Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.706
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38928433

RESUMEN

Prebiotic pre-Darwinian reactions continued throughout biochemical or Darwinian evolution. Early chemical processes could have occurred on Earth between 4.5 and 3.6 billion years ago when cellular life was about to come into being. Pre-Darwinian evolution assumes the development of hereditary elements but does not regard them as self-organizing processes. The presence of biochemical self-organization after the pre-Darwinian evolution did not justify distinguishing between different types of evolution. From the many possible solutions, evolution selected from among those stable reactions that led to catalytic networks, and under gradually changing external conditions produced a reproducible, yet constantly evolving and adaptable, living system. Major abiotic factors included sunlight, precipitation, air, minerals, soil and the Earth's atmosphere, hydrosphere and lithosphere. Abiotic sources of chemicals contributed to the formation of prebiotic RNA, the development of genetic RNA, the RNA World and the initial life forms on Earth and the transition of genRNA to the DNA Empire, and eventually to the multitude of life forms today. The transition from the RNA World to the DNA Empire generated new processes such as oxygenic photosynthesis and the hierarchical arrangement of processes involved in the transfer of genetic information. The objective of this work is to unite earlier work dealing with the formose, the origin and synthesis of ribose and RNA reactions that were published as a series of independent reactions. These reactions are now regarded as the first metabolic pathway.


Asunto(s)
Origen de la Vida , ARN , Ribosa , ARN/química , ARN/genética , ARN/metabolismo , Ribosa/química , Ribosa/metabolismo , Evolución Molecular
2.
J R Soc Interface ; 21(214): 20240014, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38715323

RESUMEN

Prebiotic peptide synthesis has consistently been a prominent topic within the field of the origin of life. While research predominantly centres on the 20 classical amino acids, the synthesis process encounters significant thermodynamic barriers. Consequently, amino acid analogues are being explored as potential building blocks for prebiotic peptide synthesis. This review delves into the pathway of polypeptide formation, identifying specific amino acid analogues that might have existed on early Earth, potentially participating in peptide synthesis and chemical evolution. Moreover, considering the complexity and variability of the environment on early Earth, we propose the plausibility of coevolution between amino acids and their analogues.


Asunto(s)
Aminoácidos , Evolución Química , Péptidos , Aminoácidos/química , Péptidos/química , Origen de la Vida , Prebióticos
3.
Int J Mol Sci ; 25(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38732179

RESUMEN

The evolution of the translation system is a fundamental issue in the quest for the origin of life. A feasible evolutionary scenario necessitates the autonomous emergence of a protoribosome capable of catalyzing the synthesis of the initial peptides. The peptidyl transferase center (PTC) region in the modern ribosomal large subunit is believed to retain a vestige of such a prebiotic non-coded protoribosome, which would have self-assembled from random RNA chains, catalyzed peptide bond formation between arbitrary amino acids, and produced short peptides. Recently, three research groups experimentally demonstrated that several distinct dimeric constructs of protoribosome analogues, derived predicated on the approximate 2-fold rotational symmetry inherent in the PTC region, possess the ability to spontaneously fold, dimerize, and catalyze the formation of peptide bonds and of short peptides. These dimers are examined, aiming at retrieving information concerned with the characteristics of a prebiotic protoribosome. The analysis suggests preconditions for the laboratory re-creation of credible protoribosome analogues, including the preference of a heterodimer protoribosome, contradicting the common belief in the precedence of homodimers. Additionally, it derives a dynamic process which possibly played a role in the spontaneous production of the first bio-catalyzed peptides in the prebiotic world.


Asunto(s)
Ribosomas , Ribosomas/metabolismo , Ribosomas/química , Péptidos/química , Origen de la Vida , Peptidil Transferasas/metabolismo , Peptidil Transferasas/química , Biosíntesis de Proteínas
4.
Theory Biosci ; 143(2): 153-160, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38722466

RESUMEN

This study proposes a landscape-based scenario for the origin of viruses and cells, focusing on the adaptability of preexisting replicons from the RNP (ribonucleoprotein) world. The scenario postulates that life emerged in a subterranean "warm little pond" where organic matter accumulated, resulting in a prebiotic soup rich in nucleotides, amino acids, and lipids, which served as nutrients for the first self-replicating entities. Over time, the RNA world, followed by the RNP world, came into existence. Replicators/replicons, along with the nutritious soup from the pond, were washed out into the river and diluted. Lipid bubbles, enclosing organic matter, provided the last suitable environment for replicons to replicate. Two survival strategies emerged under these conditions: cell-like structures that obtained nutrients by merging with new bubbles, and virus-like entities that developed various techniques to transmit themselves to fresh bubbles. The presented hypothesis provides the possibility for the common origin of cells and viruses on rocky worlds hosting liquid water, like Earth.


Asunto(s)
Origen de la Vida , Virus , Aminoácidos/química , Lípidos/química , Nucleótidos , ARN , Evolución Biológica
5.
J Phys Chem Lett ; 15(19): 5295-5305, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38722703

RESUMEN

Coacervate microdroplets, a protocell model in exploring the origin of life, have gained significant attention. Clay minerals, catalysts during the origin of life, are crucial in the chemical evolution of small molecules into biopolymers. However, our understanding of the relationship between clay minerals and the formation and evolution of protocells on early Earth remains limited. In this work, the nanoclay montmorillonite nanosheet (MMT-Na) was employed to investigate its interaction with coacervate microdroplets formed by oligolysine (K10) and adenine nucleoside triphosphate (ATP). As an anionic component, MMT-Na was noted to promote the formation of coacervate microdroplets. Furthermore, the efficiency of ssDNA enrichment and the degree of ssDNA hybridization within these microdroplets were significantly improved. By combining inorganic nanoclay with organic biopolymers, our work provides an efficient way to enrich genetic biomolecules in the primitive Earth environment and builds a nanoclay-based coacervate microdroplets, shedding new light on life's origin and protocell evolution.


Asunto(s)
Células Artificiales , Bentonita , Células Artificiales/química , Bentonita/química , ADN de Cadena Simple/química , Arcilla/química , Adenosina Trifosfato/química , Nanoestructuras/química , Origen de la Vida , Hibridación de Ácido Nucleico
6.
Astrobiology ; 24(5): 489-497, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38696654

RESUMEN

Ribose is the defining sugar in ribonucleic acid (RNA), which is often proposed to have carried the genetic information and catalyzed the biological reactions of the first life on Earth. Thus, abiological processes that yield ribose under prebiotic conditions have been studied for decades. However, aqueous environments required for the formation of ribose from materials available in quantity under geologically reasonable models, where the ribose formed is not immediately destroyed, remain unclear. This is due in large part to the challenge of analysis of carbohydrates formed under a wide range of aqueous conditions. Thus, the formation of ribose on prebiotic Earth has sometimes been questioned. We investigated the quantitative effects of pH, temperature, cation, and the concentrations of formaldehyde and glycolaldehyde on the synthesis of diverse sugars, including ribose. The results suggest a range of conditions that produce ribose and that ribose could have formed in constrained aquifers on prebiotic Earth.


Asunto(s)
Formaldehído , Ribosa , Temperatura , Agua , Ribosa/química , Concentración de Iones de Hidrógeno , Agua/química , Formaldehído/química , Acetaldehído/química , Acetaldehído/análogos & derivados , Planeta Tierra , Origen de la Vida
7.
Nucleic Acids Res ; 52(10): 5451-5464, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38726871

RESUMEN

The emergence of RNA on the early Earth is likely to have been influenced by chemical and physical processes that acted to filter out various alternative nucleic acids. For example, UV photostability is thought to have favored the survival of the canonical nucleotides. In a recent proposal for the prebiotic synthesis of the building blocks of RNA, ribonucleotides share a common pathway with arabino- and threo-nucleotides. We have therefore investigated non-templated primer extension with 2-aminoimidazole-activated forms of these alternative nucleotides to see if the synthesis of the first oligonucleotides might have been biased in favor of RNA. We show that non-templated primer extension occurs predominantly through 5'-5' imidazolium-bridged dinucleotides, echoing the mechanism of template-directed primer extension. Ribo- and arabino-nucleotides exhibited comparable rates and yields of non-templated primer extension, whereas threo-nucleotides showed lower reactivity. Competition experiments confirmed the bias against the incorporation of threo-nucleotides. The incorporation of an arabino-nucleotide at the end of the primer acts as a chain terminator and blocks subsequent extension. These biases, coupled with potentially selective prebiotic synthesis, and the templated copying that is known to favour the incorporation of ribonucleotides, provide a plausible model for the effective exclusion of arabino- and threo-nucleotides from primordial oligonucleotides.


Asunto(s)
Nucleótidos , ARN , Ribonucleótidos , ARN/química , Nucleótidos/química , Ribonucleótidos/química , Origen de la Vida , Moldes Genéticos , Imidazoles/química , Oligonucleótidos/química
8.
Astrobiology ; 24(5): 559-569, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38768432

RESUMEN

Ultraviolet (UV) light is likely to have played important roles in surficial origins of life scenarios, potentially as a productive source of energy and molecular activation, as a selective means to remove unwanted side products, or as a destructive mechanism resulting in loss of molecules/biomolecules over time. The transmission of UV light through prebiotic waters depends upon the chemical constituents of such waters, but constraints on this transmission are limited. Here, we experimentally measure the molar decadic extinction coefficients for a number of small molecules used in various prebiotic synthetic schemes. We find that many small feedstock molecules absorb most at short (∼200 nm) wavelengths, with decreasing UV absorption at longer wavelengths. For comparison, we also measured the nucleobase adenine and found that adenine absorbs significantly more than the simpler molecules often invoked in prebiotic synthesis. Our results enable the calculation of UV photon penetration under varying chemical scenarios and allow further constraints on plausibility and self-consistency of such scenarios. While the precise path that prebiotic chemistry took remains elusive, improved understanding of the UV environment in prebiotically plausible waters can help constrain both the chemistry and the environmental conditions that may allow such chemistry to occur.


Asunto(s)
Planeta Tierra , Origen de la Vida , Rayos Ultravioleta , Adenina/química , Prebióticos/análisis , Agua/química
9.
J R Soc Interface ; 21(214): 20230732, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38774958

RESUMEN

The concept of an autocatalytic network of reactions that can form and persist, starting from just an available food source, has been formalized by the notion of a reflexively autocatalytic and food-generated (RAF) set. The theory and algorithmic results concerning RAFs have been applied to a range of settings, from metabolic questions arising at the origin of life, to ecological networks, and cognitive models in cultural evolution. In this article, we present new structural and algorithmic results concerning RAF sets, by studying more complex modes of catalysis that allow certain reactions to require multiple catalysts (or to not require catalysis at all), and discuss the differing ways catalysis has been viewed in the literature. We also focus on the structure and analysis of minimal RAFs and derive structural results and polynomial-time algorithms. We then apply these new methods to a large metabolic network to gain insights into possible biochemical scenarios near the origin of life.


Asunto(s)
Algoritmos , Catálisis , Modelos Biológicos , Bioquímica , Origen de la Vida
10.
Langmuir ; 40(17): 8971-8980, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38629792

RESUMEN

Cells require oligonucleotides and polypeptides with specific, homochiral sequences to perform essential functions, but it is unclear how such oligomers were selected from random sequences at the origin of life. Cells were probably preceded by simple compartments such as fatty acid vesicles, and oligomers that increased the stability, growth, or division of vesicles could have thereby increased in frequency. We therefore tested whether prebiotic peptides alter the stability or growth of vesicles composed of a prebiotic fatty acid. We find that three of 15 dipeptides tested reduce salt-induced flocculation of vesicles. All three contain leucine, and increasing their length increases the efficacy. Also, leucine-leucine but not alanine-alanine increases the size of vesicles grown by multiple additions of micelles. In a molecular simulation, leucine-leucine docks to the membrane, with the side chains inserted into the hydrophobic core of the bilayer, while alanine-alanine fails to dock. Finally, the heterochiral forms of leucine-leucine, at a high concentration, rapidly shrink the vesicles and make them leakier and less stable to high pH than the homochiral forms do. Thus, prebiotic peptide-membrane interactions influence the flocculation, growth, size, leakiness, and pH stability of prebiotic vesicles, with differential effects due to sequence, length, and chirality. These differences could lead to a population of vesicles enriched for peptides with beneficial sequence and chirality, beginning selection for the functional oligomers that underpin life.


Asunto(s)
Péptidos , Péptidos/química , Alanina/química , Estereoisomerismo , Células Artificiales/química , Leucina/química , Origen de la Vida , Dipéptidos/química
11.
J Mol Evol ; 92(3): 258-265, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38662236

RESUMEN

Over 160 years after Darwin and 70 years after the discovery of DNA, two fundamental questions of biology remain unanswered: What differentiates the living from the nonliving? How can mechanistic and finalistic or holistic biology be unified? Niels Bohr introduced a concept of complementarity in quantum physics and based on the paradox of light as a simultaneous wave and particle, conjectured that a similar concept might exist in biology that would solve the paradox of life originating from the nonliving. Bohr proposed that two mutually exclusive-independent observations may be necessary to explain a phenomenon and provided support to Immanuel Kant's idea that the "purposive" behaviour of organisms could only be explained in teleological terms and that mechanical and teleological approaches were necessary and complementary to explain biology. We present a concept of complementarity whereby biochemical pathways or cellular channels for the flow of information are simultaneously complex and redundant and complexity and redundancy complement each other. The postulates of biological complementarity are that (1) it was an essential condition in the origin of life; (2) it provided physiological flexibility that allowed organisms to mount self-protection response and complexity to evolve in the face of deleterious mutations before the evolution of bi-parental sex; (3) it laid the foundation for the evolution of a choice of response when confronted with threat; and (4) it applies to all levels of biological organizations and, thus, can serve as a basis for the unification of mechanistic and holistic biology. It is proposed that teleology is simultaneously constitutive and heuristic: constitutive because organisms' "purposive" behaviours are adaptive and are grounded in mechanism (complexity and redundancy), and heuristic because with our finite cognition and our goal-oriented (humans alone are aware of "tomorrow") and anthropomorphic pre-disposition, teleology will remain useful as a guide to our making sense of the world, even how to ask a meaningful question.


Asunto(s)
Evolución Biológica , Origen de la Vida , Humanos , Biología/métodos , Animales
12.
Nature ; 628(8006): 110-116, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570715

RESUMEN

The emergence of biopolymer building blocks is a crucial step during the origins of life1-6. However, all known formation pathways rely on rare pure feedstocks and demand successive purification and mixing steps to suppress unwanted side reactions and enable high product yields. Here we show that heat flows through thin, crack-like geo-compartments could have provided a widely available yet selective mechanism that separates more than 50 prebiotically relevant building blocks from complex mixtures of amino acids, nucleobases, nucleotides, polyphosphates and 2-aminoazoles. Using measured thermophoretic properties7,8, we numerically model and experimentally prove the advantageous effect of geological networks of interconnected cracks9,10 that purify the previously mixed compounds, boosting their concentration ratios by up to three orders of magnitude. The importance for prebiotic chemistry is shown by the dimerization of glycine11,12, in which the selective purification of trimetaphosphate (TMP)13,14 increased reaction yields by five orders of magnitude. The observed effect is robust under various crack sizes, pH values, solvents and temperatures. Our results demonstrate how geologically driven non-equilibria could have explored highly parallelized reaction conditions to foster prebiotic chemistry.


Asunto(s)
Biopolímeros , Evolución Química , Calor , Origen de la Vida , Biopolímeros/química , Dimerización , Glicina/química , Concentración de Iones de Hidrógeno , Nucleótidos/química , Polifosfatos/química , Solventes/química
13.
Nat Ecol Evol ; 8(5): 999-1009, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38519634

RESUMEN

An unresolved question in the origin and evolution of life is whether a continuous path from geochemical precursors to the majority of molecules in the biosphere can be reconstructed from modern-day biochemistry. Here we identified a feasible path by simulating the evolution of biosphere-scale metabolism, using only known biochemical reactions and models of primitive coenzymes. We find that purine synthesis constitutes a bottleneck for metabolic expansion, which can be alleviated by non-autocatalytic phosphoryl coupling agents. Early phases of the expansion are enriched with enzymes that are metal dependent and structurally symmetric, supporting models of early biochemical evolution. This expansion trajectory suggests distinct hypotheses regarding the tempo, mode and timing of metabolic pathway evolution, including a late appearance of methane metabolisms and oxygenic photosynthesis consistent with the geochemical record. The concordance between biological and geological analyses suggests that this trajectory provides a plausible evolutionary history for the vast majority of core biochemistry.


Asunto(s)
Purinas , Purinas/biosíntesis , Purinas/metabolismo , Evolución Biológica , Modelos Biológicos , Origen de la Vida , Redes y Vías Metabólicas
14.
J Am Chem Soc ; 146(11): 7839-7849, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38448161

RESUMEN

Biochemistry is dependent upon enzyme catalysts accelerating key reactions. At the origin of life, prebiotic chemistry must have incorporated catalytic reactions. While this would have yielded much needed amplification of certain reaction products, it would come at the possible cost of rapidly depleting the high energy molecules that acted as chemical fuels. Biochemistry solves this problem by combining kinetically stable and thermodynamically activated molecules (e.g., ATP) with enzyme catalysts. Here, we demonstrate a prebiotic phosphate transfer system involving an ATP analog (imidazole phosphate) and histidyl peptides, which function as organocatalytic enzyme analogs. We demonstrate that histidyl peptides catalyze phosphorylations via a phosphorylated histidyl intermediate. We integrate these histidyl-catalyzed phosphorylations into a complete prebiotic scenario whereby inorganic phosphate is incorporated into organic compounds though physicochemical wet-dry cycles. Our work demonstrates a plausible system for the catalyzed production of phosphorylated compounds on the early Earth and how organocatalytic peptides, as enzyme precursors, could have played an important role in this.


Asunto(s)
Origen de la Vida , Fosfatos , Péptidos , Catálisis , Adenosina Trifosfato
16.
Nature ; 626(8001): 1019-1024, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38418914

RESUMEN

The single chirality of biological molecules is a signature of life. Yet, rationalizing how single chirality emerged remains a challenging goal1. Research has commonly focused on initial symmetry breaking and subsequent enantioenrichment of monomer building blocks-sugars and amino acids-that compose the genetic polymers RNA and DNA as well as peptides. If these building blocks are only partially enantioenriched, however, stalling of chain growth may occur, whimsically termed in the case of nucleic acids as "the problem of original syn"2. Here, in studying a new prebiotically plausible route to proteinogenic peptides3-5, we discovered that the reaction favours heterochiral ligation (that is, the ligation of L monomers with D monomers). Although this finding seems problematic for the prebiotic emergence of homochiral L-peptides, we demonstrate, paradoxically, that this heterochiral preference provides a mechanism for enantioenrichment in homochiral chains. Symmetry breaking, chiral amplification and chirality transfer processes occur for all reactants and products in multicomponent competitive reactions even when only one of the molecules in the complex mixture exhibits an imbalance in enantiomer concentrations (non-racemic). Solubility considerations rationalize further chemical purification and enhanced chiral amplification. Experimental data and kinetic modelling support this prebiotically plausible mechanism for the emergence of homochiral biological polymers.


Asunto(s)
Biopolímeros , Evolución Química , Péptidos , Proteínas , Estereoisomerismo , Biopolímeros/química , Ácidos Nucleicos/síntesis química , Ácidos Nucleicos/química , Origen de la Vida , Péptidos/química , Proteínas/síntesis química , Proteínas/química , Solubilidad
17.
Science ; 383(6685): 911-918, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38386754

RESUMEN

Coenzyme A (CoA) is essential to all life on Earth, and its functional subunit, pantetheine, is important in many origin-of-life scenarios, but how pantetheine emerged on the early Earth remains a mystery. Earlier attempts to selectively synthesize pantetheine failed, leading to suggestions that "simpler" thiols must have preceded pantetheine at the origin of life. In this work, we report high-yielding and selective prebiotic syntheses of pantetheine in water. Chemoselective multicomponent aldol, iminolactone, and aminonitrile reactions delivered spontaneous differentiation of pantoic acid and proteinogenic amino acid syntheses, as well as the dihydroxyl, gem-dimethyl, and ß-alanine-amide moieties of pantetheine in dilute water. Our results are consistent with a role for canonical pantetheine at the outset of life on Earth.


Asunto(s)
Coenzima A , Origen de la Vida , Panteteína , Coenzima A/química , Panteteína/síntesis química , Agua/química , Nitrilos/química , Hidroxibutiratos/síntesis química , 4-Butirolactona/síntesis química , Aminoácidos/síntesis química
18.
Science ; 383(6686): 937-938, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38422133

RESUMEN

Experiments suggest chemical reaction rates explain how proteins came to be built from left-handed building blocks.


Asunto(s)
Aminoácidos , Dipéptidos , Lateralidad Funcional , Origen de la Vida , Aminoácidos/química , Dipéptidos/química
20.
Nature ; 625(7995): 529-534, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38172638

RESUMEN

Today oxygenic photosynthesis is unique to cyanobacteria and their plastid relatives within eukaryotes. Although its origin before the Great Oxidation Event is still debated1-4, the accumulation of O2 profoundly modified the redox chemistry of the Earth and the evolution of the biosphere, including complex life. Understanding the diversification of cyanobacteria is thus crucial to grasping the coevolution of our planet and life, but their early fossil record remains ambiguous5. Extant cyanobacteria include the thylakoid-less Gloeobacter-like group and the remainder of cyanobacteria that acquired thylakoid membranes6,7. The timing of this divergence is indirectly estimated at between 2.7 and 2.0 billion years ago (Ga) based on molecular clocks and phylogenies8-11 and inferred from the earliest undisputed fossil record of Eoentophysalis belcherensis, a 2.018-1.854 Ga pleurocapsalean cyanobacterium preserved in silicified stromatolites12,13. Here we report the oldest direct evidence of thylakoid membranes in a parallel-to-contorted arrangement within the enigmatic cylindrical microfossils Navifusa majensis from the McDermott Formation, Tawallah Group, Australia (1.78-1.73 Ga), and in a parietal arrangement in specimens from the Grassy Bay Formation, Shaler Supergroup, Canada (1.01-0.9 Ga). This discovery extends their fossil record by at least 1.2 Ga and provides a minimum age for the divergence of thylakoid-bearing cyanobacteria at roughly 1.75 Ga. It allows the unambiguous identification of early oxygenic photosynthesizers and a new redox proxy for probing early Earth ecosystems, highlighting the importance of examining the ultrastructure of fossil cells to decipher their palaeobiology and early evolution.


Asunto(s)
Cianobacterias , Fósiles , Oxígeno , Fotosíntesis , Tilacoides , Evolución Biológica , Cianobacterias/clasificación , Cianobacterias/citología , Cianobacterias/metabolismo , Ecosistema , Evolución Química , Origen de la Vida , Oxidación-Reducción , Oxígeno/metabolismo , Tilacoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA