Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.918
Filtrar
1.
Sci Rep ; 14(1): 16895, 2024 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043712

RESUMEN

SARS-CoV-2-contributes to sickness and death in COVID-19 patients partly by inducing a hyper-proinflammatory immune response in the host airway. This hyper-proinflammatory state involves activation of signaling by NFκB, and unexpectedly, ENaC, the epithelial sodium channel. Post-infection inflammation may also contribute to "Long COVID"/PASC. Enhanced signaling by NFκB and ENaC also marks the airway of patients suffering from cystic fibrosis, a life-limiting proinflammatory genetic disease due to inactivating mutations in the CFTR gene. We therefore hypothesized that inflammation in the COVID-19 airway might similarly be due to inhibition of CFTR signaling by SARS-CoV-2 spike protein, and therefore activation of both NFκB and ENaC signaling. We used western blot and electrophysiological techniques, and an organoid model of normal airway epithelia, differentiated on an air-liquid-interface (ALI). We found that CFTR protein expression and CFTR cAMP-activated chloride channel activity were lost when the model epithelium was exposed to SARS-CoV-2 spike proteins. As hypothesized, the absence of CFTR led to activation of both TNFα/NFκB signaling and α and γ ENaC. We had previously shown that the cardiac glycoside drugs digoxin, digitoxin and ouabain blocked interaction of spike protein and ACE2. Consistently, addition of 30 nM concentrations of the cardiac glycoside drugs, prevented loss of both CFTR protein and CFTR channel activity. ACE2 and CFTR were found to co-immunoprecipitate in both basal cells and differentiated epithelia. Thus spike-dependent CFTR loss might involve ACE2 as a bridge between Spike and CFTR. In addition, spike exposure to the epithelia resulted in failure of endosomal recycling to return CFTR to the plasma membrane. Thus, failure of CFTR recovery from endosomal recycling might be a mechanism for spike-dependent loss of CFTR. Finally, we found that authentic SARS-CoV-2 virus infection induced loss of CFTR protein, which was rescued by the cardiac glycoside drugs digitoxin and ouabain. Based on experiments with this organoid model of small airway epithelia, and comparisons with 16HBE14o- and other cell types expressing normal CFTR, we predict that inflammation in the COVID-19 airway may be mediated by inhibition of CFTR signaling by the SARS-CoV-2 spike protein, thus inducing a cystic fibrosis-like clinical phenotype. To our knowledge this is the first time COVID-19 airway inflammation has been experimentally traced in normal subjects to a contribution from SARS-CoV-2 spike-dependent inhibition of CFTR signaling.


Asunto(s)
COVID-19 , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Inflamación , SARS-CoV-2 , Transducción de Señal , Glicoproteína de la Espiga del Coronavirus , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Glicoproteína de la Espiga del Coronavirus/metabolismo , COVID-19/metabolismo , COVID-19/virología , SARS-CoV-2/fisiología , Inflamación/metabolismo , FN-kappa B/metabolismo , Canales Epiteliales de Sodio/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ouabaína/farmacología
2.
Biomolecules ; 14(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39062486

RESUMEN

Helicobacter pylori is a highly prevalent human gastric pathogen that causes gastritis, ulcer disease, and gastric cancer. It is not yet fully understood how H. pylori injures the gastric epithelium. The Na,K-ATPase, an essential transporter found in virtually all mammalian cells, has been shown to be important for maintaining the barrier function of lung and kidney epithelia. H. pylori decreases levels of Na,K-ATPase in the plasma membrane of gastric epithelial cells, and the aim of this study was to demonstrate that this reduction led to gastric injury by impairing the epithelial barrier. Similar to H. pylori infection, the inhibition of Na,K-ATPase with ouabain decreased transepithelial electrical resistance and increased paracellular permeability in cell monolayers of human gastric cultured cells, 2D human gastric organoids, and gastric epithelium isolated from gerbils. Similar effects were caused by a partial shRNA silencing of Na,K-ATPase in human gastric organoids. Both H. pylori infection and ouabain exposure disrupted organization of adherens junctions in human gastric epithelia as demonstrated by E-cadherin immunofluorescence. Functional and structural impairment of epithelial integrity with a decrease in Na,K-ATPase amount or activity provides evidence that the H. pylori-induced downregulation of Na,K-ATPase plays a role in the complex mechanism of gastric disease induced by the bacteria.


Asunto(s)
Mucosa Gástrica , Infecciones por Helicobacter , Helicobacter pylori , Ouabaína , ATPasa Intercambiadora de Sodio-Potasio , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , Humanos , Animales , Ouabaína/farmacología , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiología , Mucosa Gástrica/patología , Mucosa Gástrica/efectos de los fármacos , Gerbillinae , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Células Epiteliales/efectos de los fármacos , Organoides/metabolismo , Organoides/microbiología
3.
Artículo en Inglés | MEDLINE | ID: mdl-38914258

RESUMEN

NaCCC2 transport proteins, including those from Drosophila melanogaster (Ncc83) and Aedes aegypti (aeCCC2), are an insect-specific clade with sequence similarity to Na+-K+-2Cl- cotransporters. Whereas the Na+-K+-2Cl- cotransporters and other cation-chloride cotransporters are electroneutral, recent work indicates that Ncc83 and aeCCC2 carry charge across membranes. Here, we further characterize the regulation and transport properties of Ncc83 and aeCCC2 expressed in Xenopus oocytes. In cation uptake experiments, Li+ was used as a tracer for Na+ and Rb+ was used as a tracer for K+. Li+ uptake of oocytes expressing either aeCCC2 or Ncc83 was greater than uptake in water-injected controls, activated by hypotonic swelling, and not inhibited by ouabain or ethyl cinnamate. Rb+ uptake of oocytes expressing either aeCCC2 or Ncc83 was not different than water injected controls. In oocytes expressing either aeCCC2 or Ncc83, Li+ uptake plateaued with increasing Li+ concentrations, with apparent Km values in the range of 10 to 20 mM. Following exposure to ouabain, intracellular [Na+] was greater in oocytes expressing aeCCC2 than in controls. Elevating intracellular cAMP (via 8-bromo-cAMP) in Ncc83 oocytes significantly stimulated both Li+ uptake and membrane conductances. Elevating intracellular cAMP in aeCCC2 oocytes did not affect Li+ uptake, but stimulated membrane conductances. Overall, these results confirm that the NaCCC2s resemble other cation-chloride cotransporters in their regulation and some transport properties. However, unlike other cation-chloride cotransporters, they carry charge across membranes.


Asunto(s)
Aedes , Drosophila melanogaster , Proteínas de Insectos , Oocitos , Sodio , Animales , Oocitos/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Aedes/metabolismo , Aedes/genética , Sodio/metabolismo , Xenopus laevis , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Simportadores de Cloruro de Sodio-Potasio/genética , Ouabaína/farmacología
4.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38892309

RESUMEN

The sodium pump, or Na+/K+-ATPase (NKA), is an essential enzyme found in the plasma membrane of all animal cells. Its primary role is to transport sodium (Na+) and potassium (K+) ions across the cell membrane, using energy from ATP hydrolysis. This transport creates and maintains an electrochemical gradient, which is crucial for various cellular processes, including cell volume regulation, electrical excitability, and secondary active transport. Although the role of NKA as a pump was discovered and demonstrated several decades ago, it remains the subject of intense research. Current studies aim to delve deeper into several aspects of this molecular entity, such as describing its structure and mode of operation in atomic detail, understanding its molecular and functional diversity, and examining the consequences of its malfunction due to structural alterations. Additionally, researchers are investigating the effects of various substances that amplify or decrease its pumping activity. Beyond its role as a pump, growing evidence indicates that in various cell types, NKA also functions as a receptor for cardiac glycosides like ouabain. This receptor activity triggers the activation of various signaling pathways, producing significant morphological and physiological effects. In this report, we present the results of a comprehensive review of the most outstanding studies of the past five years. We highlight the progress made regarding this new concept of NKA and the various cardiac glycosides that influence it. Furthermore, we emphasize NKA's role in epithelial physiology, particularly its function as a receptor for cardiac glycosides that trigger intracellular signals regulating cell-cell contacts, proliferation, differentiation, and adhesion. We also analyze the role of NKA ß-subunits as cell adhesion molecules in glia and epithelial cells.


Asunto(s)
ATPasa Intercambiadora de Sodio-Potasio , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/química , Animales , Humanos , Membrana Celular/metabolismo , Transducción de Señal , Ouabaína/farmacología , Ouabaína/metabolismo , Glicósidos Cardíacos/metabolismo , Glicósidos Cardíacos/farmacología , Sodio/metabolismo
5.
Int J Parasitol Drugs Drug Resist ; 25: 100550, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38821038

RESUMEN

Acanthamoeba, a free-living amoeba, is commonly found in various natural environments, such as rivers and soil, as well as in public baths, swimming pools, and sewers. Acanthamoeba can cause severe illness such as granulomatous amoebic encephalitis and Acanthamoeba keratitis (AK) in humans. AK, the most recognized disease, can cause permanent visual impairment or blindness by affecting the cornea. AK commonly affects contact lens wearers who neglect proper cleaning habits. The symptoms of AK include epithelial and stromal destruction, corneal infiltrate, and intense ocular pain, occasionally necessitating surgical removal of the entire eyeball. Current AK treatment involves the hourly application of eye drops containing polyhexamethylene biocide (PHMB). However, studies have revealed their ineffectiveness against drug-resistant strains. Acanthamoeba can form cysts as a survival mechanism in adverse environments, though the exact mechanism remains unknown. Our experiments revealed that sodium P-type ATPase (ACA1_065450) is closely linked to encystation. In addition, various encystation buffers, such as MgCl2 or NaCl, induced the expression of P-type ATPase. Furthermore, we used ouabain, an ATPase inhibitor, to inhibit the Na+/K+ ion pump, consequently decreasing the encystation rate of Acanthamoeba. Our primary objective is to develop an advanced treatment for AK. We anticipate that the combination of ouabain and PHMB may serve as an effective therapeutic approach against AK in the future.


Asunto(s)
Acanthamoeba castellanii , Biguanidas , Ouabaína , Biguanidas/farmacología , Acanthamoeba castellanii/efectos de los fármacos , Ouabaína/farmacología , Queratitis por Acanthamoeba/parasitología , Queratitis por Acanthamoeba/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Humanos , Sinergismo Farmacológico , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/efectos de los fármacos , Desinfectantes/farmacología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores
6.
Biol Open ; 13(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38713004

RESUMEN

Recent research has shown that membrane trafficking plays an important role in canonical Wnt signaling through sequestration of the ß-catenin destruction complex inside multivesicular bodies (MVBs) and lysosomes. In this study, we introduce Ouabain, an inhibitor of the Na,K-ATPase pump that establishes electric potentials across membranes, as a potent inhibitor of Wnt signaling. We find that Na,K-ATPase levels are elevated in advanced colon carcinoma, that this enzyme is elevated in cancer cells with constitutively activated Wnt pathway and is activated by GSK3 inhibitors that increase macropinocytosis. Ouabain blocks macropinocytosis, which is an essential step in Wnt signaling, probably explaining the strong effects of Ouabain on this pathway. In Xenopus embryos, brief Ouabain treatment at the 32-cell stage, critical for the earliest Wnt signal in development-inhibited brains, could be reversed by treatment with Lithium chloride, a Wnt mimic. Inhibiting membrane trafficking may provide a way of targeting Wnt-driven cancers.


Asunto(s)
Neoplasias del Colon , Pinocitosis , ATPasa Intercambiadora de Sodio-Potasio , Vía de Señalización Wnt , Animales , Humanos , Línea Celular Tumoral , Neoplasias del Colon/metabolismo , Neoplasias del Colon/etiología , Ouabaína/farmacología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Xenopus
7.
Eur Biophys J ; 53(4): 183-192, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38647542

RESUMEN

The sensitivity of cytosol water's microwave dielectric (MD) response to D-glucose uptake in Red Blood Cells (RBCs) allows the detailed study of cellular mechanisms as a function of controlled exposures to glucose and other related analytes like electrolytes. However, the underlying mechanism behind the sensitivity to glucose exposure remains a topic of debate. In this research, we utilize MDS within the frequency range of 0.5-40 GHz to explore how ionic redistributions within the cell impact the microwave dielectric characteristics associated with D-glucose uptake in RBC suspensions. Specifically, we compare glucose uptake in RBCs exposed to the physiological concentration of Ca2+ vs. Ca-free conditions. We also investigate the potential involvement of Na+/K+ redistribution in glucose-mediated dielectric response by studying RBCs treated with a specific Na+/K+ pump inhibitor, ouabain. We present some insights into the MD response of cytosol water when exposed to Ca2+ in the absence of D-glucose. The findings from this study confirm that ion-induced alterations in bound/bulk water balance do not affect the MD response of cytosol water during glucose uptake.


Asunto(s)
Citosol , Eritrocitos , Glucosa , Microondas , Agua , Citosol/metabolismo , Glucosa/metabolismo , Agua/metabolismo , Eritrocitos/metabolismo , Eritrocitos/efectos de los fármacos , Eritrocitos/citología , Calcio/metabolismo , Humanos , Transporte Biológico , Iones/metabolismo , Ouabaína/farmacología , Sodio/metabolismo
8.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38673903

RESUMEN

Cardiotonic steroids (CTSs), such as digoxin, are used for heart failure treatment. However, digoxin permeates the brain-blood barrier (BBB), affecting central nervous system (CNS) functions. Finding a CTS that does not pass through the BBB would increase CTSs' applicability in the clinic and decrease the risk of side effects on the CNS. This study aimed to investigate the tissue distribution of the CTS ouabain following intraperitoneal injection and whether ouabain passes through the BBB. After intraperitoneal injection (1.25 mg/kg), ouabain concentrations were measured at 5 min, 15 min, 30 min, 1 h, 3 h, 6 h, and 24 h using HPLC-MS in brain, heart, liver, and kidney tissues and blood plasma in C57/black mice. Ouabain was undetectable in the brain tissue. Plasma: Cmax = 882.88 ± 21.82 ng/g; Tmax = 0.08 ± 0.01 h; T1/2 = 0.15 ± 0.02 h; MRT = 0.26 ± 0.01. Cardiac tissue: Cmax = 145.24 ± 44.03 ng/g (undetectable at 60 min); Tmax = 0.08 ± 0.02 h; T1/2 = 0.23 ± 0.09 h; MRT = 0.38 ± 0.14 h. Kidney tissue: Cmax = 1072.3 ± 260.8 ng/g; Tmax = 0.35 ± 0.19 h; T1/2 = 1.32 ± 0.76 h; MRT = 1.41 ± 0.71 h. Liver tissue: Cmax = 2558.0 ± 382.4 ng/g; Tmax = 0.35 ± 0.13 h; T1/2 = 1.24 ± 0.7 h; MRT = 0.98 ± 0.33 h. Unlike digoxin, ouabain does not cross the BBB and is eliminated quicker from all the analyzed tissues, giving it a potential advantage over digoxin in systemic administration. However, the inability of ouabain to pass though the BBB necessitates intracerebral administration when used to investigate its effects on the CNS.


Asunto(s)
Ratones Endogámicos C57BL , Ouabaína , Animales , Distribución Tisular , Inyecciones Intraperitoneales , Ratones , Masculino , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Espectrometría de Masas/métodos , Riñón/metabolismo , Riñón/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Cromatografía Líquida de Alta Presión/métodos , Miocardio/metabolismo , Cardiotónicos/farmacocinética , Cardiotónicos/farmacología , Cardiotónicos/administración & dosificación
9.
Dis Model Mech ; 17(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616770

RESUMEN

Dystonia is thought to arise from abnormalities in the motor loop of the basal ganglia; however, there is an ongoing debate regarding cerebellar involvement. We adopted an established cerebellar dystonia mouse model by injecting ouabain to examine the contribution of the cerebellum. Initially, we examined whether the entopeduncular nucleus (EPN), substantia nigra pars reticulata (SNr), globus pallidus externus (GPe) and striatal neurons were activated in the model. Next, we examined whether administration of a dopamine D1 receptor agonist and dopamine D2 receptor antagonist or selective ablation of striatal parvalbumin (PV, encoded by Pvalb)-expressing interneurons could modulate the involuntary movements of the mice. The cerebellar dystonia mice had a higher number of cells positive for c-fos (encoded by Fos) in the EPN, SNr and GPe, as well as a higher positive ratio of c-fos in striatal PV interneurons, than those in control mice. Furthermore, systemic administration of combined D1 receptor agonist and D2 receptor antagonist and selective ablation of striatal PV interneurons relieved the involuntary movements of the mice. Abnormalities in the motor loop of the basal ganglia could be crucially involved in cerebellar dystonia, and modulating PV interneurons might provide a novel treatment strategy.


Asunto(s)
Cuerpo Estriado , Modelos Animales de Enfermedad , Distonía , Interneuronas , Parvalbúminas , Proteínas Proto-Oncogénicas c-fos , Receptores de Dopamina D2 , Animales , Interneuronas/metabolismo , Interneuronas/efectos de los fármacos , Parvalbúminas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Distonía/patología , Distonía/metabolismo , Distonía/fisiopatología , Cuerpo Estriado/patología , Cuerpo Estriado/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D1/metabolismo , Cerebelo/patología , Cerebelo/metabolismo , Ouabaína/farmacología , Ratones Endogámicos C57BL , Ratones , Masculino
10.
Sci Rep ; 14(1): 9589, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670979

RESUMEN

Lysophosphoglycerides (LPLs) have been reported to accumulate in myocardium and serve as a cause of arrhythmias in acute myocardial ischemia. However, in this study we found that LPLs level in the ventricular myocardium was decreased by the onset of acute myocardial ischemia in vivo in rats. Decreasing of LPLs level in left ventricular myocardium, but not right, was observed within 26 min of left myocardial ischemia, regardless of whether arrhythmias were triggered. Lower LPLs level in the ventricular myocardium was also observed in aconitine-simulated ventricular fibrillation (P < 0.0001) and ouabain-simulated III° atrioventricular block (P < 0.0001). Shot-lasting electric shock, e.g., ≤ 40 s, decreased LPLs level, while long-lasting, e.g., 5 min, increased it (fold change = 2.27, P = 0.0008). LPLs accumulation was observed in long-lasting myocardial ischemia, e.g., 4 h (fold change = 1.20, P = 0.0012), when caspase3 activity was elevated (P = 0.0012), indicating increased cell death, but not coincided with higher frequent arrhythmias. In postmortem human ventricular myocardium, differences of LPLs level in left ventricular myocardium was not observed among coronary artery disease- and other heart diseases-caused sudden death and non-heart disease caused death. LPLs level manifested a remarkable increasing from postmortem 12 h on in rats, thus abolishing the potential for serving as biomarkers of sudden cardiac death. Token together, in this study we found that LPLs in ventricular myocardium were initially decreased by the onset of ischemia, LPLs accumulation do not confer arrhythmogenesis during acute myocardial ischemia. It is necessary to reassess the roles of LPLs in myocardial infarction.


Asunto(s)
Arritmias Cardíacas , Ventrículos Cardíacos , Isquemia Miocárdica , Miocardio , Animales , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Ratas , Masculino , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/etiología , Humanos , Miocardio/metabolismo , Miocardio/patología , Fibrilación Ventricular/metabolismo , Fibrilación Ventricular/etiología , Fibrilación Ventricular/patología , Aconitina/análogos & derivados , Modelos Animales de Enfermedad , Ouabaína/farmacología , Ouabaína/metabolismo
11.
J Physiol Sci ; 74(1): 23, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561668

RESUMEN

Cardiac glycosides, known as inhibitors of Na+,K+-ATPase, have anti-cancer effects such as suppression of cancer cell proliferation and induction of cancer cell death. Here, we examined the signaling pathway elicited by cardiac glycosides in the human hepatocellular carcinoma HepG2 cells and human epidermoid carcinoma KB cells. Three kinds of cardiac glycosides (ouabain, oleandrin, and digoxin) inhibited the cancer cell proliferation and decreased the expression level of thyroid adenoma-associated protein (THADA). Interestingly, the knockdown of THADA inhibited cancer cell proliferation, and the proliferation was significantly rescued by re-expression of THADA in the THADA-knockdown cells. In addition, the THADA-knockdown markedly decreased the expression level of L-type amino acid transporter LAT1. Cardiac glycosides also reduced the LAT1 expression. The LAT1 inhibitor, JPH203, significantly weakened the cancer cell proliferation. These results suggest that the binding of cardiac glycosides to Na+,K+-ATPase negatively regulates the THADA-LAT1 pathway, exerting the anti-proliferative effect in cancer cells.


Asunto(s)
Glicósidos Cardíacos , Neoplasias de la Tiroides , Humanos , Glicósidos Cardíacos/farmacología , Glicósidos Cardíacos/metabolismo , Glicósidos/farmacología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Ouabaína/farmacología , Proteínas de Neoplasias/metabolismo
12.
J Neuroinflammation ; 21(1): 61, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38419037

RESUMEN

There is an intrinsic relationship between psychiatric disorders and neuroinflammation, including bipolar disorder. Ouabain, an inhibitor of Na+/K+-ATPase, has been implicated in the mouse model with manic-like behavior. However, the molecular mechanisms linking neuroinflammation and manic-like behavior require further investigation. CCAAT/Enhancer-Binding Protein Delta (CEBPD) is an inflammatory transcription factor that contributes to neurological disease progression. In this study, we demonstrated that the expression of CEBPD in astrocytes was increased in ouabain-treated mice. Furthermore, we observed an increase in the expression and transcript levels of CEBPD in human primary astrocytes following ouabain treatment. Transcriptome analysis revealed high MMP8 expression in human primary astrocytes following CEBPD overexpression and ouabain treatment. We confirmed that MMP8 is a CEBPD-regulated gene that mediates ouabain-induced neuroinflammation. In our animal model, treatment of ouabain-injected mice with M8I (an inhibitor of MMP8) resulted in the inhibition of manic-like behavior compared to ouabain-injected mice that were not treated with M8I. Additionally, the reduction in the activation of astrocytes and microglia was observed, particularly in the hippocampal CA1 region. Excessive reactive oxygen species formation was observed in ouabain-injected mice, and treating these mice with M8I resulted in the reduction of oxidative stress, as indicated by nitrotyrosine staining. These findings suggest that MMP8 inhibitors may serve as therapeutic agents in mitigating manic symptoms in bipolar disorder.


Asunto(s)
Enfermedades Neuroinflamatorias , Ouabaína , Animales , Humanos , Ratones , Astrocitos/metabolismo , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Metaloproteinasa 8 de la Matriz/metabolismo , Ouabaína/toxicidad
13.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38338921

RESUMEN

Bipolar disorder (BD) is a severe and common chronic mental illness characterized by recurrent mood swings between depression and mania. The biological basis of the disease is poorly understood, and its treatment is unsatisfactory. Na+, K+-ATPase is a major plasma membrane transporter and signal transducer. The catalytic α subunit of this enzyme is the binding site for cardiac steroids. Three α isoforms of the Na+, K+-ATPase are present in the brain. Previous studies have supported the involvement of the Na+, K+-ATPase and endogenous cardiac steroids (ECS) in the etiology of BD. Decreased brain ECS has been found to elicit anti-manic and anti-depressive-like behaviors in mice and rats. However, the identity of the specific α isoform involved in these behavioral effects is unknown. Here, we demonstrated that decreasing ECS through intracerebroventricular (i.c.v.) administration of anti-ouabain antibodies (anti-Ou-Ab) decreased the activity of α1+/- mice in forced swimming tests but did not change the activity in wild type (wt) mice. This treatment also affected exploratory and anxiety behaviors in α1+/- but not wt mice, as measured in open field tests. The i.c.v. administration of anti-Ou-Ab decreased brain ECS and increased brain Na+, K+-ATPase activity in wt and α1+/- mice. The serum ECS was lower in α1+/- than wt mice. In addition, a study in human participants demonstrated that serum ECS significantly decreased after treatment. These results suggest that the Na+, K+-ATPase α1 isoform is involved in depressive- and manic-like behaviors and support that the Na+, K+-ATPase/ECS system participates in the etiology of BD.


Asunto(s)
Depresión , ATPasa Intercambiadora de Sodio-Potasio , Esteroides , Animales , Humanos , Ratones , Ratas , Depresión/metabolismo , Ouabaína/metabolismo , Isoformas de Proteínas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Esteroides/metabolismo
14.
Am J Physiol Cell Physiol ; 326(4): C1120-C1177, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38223926

RESUMEN

Cardiotonic steroids (CTS), used by certain insects, toads, and rats for protection from predators, became, thanks to Withering's trailblazing 1785 monograph, the mainstay of heart failure (HF) therapy. In the 1950s and 1960s, we learned that the CTS receptor was part of the sodium pump (NKA) and that the Na+/Ca2+ exchanger was critical for the acute cardiotonic effect of digoxin- and ouabain-related CTS. This "settled" view was upended by seven revolutionary observations. First, subnanomolar ouabain sometimes stimulates NKA while higher concentrations are invariably inhibitory. Second, endogenous ouabain (EO) was discovered in the human circulation. Third, in the DIG clinical trial, digoxin only marginally improved outcomes in patients with HF. Fourth, cloning of NKA in 1985 revealed multiple NKA α and ß subunit isoforms that, in the rodent, differ in their sensitivities to CTS. Fifth, the NKA is a cation pump and a hormone receptor/signal transducer. EO binding to NKA activates, in a ligand- and cell-specific manner, several protein kinase and Ca2+-dependent signaling cascades that have widespread physiological effects and can contribute to hypertension and HF pathogenesis. Sixth, all CTS are not equivalent, e.g., ouabain induces hypertension in rodents while digoxin is antihypertensinogenic ("biased signaling"). Seventh, most common rodent hypertension models require a highly ouabain-sensitive α2 NKA and the elevated blood pressure is alleviated by EO immunoneutralization. These numerous phenomena are enabled by NKA's intricate structure. We have just begun to understand the endocrine role of the endogenous ligands and the broad impact of the ouabain-binding site on physiology and pathophysiology.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Humanos , Ratas , Animales , Ouabaína/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Ligandos , Digoxina/farmacología , Cardiotónicos/farmacología , Hipertensión/tratamiento farmacológico , Insuficiencia Cardíaca/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Señalización del Calcio , Sitios de Unión
15.
Eur J Appl Physiol ; 124(3): 681-751, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38206444

RESUMEN

This historical review traces key discoveries regarding K+ and Na+ ions in skeletal muscle at rest and with exercise, including contents and concentrations, Na+,K+-ATPase (NKA) and exercise effects on plasma [K+] in humans. Following initial measures in 1896 of muscle contents in various species, including humans, electrical stimulation of animal muscle showed K+ loss and gains in Na+, Cl- and H20, then subsequently bidirectional muscle K+ and Na+ fluxes. After NKA discovery in 1957, methods were developed to quantify muscle NKA activity via rates of ATP hydrolysis, Na+/K+ radioisotope fluxes, [3H]-ouabain binding and phosphatase activity. Since then, it became clear that NKA plays a central role in Na+/K+ homeostasis and that NKA content and activity are regulated by muscle contractions and numerous hormones. During intense exercise in humans, muscle intracellular [K+] falls by 21 mM (range - 13 to - 39 mM), interstitial [K+] increases to 12-13 mM, and plasma [K+] rises to 6-8 mM, whilst post-exercise plasma [K+] falls rapidly, reflecting increased muscle NKA activity. Contractions were shown to increase NKA activity in proportion to activation frequency in animal intact muscle preparations. In human muscle, [3H]-ouabain-binding content fully quantifies NKA content, whilst the method mainly detects α2 isoforms in rats. Acute or chronic exercise affects human muscle K+, NKA content, activity, isoforms and phospholemman (FXYD1). Numerous hormones, pharmacological and dietary interventions, altered acid-base or redox states, exercise training and physical inactivity modulate plasma [K+] during exercise. Finally, historical research approaches largely excluded female participants and typically used very small sample sizes.


Asunto(s)
Ouabaína , ATPasa Intercambiadora de Sodio-Potasio , Humanos , Ratas , Animales , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Ouabaína/metabolismo , Músculo Esquelético/metabolismo , Contracción Muscular , Hormonas/metabolismo , Isoformas de Proteínas/metabolismo , Iones/metabolismo
16.
Neurosci Res ; 200: 8-19, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37926219

RESUMEN

Spiral ganglion neurons (SGNs) transmit sound signals received by hair cells to the auditory center to produce hearing. The quantity and function are important for maintaining normal hearing function. Limited by the regenerative capacity, SGNs are unable to regenerate spontaneously after injury. Various neurotrophic factors play an important role in the regeneration process. Neuritin is a neurite growth factor that plays an important role in neural plasticity and nerve injury repair. In this study, we used bioinformatics analysis to show that neuritin was negatively correlated with cochlear damage. Then, we aimed to establish a cochlear spiral ganglion-specific sensorineural deafness model in gerbils using ouabain and determine the effects of exogenous neuritin protein in protecting damaged cochlear SGNs and repairing damaged auditory nerve function. The provides a new research strategy and scientific basis for the prevention and treatment of sensorineural deafness caused by the loss of SGNs. We were discovered that neuritin is expressed throughout the development of the gerbil cochlea, primarily in the SGNs and Corti regions. The expression of neuritin was negatively correlated with the sensorineural deafness induced by ouabain. In vitro and in vivo revealed that neuritin significantly maintained the number and arrangement of SGNs and nerve fibers in the damaged cochlea and effectively protected the high-frequency listening function of gerbils.


Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Animales , Ganglio Espiral de la Cóclea/metabolismo , Gerbillinae , Ouabaína/farmacología , Cóclea , Neuronas , Sordera/inducido químicamente , Sordera/metabolismo , Desnervación
17.
Redox Biol ; 69: 102979, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38061206

RESUMEN

BACKGROUND: Empagliflozin (EMPA) ameliorates reactive oxygen species (ROS) generation in human endothelial cells (ECs) exposed to 10 % stretch, but the underlying mechanisms are still unclear. Pathological stretch is supposed to stimulate protein kinase C (PKC) by increasing intracellular calcium (Ca2+), therefore activating nicotinamide adenine dinucleotide phosphate oxidase (NOX) and promoting ROS production in human ECs. We hypothesized that EMPA inhibits stretch-induced NOX activation and ROS generation through preventing PKC activation. METHODS: Human coronary artery endothelial cells (HCAECs) were pre-incubated for 2 h before exposure to cyclic stretch (5 % or 10 %) with either vehicle, EMPA or the PKC inhibitor LY-333531 or PKC siRNA. PKC activity, NOX activity and ROS production were detected after 24 h. Furthermore, the Ca2+ chelator BAPTA-AM, NCX inhibitor ORM-10962 or NCX siRNA, sodium/potassium pump inhibitor ouabain and sodium hydrogen exchanger (NHE) inhibitor cariporide were applied to explore the involvement of the NHE/Na+/NCX/Ca2+ in the ROS inhibitory capacity of EMPA. RESULTS: Compared to 5 % stretch, 10 % significantly increased PKC activity, which was reduced by EMPA and PKC inhibitor LY-333531. EMPA and LY-333531 showed a similar inhibitory capacity on NOX activity and ROS generation induced by 10 % stretch, which was not augmented by combined treatment with both drugs. PKC-ß knockdown inhibits the NOX activation induced by Ca2+ and 10 % stretch. BAPTA, pharmacologic or genetic NCX inhibition and cariporide reduced Ca2+ in static HCAECs and prevented the activation of PKC and NOX in 10%-stretched cells. Ouabain increased ROS generation in cells exposed to 5 % stretch. CONCLUSION: EMPA reduced NOX activity via attenuation of the NHE/Na+/NCX/Ca2+/PKC axis, leading to less ROS generation in HCAECs exposed to 10 % stretch.


Asunto(s)
Compuestos de Bencidrilo , Vasos Coronarios , Células Endoteliales , Glucósidos , Guanidinas , Indoles , Maleimidas , Sulfonas , Humanos , Células Endoteliales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Vasos Coronarios/metabolismo , Proteína Quinasa C/metabolismo , Ouabaína/metabolismo , Estrés Oxidativo , Intercambiadores de Sodio-Hidrógeno/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
18.
J Chem Ecol ; 50(1-2): 63-70, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38062246

RESUMEN

The brilliant red Lilioceris merdigera (Coleoptera, Chrysomelidae) can spend its entire life cycle on the cardenolide-containing plant Convallaria majalis (lily of the valley) and forms stable populations on this host. Yet, in contrast to many other insects on cardenolide-containing plants L. merdigera does not sequester these plant toxins in the body but rather both adult beetles and larvae eliminate ingested cardenolides with the feces. Tracer feeding experiments showed that this holds true for radioactively labeled ouabain and digoxin, a highly polar and a rather apolar cardenolide. Both compounds or their derivatives are incorporated in the fecal shields of the larvae. The apolar digoxin, but not the polar ouabain, showed a deterrent effect on the generalist predatory ant Myrmica rubra, which occurs in the habitat of L. merdigera. The deterrent effect was detected for digoxin both in choice and feeding time assays. In a predator choice assay, a fecal shield derived from a diet of cardenolide-containing C. majalis offered L. merdigera larvae better protection from M. rubra than one derived from non-cardenolide Allium schoenoprasum (chives) or no fecal shield at all. Thus, we here present data suggesting a new way how insects may gain protection by feeding on cardenolide-containing plants.


Asunto(s)
Cardenólidos , Escarabajos , Animales , Larva , Ouabaína , Insectos , Digoxina
19.
Virology ; 589: 109915, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37931588

RESUMEN

A small molecule screen identified several cardiotonic steroids (digitoxin and ouabain) and the ionophore monensin as potent inhibitors of HCoV-229E, HCoV-OC43, and SARS-CoV-2 replication with EC50s in the low nM range. Subsequent tests confirmed antiviral activity in primary cell models including human nasal epithelial cells and lung organoids. Addition of digitoxin, ouabain, or monensin strongly reduced viral gene expression as measured by both viral protein and RNA accumulation. Furthermore, the compounds acted post virus entry. While the antiviral activity of digitoxin was dependent upon activation of the MEK and JNK signaling pathways but not signaling through GPCRs, the antiviral effect of monensin was reversed upon inhibition of several signaling pathways. Together, the data demonstrates the potent anti-coronavirus properties of two classes of FDA approved drugs that function by altering the properties of the infected cell, rendering it unable to support virus replication.


Asunto(s)
Glicósidos Cardíacos , Coronavirus Humano 229E , Humanos , Glicósidos Cardíacos/farmacología , Monensina/farmacología , Ouabaína/farmacología , Digitoxina/farmacología , Antivirales/farmacología
20.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38069012

RESUMEN

Ouabain, a substance originally obtained from plants, is now classified as a hormone because it is produced endogenously in certain animals, including humans. However, its precise effects on the body remain largely unknown. Previous studies have shown that ouabain can influence the phenotype of epithelial cells by affecting the expression of cell-cell molecular components and voltage-gated potassium channels. In this study, we conducted whole-cell clamp assays to determine whether ouabain affects the activity and/or expression of TRPV4 channels. Our findings indicate that ouabain has a statistically significant effect on the density of TRPV4 currents (dITRPV4), with an EC50 of 1.89 nM. Regarding treatment duration, dITRPV4 reaches its peak at around 1 h, followed by a subsequent decline and then a resurgence after 6 h, suggesting a short-term modulatory effect related to on TRPV4 channel activity and a long-term effect related to the promotion of synthesis of new TRPV4 channel units. The enhancement of dITRPV4 induced by ouabain was significantly lower in cells seeded at low density than in cells in a confluent monolayer, indicating that the action of ouabain depends on intercellular contacts. Furthermore, the fact that U73122 and neomycin suppress the effect caused by ouabain in the short term suggests that the short-term induced enhancement of dITRPV4 is due to the depletion of PIP2 stores. In contrast, the fact that the long-term effect is inhibited by PP2, wortmannin, PD, FR18, and IKK16 suggests that cSrc, PI3K, Erk1/2, and NF-kB are among the components included in the signaling pathways.


Asunto(s)
Ouabaína , Canales Catiónicos TRPV , Humanos , Animales , Ouabaína/farmacología , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Transducción de Señal , Células Epiteliales/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA