differentiation using human pluripotent stem cells (hPSCs) has been used to uncover the intricate gene-network regulation involved in the proper formation and function of the human heart. Here, we searched for uncharacterized cardiac-development genes by combining a temporal evaluation of human cardiac specification in vitro with an analysis of gene expression in fetal and adult heart tissue. We discovered that CARDEL (CARdiac DEvelopment Long non-coding RNA; LINC00890; SERTM2) expression coincides with the commitment to the cardiac lineage. CARDEL knockout hPSCs differentiated poorly into cardiac cells, and hPSC-derived cardiomyocytes showed faster beating rates after controlled overexpression of CARDEL during differentiation. Altogether, we provide physiological and molecular evidence that CARDEL expression contributes to sculpting the cardiac program during cell-fate commitment.


Asunto(s)
Diferenciación Celular , Corazón , Homeostasis , Miocitos Cardíacos , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Diferenciación Celular/genética , Corazón/embriología , Corazón/fisiología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Linaje de la Célula/genética , Organogénesis/genética
10.
Adv Exp Med Biol ; 1441: 253-268, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884716

RESUMEN

Mammalian cardiac development is a complex, multistage process. Though traditional lineage tracing studies have characterized the broad trajectories of cardiac progenitors, the advent and rapid optimization of single-cell RNA sequencing methods have yielded an ever-expanding toolkit for characterizing heterogeneous cell populations in the developing heart. Importantly, they have allowed for a robust profiling of the spatiotemporal transcriptomic landscape of the human and mouse heart, revealing the diversity of cardiac cells-myocyte and non-myocyte-over the course of development. These studies have yielded insights into novel cardiac progenitor populations, chamber-specific developmental signatures, the gene regulatory networks governing cardiac development, and, thus, the etiologies of congenital heart diseases. Furthermore, single-cell RNA sequencing has allowed for the exquisite characterization of distinct cardiac populations such as the hard-to-capture cardiac conduction system and the intracardiac immune population. Therefore, single-cell profiling has also resulted in new insights into the regulation of cardiac regeneration and injury repair. Single-cell multiomics approaches combining transcriptomics, genomics, and epigenomics may uncover an even more comprehensive atlas of human cardiac biology. Single-cell analyses of the developing and adult mammalian heart offer an unprecedented look into the fundamental mechanisms of cardiac development and the complex diseases that may arise from it.


Asunto(s)
Corazón , Análisis de la Célula Individual , Animales , Humanos , Ratones , Diferenciación Celular/genética , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Corazón/embriología , Corazón/crecimiento & desarrollo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Organogénesis/genética , Regeneración/genética , Análisis de la Célula Individual/métodos , Transcriptoma/genética
11.
Curr Biol ; 34(11): 2387-2402.e5, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38776905

RESUMEN

The C. elegans hermaphrodite distal tip cell (DTC) leads gonadogenesis. Loss-of-function mutations in a C. elegans ortholog of the Rac1 GTPase (ced-10) and its GEF complex (ced-5/DOCK180, ced-2/CrkII, ced-12/ELMO) cause gonad migration defects related to directional sensing; we discovered an additional defect class of gonad bifurcation in these mutants. Using genetic approaches, tissue-specific and whole-body RNAi, and in vivo imaging of endogenously tagged proteins and marked cells, we find that loss of Rac1 or its regulators causes the DTC to fragment as it migrates. Both products of fragmentation-the now-smaller DTC and the membranous patch of cellular material-localize important stem cell niche signaling (LAG-2 ligand) and migration (INA-1/integrin subunit alpha) factors to their membranes, but only one retains the DTC nucleus and therefore the ability to maintain gene expression over time. The enucleate patch can lead a bifurcating branch off the gonad arm that grows through germ cell proliferation. Germ cells in this branch differentiate as the patch loses LAG-2 expression. While the nucleus is surprisingly dispensable for aspects of leader cell function, it is required for stem cell niche activity long term. Prior work found that Rac1-/-;Rac2-/- mouse erythrocytes fragment; in this context, our new findings support the conclusion that maintaining a cohesive but deformable cell is a conserved function of this important cytoskeletal regulator.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Movimiento Celular , Gónadas , Organogénesis , Transducción de Señal , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Gónadas/metabolismo , Gónadas/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Organogénesis/genética , Proteínas de Unión al GTP rac/metabolismo , Proteínas de Unión al GTP rac/genética
12.
Development ; 151(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38602485

RESUMEN

Alveologenesis, the final stage in lung development, substantially remodels the distal lung, expanding the alveolar surface area for efficient gas exchange. Secondary crest myofibroblasts (SCMF) exist transiently in the neonatal distal lung and are crucial for alveologenesis. However, the pathways that regulate SCMF function, proliferation and temporal identity remain poorly understood. To address this, we purified SCMFs from reporter mice, performed bulk RNA-seq and found dynamic changes in Hippo-signaling components during alveologenesis. We deleted the Hippo effectors Yap/Taz from Acta2-expressing cells at the onset of alveologenesis, causing a significant arrest in alveolar development. Using single cell RNA-seq, we identified a distinct cluster of cells in mutant lungs with altered expression of marker genes associated with proximal mesenchymal cell types, airway smooth muscle and alveolar duct myofibroblasts. In vitro studies confirmed that Yap/Taz regulates myofibroblast-associated gene signature and contractility. Together, our findings show that Yap/Taz is essential for maintaining functional myofibroblast identity during postnatal alveologenesis.


Asunto(s)
Diferenciación Celular , Vía de Señalización Hippo , Morfogénesis , Miofibroblastos , Proteínas Serina-Treonina Quinasas , Alveolos Pulmonares , Transducción de Señal , Proteínas Señalizadoras YAP , Animales , Ratones , Miofibroblastos/metabolismo , Miofibroblastos/citología , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Morfogénesis/genética , Mesodermo/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Pulmón/metabolismo , Organogénesis/genética , Regulación del Desarrollo de la Expresión Génica
13.
Dev Cell ; 59(10): 1302-1316.e5, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38569553

RESUMEN

The planar cell polarity (PCP) complex is speculated to function in murine lung development, where branching morphogenesis generates an epithelial tree whose distal tips expand dramatically during sacculation. Here, we show that PCP is dispensable in the airway epithelium for sacculation. Rather, we find a Celsr1-independent role for the PCP component Vangl in the pulmonary mesenchyme: loss of Vangl1/2 inhibits mesenchymal thinning and expansion of the saccular epithelium. Further, loss of mesenchymal Wnt5a mimics sacculation defects observed in Vangl2-mutant lungs, implicating mesenchymal Wnt5a/Vangl signaling as a key regulator of late lung morphogenesis. A computational model predicts that sacculation requires a fluid mesenchymal compartment. Lineage-tracing and cell-shape analyses are consistent with the mesenchyme acting as a fluid tissue, suggesting that loss of Vangl1/2 impacts the ability of mesenchymal cells to exchange neighbors. Our data thus identify an explicit function for Vangl and the pulmonary mesenchyme in actively shaping the saccular epithelium.


Asunto(s)
Polaridad Celular , Pulmón , Mesodermo , Morfogénesis , Proteínas del Tejido Nervioso , Animales , Mesodermo/metabolismo , Ratones , Pulmón/metabolismo , Pulmón/patología , Pulmón/embriología , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Transducción de Señal , Organogénesis/genética , Receptores Acoplados a Proteínas G
14.
Differentiation ; 137: 100781, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38631141

RESUMEN

Pax6 is a critical transcription factor involved in the development of the central nervous system. However, in humans, mutations in Pax6 predominantly result in iris deficiency rather than neurological phenotypes. This may be attributed to the distinct functions of Pax6 isoforms, Pax6a and Pax6b. In this study, we investigated the spatial and temporal expression patterns of Pax6 isoforms during different stages of mouse eye development. We observed a strong correlation between Pax6a expression and the neuroretina gene Sox2, while Pax6b showed a high correlation with iris-component genes, including the mesenchymal gene Foxc1. During early patterning from E10.5, Pax6b was expressed in the hinge of the optic cup and neighboring mesenchymal cells, whereas Pax6a was absent in these regions. At E14.5, both Pax6a and Pax6b were expressed in the future iris and ciliary body, coinciding with the integration of mesenchymal cells and Mitf-positive cells in the outer region. From E18.5, Pax6 isoforms exhibited distinct expression patterns as lineage genes became more restricted. To further validate these findings, we utilized ESC-derived eye organoids, which recapitulated the temporal and spatial expression patterns of lineage genes and Pax6 isoforms. Additionally, we found that the spatial expression patterns of Foxc1 and Mitf were impaired in Pax6b-mutant ESC-derived eye organoids. This in vitro eye organoids model suggested the involvement of Pax6b-positive local mesodermal cells in iris development. These results provide valuable insights into the regulatory roles of Pax6 isoforms during iris and neuroretina development and highlight the potential of ESC-derived eye organoids as a tool for studying normal and pathological eye development.


Asunto(s)
Ojo , Regulación del Desarrollo de la Expresión Génica , Organoides , Factor de Transcripción PAX6 , Isoformas de Proteínas , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo , Animales , Ratones , Organoides/metabolismo , Organoides/crecimiento & desarrollo , Organoides/citología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Organogénesis/genética
15.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38542412

RESUMEN

Thousands of lncRNAs have been found in zebrafish embryogenesis and adult tissues, but their identification and organogenesis-related functions have not yet been elucidated. In this study, high-throughput sequencing was performed at three different organogenesis stages of zebrafish embryos that are important for zebrafish muscle development. The three stages were 10 hpf (hours post fertilization) (T1), 24 hpf (T2), and 36 hpf (T3). LncRNA gas5, associated with muscle development, was screened out as the next research target by high-throughput sequencing and qPCR validation. The spatiotemporal expression of lncRNA gas5 in zebrafish embryonic muscle development was studied through qPCR and in situ hybridization, and functional analysis was conducted using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9, CRISPR/Cas9). The results were as follows: (1) A total of 1486 differentially expressed lncRNAs were identified between T2 and T1, among which 843 lncRNAs were upregulated and 643 were downregulated. The comparison with T3 and T2 resulted in 844 differentially expressed lncRNAs, among which 482 lncRNAs were upregulated and 362 lncRNAs were downregulated. A total of 2137 differentially expressed lncRNAs were found between T3 and T1, among which 1148 lncRNAs were upregulated and 989 lncRNAs were downregulated, including lncRNA gas5, which was selected as the target gene. (2) The results of spatiotemporal expression analysis showed that lncRNA gas5 was expressed in almost all detected embryos of different developmental stages (0, 2, 6, 10, 16, 24, 36, 48, 72, 96 hpf) and detected tissues of adult zebrafish. (3) After lncRNA gas5 knockout using CRISPR/Cas9 technology, the expression levels of detected genes related to muscle development and adjacent to lncRNA gas5 were more highly affected in the knockout group compared with the control group, suggesting that lncRNA gas5 may play a role in embryonic muscle development in zebrafish. (4) The results of the expression of the skeletal myogenesis marker myod showed that the expression of myod in myotomes was abnormal, suggesting that skeletal myogenesis was affected after lncRNA gas5 knockout. The results of this study provide an experimental basis for further studies on the role of lncRNA gas5 in the embryonic skeletal muscle development of zebrafish.


Asunto(s)
ARN Largo no Codificante , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Pez Cebra/metabolismo , Organogénesis/genética , Desarrollo Embrionario/genética , Desarrollo de Músculos/genética
16.
Mol Cell Endocrinol ; 586: 112193, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38401883

RESUMEN

Intestinal development takes places in two phases, the initial formation of neonatal (mammals)/larval (anurans) intestine and its subsequent maturation into the adult form. This maturation occurs during postembryonic development when plasma thyroid hormone (T3) level peaks. In anurans such as the highly related Xenopus laevis and Xenopus tropicalis, the larval/tadpole intestine is drastically remodeled from a simple tubular structure to a complex, multi-folded adult organ during T3-dependent metamorphosis. This involved complete degeneration of larval epithelium via programmed cell death and de novo formation of adult epithelium, with concurrent maturation of the muscles and connective tissue. Here, we will summarize our current understanding of the underlying molecular mechanisms, with a focus on more recent genetic and genome-wide studies.


Asunto(s)
Células Madre Adultas , Triyodotironina , Animales , Xenopus laevis , Xenopus/genética , Xenopus/metabolismo , Triyodotironina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Intestinos , Hormonas Tiroideas/metabolismo , Metamorfosis Biológica/genética , Organogénesis/genética , Mamíferos/metabolismo
17.
Dis Model Mech ; 17(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38353121

RESUMEN

The association between ear and kidney anomalies has long been recognized. However, little is known about the underlying mechanisms. In the last two decades, embryonic development of the inner ear and kidney has been studied extensively. Here, we describe the developmental pathways shared between both organs with particular emphasis on the genes that regulate signalling cross talk and the specification of progenitor cells and specialised cell types. We relate this to the clinical features of oto-renal syndromes and explore links to developmental mechanisms.


Asunto(s)
Síndrome Branquio Oto Renal , Enfermedades Renales , Humanos , Síndrome Branquio Oto Renal/genética , Riñón , Organogénesis/genética , Desarrollo Embrionario
18.
Cell Rep ; 43(2): 113703, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38265933

RESUMEN

Pancreas development is tightly controlled by multilayer mechanisms. Despite years of effort, large gaps remain in understanding how histone modifications coordinate pancreas development. SETD2, a predominant histone methyltransferase of H3K36me3, plays a key role in embryonic stem cell differentiation, whose role in organogenesis remains elusive. Here, by combination of cleavage under targets and tagmentation (CUT&Tag), assay for transposase-accessible chromatin using sequencing (ATAC-seq), and bulk RNA sequencing, we show a dramatic increase in the H3K36me3 level from the secondary transition phase and decipher the related transcriptional alteration. Using single-cell RNA sequencing, we define that pancreatic deletion of Setd2 results in abnormalities in both exocrine and endocrine lineages: hyperproliferative tip progenitor cells lead to abnormal differentiation; Ngn3+ endocrine progenitors decline due to the downregulation of Nkx2.2, leading to insufficient endocrine development. Thus, these data identify SETD2 as a crucial player in embryonic pancreas development, providing a clue to understanding the dysregulation of histone modifications in pancreatic disorders.


Asunto(s)
Cromatina , Páncreas , Animales , Ratones , Diferenciación Celular , N-Metiltransferasa de Histona-Lisina/genética , Organogénesis/genética
19.
STAR Protoc ; 5(1): 102835, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38224493

RESUMEN

Creating in vitro culture platforms for monkey embryos is crucial for understanding the initial 4 weeks of early primate embryogenesis. Here, we present a protocol to culture cynomolgus monkey embryos in vitro for 25 days post-fertilization and to delineate the key developmental events of gastrulation and early organogenesis. We describe steps for culturing with a 3D system, immunofluorescence analysis, single-cell RNA sequencing, and bioinformatic analysis. For complete details on the use and execution of this protocol, please refer to Gong et al. (2023).1.


Asunto(s)
Organogénesis , Análisis de Expresión Génica de una Sola Célula , Animales , Macaca fascicularis , Organogénesis/genética , Desarrollo Embrionario/genética , Biología Computacional
20.
Development ; 151(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37982461

RESUMEN

Early organogenesis represents a key step in animal development, during which pluripotent cells diversify to initiate organ formation. Here, we sampled 300,000 single-cell transcriptomes from mouse embryos between E8.5 and E9.5 in 6-h intervals and combined this new dataset with our previous atlas (E6.5-E8.5) to produce a densely sampled timecourse of >400,000 cells from early gastrulation to organogenesis. Computational lineage reconstruction identified complex waves of blood and endothelial development, including a new programme for somite-derived endothelium. We also dissected the E7.5 primitive streak into four adjacent regions, performed scRNA-seq and predicted cell fates computationally. Finally, we defined developmental state/fate relationships by combining orthotopic grafting, microscopic analysis and scRNA-seq to transcriptionally determine cell fates of grafted primitive streak regions after 24 h of in vitro embryo culture. Experimentally determined fate outcomes were in good agreement with computationally predicted fates, demonstrating how classical grafting experiments can be revisited to establish high-resolution cell state/fate relationships. Such interdisciplinary approaches will benefit future studies in developmental biology and guide the in vitro production of cells for organ regeneration and repair.


Asunto(s)
Gastrulación , Organogénesis , Ratones , Animales , Diferenciación Celular , Organogénesis/genética , Línea Primitiva , Endotelio , Embrión de Mamíferos , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA