Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.809
Filtrar
1.
Int J Mol Sci ; 25(19)2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39408594

RESUMEN

Carotenoid cleavage oxygenases (CCOs) cleave carotenoid molecules to produce bioactive products that influence the synthesis of hormones such as abscisic acid (ABA) and strigolactones (SL), which regulate plant growth, development, and stress adaptation. Here, to explore the molecular characteristics of all members of the OsCCO family in rice, fourteen OsCCO family genes were identified in the genome-wide study. The results revealed that the OsCCO family included one OsNCED and four OsCCD subfamilies. The OsCCO family was phylogenetically close to members of the maize ZmCCO family and the Sorghum SbCCO family. A collinearity relationship was observed between OsNCED3 and OsNCED5 in rice, as well as OsCCD7 and OsNCED5 between rice and Arabidopsis, Sorghum, and maize. OsCCD4a and OsCCD7 were the key members in the protein interaction network of the OsCCO family, which was involved in the catabolic processes of carotenoids and terpenoid compounds. miRNAs targeting OsCCO family members were mostly involved in the abiotic stress response, and RNA-seq data further confirmed the molecular properties of OsCCO family genes in response to abiotic stress and hormone induction. qRT-PCR analysis showed the differential expression patterns of OsCCO members across various rice organs. Notably, OsCCD1 showed relatively high expression levels in all organs except for ripening seeds and endosperm. OsNCED2a, OsNCED3, OsCCD1, OsCCD4a, OsCCD7, OsCCD8a, and OsCCD8e were potentially involved in plant growth and differentiation. Meanwhile, OsNCED2a, OsNCED2b, OsNCED5, OsCCD8b, and OsCCD8d were associated with reproductive organ development, flowering, and seed formation. OsNCED3, OsCCD4b, OsCCD4c, OsCCD8b, and OsCCD8c were related to assimilate transport and seed maturation. These findings provide a theoretical basis for further functional analysis of the OsCCO family.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Oryza , Oxigenasas , Filogenia , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Oryza/enzimología , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxigenasas/genética , Oxigenasas/metabolismo , Estrés Fisiológico/genética , Carotenoides/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Perfilación de la Expresión Génica
2.
Methods Enzymol ; 703: 299-328, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39261001

RESUMEN

The biotechnological potential of Rieske Oxygenases (ROs) and their cognate reductases remains unmet, in part because these systems can be functionally short-lived. Here, we describe a set of experiments aimed at identifying both the functional and structural stability limitations of ROs, using terephthalate (TPA) dioxygenase (from Comamonas strain E6) as a model system. Successful expression and purification of a cofactor-complete, histidine-tagged TPA dioxygenase and reductase protein system requires induction with the Escherichia coli host at stationary phase as well as a chaperone inducing cold-shock and supplementation with additional iron, sulfur, and flavin. The relative stability of the Rieske cluster and mononuclear iron center can then be assessed using spectroscopic and functional measurements following dialysis in an iron chelating buffer. These experiments involve measurements of the overall lifetime of the system via total turnover number using both UV-Visible absorbance and HPLC analyses, as well specific activity as a function of temperature. Important methods for assessing the stability of these multi-cofactor, multi-protein dependent systems at multiple levels of structure (secondary to quaternary) include differential scanning calorimetry, circular dichroism, and metallospectroscopy. Results can be rationalized in terms of three-dimensional structures and bioinformatics. The experiments described here provide a roadmap to a detailed characterization of the limitations of ROs. With a few notable exceptions, these issues are not widely addressed in current literature.


Asunto(s)
Estabilidad de Enzimas , Oxigenasas/química , Oxigenasas/metabolismo , Oxigenasas/genética , Dicroismo Circular/métodos , Temperatura , Cromatografía Líquida de Alta Presión/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Espectrofotometría Ultravioleta/métodos
3.
Biochemistry ; 63(19): 2506-2516, 2024 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-39265075

RESUMEN

A gene cluster responsible for the degradation of nicotinic acid (NA) in Bacillus niacini has recently been identified, and the structures and functions of the resulting enzymes are currently being evaluated to establish pathway intermediates. One of the genes within this cluster encodes a flavin monooxygenase (BnFMO) that is hypothesized to catalyze a hydroxylation reaction. Kinetic analyses of the recombinantly purified BnFMO suggest that this enzyme catalyzes the hydroxylation of 2,6-dihydroxynicotinic acid (2,6-DHNA) or 2,6-dihydroxypyridine (2,6-DHP), which is formed spontaneously by the decarboxylation of 2,6-DHNA. To understand the details of this hydroxylation reaction, we determined the structure of BnFMO using a multimodel approach combining protein X-ray crystallography and cryo-electron microscopy (cryo-EM). A liganded BnFMO cryo-EM structure was obtained in the presence of 2,6-DHP, allowing us to make predictions about potential catalytic residues. The structural data demonstrate that BnFMO is trimeric, which is unusual for Class A flavin monooxygenases. In both the electron density and coulomb potential maps, a region at the trimeric interface was observed that was consistent with and modeled as lipid molecules. High-resolution mass spectral analysis suggests that there is a mixture of phosphatidylethanolamine and phosphatidylglycerol lipids present. Together, these data provide insights into the molecular details of the central hydroxylation reaction unique to the aerobic degradation of NA in Bacillus niacini.


Asunto(s)
Bacillus , Microscopía por Crioelectrón , Bacillus/enzimología , Cristalografía por Rayos X , Oxigenasas/metabolismo , Oxigenasas/química , Oxigenasas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Modelos Moleculares , Conformación Proteica , Hidroxilación , Niacina/metabolismo , Niacina/química , Dominio Catalítico
4.
Methods Enzymol ; 704: 113-142, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39300645

RESUMEN

Oxazinomycin is a C-nucleoside natural product characterized by a 1,3-oxazine ring linked to ribose via a C-C glycosidic bond. Construction of the 1,3-oxazine ring depends on the activity of OzmD, which is a mononuclear non-heme iron-dependent enzyme from a family of enzymes that contain a domain of unknown function (DUF) 4243. OzmD catalyzes an unusual oxidative ring rearrangement of a pyridine derivative that releases cyanide as a by-product in the final stage of oxazinomycin biosynthesis. The intrinsic sensitivity of the OzmD substrate to oxygen along with the oxygen dependency of catalysis presents significant challenges in conducting in vitro enzymatic assays. This chapter describes the detailed procedures that have been used to characterize OzmD, including protein preparation, activity assays, and reaction by-product identification.


Asunto(s)
Proteínas Bacterianas , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Streptomyces/genética , Streptomyces/enzimología , Streptomyces/metabolismo , Oxigenasas/metabolismo , Oxigenasas/genética , Oxigenasas/química , Oxigenasas/aislamiento & purificación , Pruebas de Enzimas/métodos , Oxazinas/química , Oxazinas/metabolismo , Hierro/metabolismo , Hierro/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Hierro no Heme/metabolismo , Proteínas de Hierro no Heme/química , Proteínas de Hierro no Heme/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/química
5.
Methods Enzymol ; 704: 3-25, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39300653

RESUMEN

Extradiol dioxygenases are a class of non-heme iron-dependent enzymes found in eukaryotes and prokaryotes that play a vital role in the aerobic catabolism of aromatic compounds. They are generally divided into three evolutionarily independent superfamilies with different protein folds. Our recent studies have shed light on the catalytic mechanisms and structure-function relationships of two specific extradiol dioxygenases: 3-hydroxyanthranilate-3,4-dioxygenase, a Type III enzyme essential in mammals for producing a precursor for nicotinamide adenine dinucleotide, and L-3,4-dihydroxyphenylalanine dioxygenase, an uncommon form of Type I enzymes involved in natural product biosynthesis. This work details the expression and isolation methods for these extradiol dioxygenases and introduces approaches to achieve homogeneity and high occupancy of the enzyme metal centers. Techniques such as ultraviolet-visible and electron paramagnetic resonance spectroscopies, as well as oxygen electrode measurements, are discussed for probing the interaction of the non-heme iron center with ligands and characterizing enzymatic activities. Moreover, protein crystallization has been demonstrated as a powerful tool to study these enzymes. We highlight in crystallo reactions and single-crystal spectroscopic methods to further elucidate enzymatic functions and protein dynamics.


Asunto(s)
Cristalino , Cristalino/enzimología , Cristalino/metabolismo , Animales , Oxigenasas/metabolismo , Oxigenasas/química , Oxigenasas/genética , Espectroscopía de Resonancia por Spin del Electrón/métodos , Dioxigenasas/metabolismo , Dioxigenasas/química , Dioxigenasas/genética
6.
Methods Enzymol ; 703: 263-297, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39260999

RESUMEN

Rieske-type non-heme iron oxygenases (ROs) are an important family of non-heme iron enzymes. They catalyze a diverse range of transformations in secondary metabolite biosynthesis and xenobiotic bioremediation. ROs typically shuttle electrons from NAD(P)H to the oxygenase component via reductase component(s). This chapter describes our recent biochemical characterization of stachydrine demethylase Stc2 from Sinorhizobium meliloti. In this work, the eosin Y/sodium sulfite pair serves as the photoreduction system to replace the NAD(P)H-reductase system. We describe Stc2 protein purification and quality control details as well as a flow-chemistry to separate the photo-reduction half-reaction and the oxidation half-reaction. Our study demonstrates that the eosin Y/sodium sulfite photo-reduction pair is a NAD(P)H-reductase surrogate for Stc2-catalysis in a flow-chemistry setting. Experimental protocols used in this light-driven Stc2 catalysis are likely to be applicable as a photo-reduction system for other redox enzymes.


Asunto(s)
Oxidación-Reducción , Sinorhizobium meliloti , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/enzimología , Sinorhizobium meliloti/metabolismo , Oxigenasas/metabolismo , Oxigenasas/genética , Oxigenasas/química , Desmetilación , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química
7.
Methods Enzymol ; 703: 65-85, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39261004

RESUMEN

Oxygenases catalyze crucial reactions throughout all domains of life, cleaving molecular oxygen (O2) and inserting one or two of its atoms into organic substrates. Many oxygenases, including those in the cytochrome P450 (P450) and Rieske oxygenase enzyme families, function as multicomponent systems, which require one or more redox partners to transfer electrons to the catalytic center. As the identity of the reductase can change the reactivity of the oxygenase, characterization of the latter with its cognate redox partners is critical. However, the isolation of the native redox partner or partners is often challenging. Here, we report the preparation and characterization of PbdB, the native reductase partner of PbdA, a bacterial P450 enzyme that catalyzes the O-demethylation of para-methoxylated benzoates. Through production in a rhodoccocal host, codon optimization, and anaerobic purification, this procedure overcomes conventional challenges in redox partner production and allows for robust oxygenase characterization with its native redox partner. Key lessons learned here, including the value of production in a related host and rare codon effects are applicable to a broad range of Fe-dependent oxygenases and their components.


Asunto(s)
Oxidación-Reducción , Oxigenasas , Oxigenasas/metabolismo , Oxigenasas/química , Oxigenasas/genética , Oxigenasas/aislamiento & purificación , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Oxidorreductasas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/aislamiento & purificación , Rhodococcus/enzimología , Rhodococcus/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/química
8.
BMC Genomics ; 25(1): 872, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294571

RESUMEN

BACKGROUND: Carotenoid cleavage oxygenases (CCOs) are a group of enzymes that catalyze the oxidative cleavage of carotenoid molecules. These enzymes widely exist in plants, fungi, and certain bacteria, and are involved in various biological processes. It would be of great importance and necessity to identify CCO members in birch and characterize their responses upon abiotic stresses. RESULTS: A total of 16 BpCCOs, including 8 BpCCDs and 8 BpNCEDs were identified in birch, and phylogenetic tree analysis showed that they could be classified into six subgroups. Collinearity analysis revealed that BpCCOs have the largest number of homologous genes in Gossypium hirsutum and also have more homologous genes in other dicotyledons. In addition, promoter analysis revealed that the promoter regions of BpCCOs contained many abiotic stress-related and hormone-responsive elements. The results of qRT-PCR showed that most of the BpCCOs were able to respond significantly to ABA, PEG, salt and cold stresses. Finally, the prediction of the interacting proteins of BpCCOs by STRING revealed several proteins that may interact with BpCCOs and be involved in plant growth and development/abiotic stress processes, such as HEC1 (bHLH), ATABA1, ATVAMP714, etc. CONCLUSION: In this study, the CCO members were identified in birch in a genome-wide scale. These results indicate that BpCCO genes may play important roles in the abiotic stress responses of birch plants.


Asunto(s)
Betula , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Oxigenasas , Filogenia , Estrés Fisiológico , Betula/genética , Estrés Fisiológico/genética , Oxigenasas/genética , Oxigenasas/metabolismo , Regiones Promotoras Genéticas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Perfilación de la Expresión Génica
9.
Methods Enzymol ; 704: 173-198, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39300647

RESUMEN

α-Ketoglutarate-dependent non-heme iron (α-KG NHI) oxygenases compose one of the largest superfamilies of tailoring enzymes that play key roles in structural and functional diversifications. During the biosynthesis of meroterpenoids, α-KG NHI oxygenases catalyze diverse types of chemical reactions, including hydroxylation, desaturation, epoxidation, endoperoxidation, ring-cleavage, and skeletal rearrangements. Due to their catalytic versatility, keen attention has been focused on functional analyses of α-KG NHI oxygenases. This chapter provides detailed methodologies for the functional analysis of the fungal α-KG NHI oxygenase SptF, which plays an important role in the structural diversification of andiconin-derived meroterpenoids. The procedures included describe how to prepare the meroterpenoid substrate using a heterologous fungal host, measure the in vitro enzymatic activity of SptF, and how to perform structural and mutagenesis studies on SptF. These protocols are also applicable to functional analyses of other α-KG NHI oxygenases.


Asunto(s)
Ácidos Cetoglutáricos , Terpenos , Terpenos/metabolismo , Terpenos/química , Ácidos Cetoglutáricos/metabolismo , Oxigenasas/metabolismo , Oxigenasas/genética , Oxigenasas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas de Hierro no Heme/metabolismo , Proteínas de Hierro no Heme/química , Proteínas de Hierro no Heme/genética , Hongos/metabolismo , Hongos/genética , Hongos/enzimología , Pruebas de Enzimas/métodos , Especificidad por Sustrato
10.
Biochem Biophys Res Commun ; 733: 150575, 2024 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-39197199

RESUMEN

Flavin monooxygenases (FMOs) have been widely used in the biosynthesis of natural compounds due to their excellent stereoselectivity, regioselectivity and chemoselectivity. Stenotrophomonas maltophilia flavin monooxygenase (SmFMO) has been reported to catalyze the oxidation of various thiols to corresponding sulfoxides, but its activity is relatively low. Herein, we obtained a mutant SmFMOF52G which showed 4.35-fold increase in kcat/Km (4.96 mM-1s-1) and 6.84-fold increase in enzyme activity (81.76 U/g) compared to the SmFMOWT (1.14 mM-1s-1 and 11.95 U/g) through semi-rational design guided by structural analysis and catalytic mechanism combined with high-throughput screening. By forming hydrogen bond with O4 atom of FAD isoalloxazine ring and reducing steric hindrance, the conformation of FAD isoalloxazine ring in SmFMOF52G is more stable, and NADPH and substrate are closer to FAD isoalloxazine ring, shortening the distances of hydrogen transfer and substrate oxygenation, thereby increasing the rate of reduction and oxidation reactions and enhancing enzyme activity. Additionally, the overall structural stability and substrate binding capacity of the SmFMOF52G have significant improved than that of SmFMOWT. The strategy used in this study to improve the enzyme activity of FMOs may have generality, providing important references for the rational and semi-rational engineering of FMOs.


Asunto(s)
Flavina-Adenina Dinucleótido , Flavinas , Oxigenasas , Flavina-Adenina Dinucleótido/metabolismo , Flavina-Adenina Dinucleótido/química , Flavinas/metabolismo , Flavinas/química , Oxigenasas/metabolismo , Oxigenasas/química , Oxigenasas/genética , Stenotrophomonas maltophilia/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Modelos Moleculares , Oxidación-Reducción , Especificidad por Sustrato , Cinética
11.
Sheng Wu Gong Cheng Xue Bao ; 40(8): 2444-2456, 2024 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-39174464

RESUMEN

Indigo, as a water-soluble non-azo colorant, is widely used in textile, food, pharmaceutical and other industrial fields. Currently, indigo is primarily synthesized by chemical methods, which causes environmental pollution, potential safety hazards, and other issues. Therefore, there is an urgent need to find a safer and greener synthetic method. In this study, a dual-enzyme cascade pathway was constructed with the tryptophan synthase (tryptophanase, EcTnaA) from Escherichia coli and flavin-dependent monooxygenase (flavin-dependent monooxygenase, MaFMO) from Methylophaga aminisulfidivorans to synthesize indigo with L-tryptophan as substrate. A recombinant strain EM-IND01 was obtained. The beneficial mutant MaFMOD197E was obtained by protein engineering of the rate-limiting enzyme MaFMO. MaFMOD197E showed the specific activity and kcat/Km value 2.36 times and 1.34 times higher than that of the wild type, respectively. Furthermore, MaFMOD197E was introduced into the strain EM-IND01 to construct the strain EM-IND02. After the fermentation conditions were optimized, the strain achieved the indigo titer of (1 288.59±7.50) mg/L, the yield of 0.86 mg/mg L-tryptophan, and the productivity of 26.85 mg/(L·h) in a 5 L fermenter. Protein engineering was used to obtain mutants with increased MaFMO activity in this study, which laid a foundation for industrial production of indigo.


Asunto(s)
Escherichia coli , Carmin de Índigo , Triptófano , Carmin de Índigo/metabolismo , Triptófano/metabolismo , Triptófano/biosíntesis , Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería de Proteínas , Triptofanasa/genética , Triptofanasa/metabolismo , Triptófano Sintasa/metabolismo , Triptófano Sintasa/genética , Fermentación , Oxigenasas/genética , Oxigenasas/metabolismo
12.
FEMS Microbiol Ecol ; 100(9)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39122657

RESUMEN

Methanotrophs are the sole biological sink of methane. Volatile organic compounds (VOCs) produced by heterotrophic bacteria have been demonstrated to be a potential modulating factor of methane consumption. Here, we identify and disentangle the impact of the volatolome of heterotrophic bacteria on the methanotroph activity and proteome, using Methylomonas as model organism. Our study unambiguously shows how methanotrophy can be influenced by other organisms without direct physical contact. This influence is mediated by VOCs (e.g. dimethyl-polysulphides) or/and CO2 emitted during respiration, which can inhibit growth and methane uptake of the methanotroph, while other VOCs had a stimulating effect on methanotroph activity. Depending on whether the methanotroph was exposed to the volatolome of the heterotroph or to CO2, proteomics revealed differential protein expression patterns with the soluble methane monooxygenase being the most affected enzyme. The interaction between methanotrophs and heterotrophs can have strong positive or negative effects on methane consumption, depending on the species interacting with the methanotroph. We identified potential VOCs involved in the inhibition while positive effects may be triggered by CO2 released by heterotrophic respiration. Our experimental proof of methanotroph-heterotroph interactions clearly calls for detailed research into strategies on how to mitigate methane emissions.


Asunto(s)
Dióxido de Carbono , Metano , Interacciones Microbianas , Compuestos Orgánicos Volátiles , Metano/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Dióxido de Carbono/metabolismo , Methylomonas/metabolismo , Methylomonas/genética , Proteómica , Proteoma , Procesos Heterotróficos , Oxigenasas/metabolismo , Oxigenasas/genética
13.
Cardiovasc Diabetol ; 23(1): 299, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143579

RESUMEN

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is associated with systemic inflammation, obesity, metabolic syndrome, and gut microbiome changes. Increased trimethylamine-N-oxide (TMAO) levels are predictive for mortality in HFpEF. The TMAO precursor trimethylamine (TMA) is synthesized by the intestinal microbiome, crosses the intestinal barrier and is metabolized to TMAO by hepatic flavin-containing monooxygenases (FMO). The intricate interactions of microbiome alterations and TMAO in relation to HFpEF manifestation and progression are analyzed here. METHODS: Healthy lean (L-ZSF1, n = 12) and obese ZSF1 rats with HFpEF (O-ZSF1, n = 12) were studied. HFpEF was confirmed by transthoracic echocardiography, invasive hemodynamic measurements, and detection of N-terminal pro-brain natriuretic peptide (NT-proBNP). TMAO, carnitine, symmetric dimethylarginine (SDMA), and amino acids were measured using mass-spectrometry. The intestinal epithelial barrier was analyzed by immunohistochemistry, in-vitro impedance measurements and determination of plasma lipopolysaccharide via ELISA. Hepatic FMO3 quantity was determined by Western blot. The fecal microbiome at the age of 8, 13 and 20 weeks was assessed using 16s rRNA amplicon sequencing. RESULTS: Increased levels of TMAO (+ 54%), carnitine (+ 46%) and the cardiac stress marker NT-proBNP (+ 25%) as well as a pronounced amino acid imbalance were observed in obese rats with HFpEF. SDMA levels in O-ZSF1 were comparable to L-ZSF1, indicating stable kidney function. Anatomy and zonula occludens protein density in the intestinal epithelium remained unchanged, but both impedance measurements and increased levels of LPS indicated an impaired epithelial barrier function. FMO3 was decreased (- 20%) in the enlarged, but histologically normal livers of O-ZSF1. Alpha diversity, as indicated by the Shannon diversity index, was comparable at 8 weeks of age, but decreased by 13 weeks of age, when HFpEF manifests in O-ZSF1. Bray-Curtis dissimilarity (Beta-Diversity) was shown to be effective in differentiating L-ZSF1 from O-ZSF1 at 20 weeks of age. Members of the microbial families Lactobacillaceae, Ruminococcaceae, Erysipelotrichaceae and Lachnospiraceae were significantly differentially abundant in O-ZSF1 and L-ZSF1 rats. CONCLUSIONS: In the ZSF1 HFpEF rat model, increased dietary intake is associated with alterations in gut microbiome composition and bacterial metabolites, an impaired intestinal barrier, and changes in pro-inflammatory and health-predictive metabolic profiles. HFpEF as well as its most common comorbidities obesity and metabolic syndrome and the alterations described here evolve in parallel and are likely to be interrelated and mutually reinforcing. Dietary adaption may have a positive impact on all entities.


Asunto(s)
Modelos Animales de Enfermedad , Progresión de la Enfermedad , Microbioma Gastrointestinal , Insuficiencia Cardíaca , Metilaminas , Volumen Sistólico , Función Ventricular Izquierda , Animales , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/microbiología , Insuficiencia Cardíaca/metabolismo , Metilaminas/metabolismo , Metilaminas/sangre , Masculino , Obesidad/microbiología , Obesidad/fisiopatología , Obesidad/metabolismo , Oxigenasas/metabolismo , Oxigenasas/genética , Hígado/metabolismo , Biomarcadores/sangre , Heces/microbiología , Ratas , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Bacterias/metabolismo , Disbiosis
14.
Commun Biol ; 7(1): 1054, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191965

RESUMEN

The kidney is vulnerable to ischemia and reperfusion (I/R) injury that can be fatal after major surgery. Currently, there are no effective treatments for I/R-induced kidney injury. Trimethylamine N-oxide (TMAO) is a gut-derived metabolite linked to many diseases, but its role in I/R-induced kidney injury remains unclear. Here, our clinical data reveals an association between preoperative systemic TMAO levels and postoperative kidney injury in patients after post-cardiopulmonary bypass surgery. By genetic deletion of TMAO-producing enzyme flavin-containing monooxygenase 3 (FMO3) and dietary supplementation of choline to modulate TMAO levels, we found that TMAO aggravated acute kidney injury through the triggering of endoplasmic reticulum (ER) stress and worsened subsequent renal fibrosis through TGFß/Smad signaling activation. Together, our study underscores the negative role of TMAO in I/R-induced kidney injury and highlights the therapeutic potential through the modulation of TMAO levels by targeting FMO3, thereby mitigating acute kidney injury and preventing subsequent renal fibrosis.


Asunto(s)
Lesión Renal Aguda , Riñón , Metilaminas , Oxigenasas , Daño por Reperfusión , Animales , Daño por Reperfusión/metabolismo , Oxigenasas/metabolismo , Oxigenasas/genética , Ratones , Masculino , Metilaminas/metabolismo , Riñón/metabolismo , Riñón/patología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/etiología , Lesión Renal Aguda/prevención & control , Ratones Noqueados , Ratones Endogámicos C57BL , Humanos , Fibrosis , Transducción de Señal , Estrés del Retículo Endoplásmico , Factor de Crecimiento Transformador beta/metabolismo
15.
Microb Biotechnol ; 17(8): e70000, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39160605

RESUMEN

Methane capture via oxidation is considered one of the 'Holy Grails' of catalysis (Tucci and Rosenzweig, 2024). Methane is also a primary greenhouse gas that has to be reduced by 1.2 billion metric tonnes in 10 years to decrease global warming by only 0.23°C (He and Lidstrom, 2024); hence, new technologies are needed to reduce atmospheric methane levels. In Nature, methane is captured aerobically by methanotrophs and anaerobically by anaerobic methanotrophic archaea; however, the anaerobic process dominates. Here, we describe the history and potential of using the two remarkable enzymes that have been cloned with activity for capturing methane: aerobic capture via soluble methane monooxygenase and anaerobic capture via methyl-coenzyme M reductase. We suggest these two enzymes may play a prominent, sustainable role in addressing our current global warming crisis.


Asunto(s)
Metano , Oxidorreductasas , Oxigenasas , Proteínas Recombinantes , Metano/metabolismo , Oxigenasas/genética , Oxigenasas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Oxidación-Reducción , Anaerobiosis , Aerobiosis , Archaea/enzimología , Archaea/genética , Archaea/metabolismo
16.
Biotechnol Bioeng ; 121(10): 3144-3154, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38951963

RESUMEN

Rieske dioxygenases have a long history of being utilized as green chemical tools in the organic synthesis of high-value compounds, due to their capacity to perform the cis-dihydroxylation of a wide variety of aromatic substrates. The practical utility of these enzymes has been hampered however by steric and electronic constraints on their substrate scopes, resulting in limited reactivity with certain substrate classes. Herein, we report the engineering of a widely used member of the Rieske dioxygenase class of enzymes, toluene dioxygenase (TDO), to produce improved variants with greatly increased activity for the cis-dihydroxylation of benzoates. Through rational mutagenesis and screening, TDO variants with substantially improved activity over the wild-type enzyme were identified. Homology modeling, docking studies, molecular dynamics simulations, and substrate tunnel analysis were applied in an effort to elucidate how the identified mutations resulted in improved activity for this polar substrate class. These analyses revealed modification of the substrate tunnel as the likely cause of the improved activity observed with the best-performing enzyme variants.


Asunto(s)
Oxigenasas , Oxigenasas/genética , Oxigenasas/metabolismo , Oxigenasas/química , Ingeniería de Proteínas/métodos , Hidroxilación , Especificidad por Sustrato , Complejo III de Transporte de Electrones/metabolismo , Complejo III de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/química
17.
Arch Microbiol ; 206(8): 363, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073473

RESUMEN

Soil and groundwater were investigated for the genes encoding soluble and particulate methane monooxygenase/ammonia monooxygenase (sMMO, pMMO/AMO), toluene 4-monooxygenase (T4MO), propane monooxygenase (PMO) and phenol hydroxylase (PH). The objectives were (1) to determine which subunits were present, (2) to examine the diversity of the phylotypes associated with the biomarkers and (3) to identify which metagenome associated genomes (MAGs) contained these subunits. All T4MO and PH subunits were annotated in the groundwater metagenomes, while few were annotated in the soil metagenomes. The majority of the soil metagenomes included only four sMMO subunits. Only two groundwater metagenomes contained five sMMO subunits. Gene counts for the pMMO subunits varied between samples. The majority of the soil metagenomes were annotated for all four PMO subunits, while three out of eight groundwater metagenomes contained all four PMO subunits. A comparison of the blast alignments for the sMMO alpha chain (mmoX) indicated the phylotypes differed between the soil and groundwater metagenomes. For the pMMO/AMO alpha subunit (pmoA/amoA), Nitrosospira was important for the soil metagenomes, while Methylosinus and Methylocystis were dominant for the groundwater metagenomes. The majority of pmoA alignments from both metagenomes were from uncultured bacteria. High quality MAGs were obtained from the groundwater data. Four MAGs (Methylocella and Cypionkella) contained sMMO subunits. Another three MAGs, within the order Pseudomonadales, contained all three pMMO subunits. All PH subunits were detected in seven MAGs (Azonexus, Rhodoferax, Aquabacterium). In those seven, all contained catechol 2,3-dioxagenase, and Aquabacterium also contained catechol 1,2-dioxygenase. T4MO subunits were detected in eight MAGs (Azonexus, Rhodoferax, Siculibacillus) and all, except one, contained all six subunits. Four MAGs (Rhodoferax and Azonexus) contained all subunits for PH and T4MO, as well as catechol 2,3-dixoygenase. The detection of T4MO and PH in groundwater metagenomes and MAGs has important implications for the potential oxidation of groundwater contaminants.


Asunto(s)
Agua Subterránea , Metagenoma , Oxigenasas , Filogenia , Microbiología del Suelo , Agua Subterránea/microbiología , Agua Subterránea/química , Oxigenasas/genética , Oxigenasas/metabolismo , Bacterias/genética , Bacterias/clasificación , Bacterias/enzimología , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Citocromo P-450 CYP4A/genética , Citocromo P-450 CYP4A/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Oxigenasas de Función Mixta
18.
BMC Genom Data ; 25(1): 71, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030545

RESUMEN

The coffee industry holds importance, providing livelihoods for millions of farmers globally and playing a vital role in the economies of coffee-producing countries. Environmental conditions such as drought and temperature fluctuations can adversely affect the quality and yield of coffee crops.Carotenoid cleavage oxygenases (CCO) enzymes are essential for coffee plants as they help break down carotenoids contributing to growth and stress resistance. However, knowledge about the CCO gene family in Coffee arabica was limited. In this study identified 21 CCO genes in Coffee arabica (C. arabica) revealing two subfamilies carotenoid cleavage dioxygenases (CCDs) and 9-cis-epoxy carotenoid dioxygenases (NCED) through phylogenic analysis. These subfamilies exhibited distribution patterns in terms of gene structure, domains, and motifs. The 21 CaCCO genes, comprising 5 NCED and 16 CCD genes were found across chromosomes. Promoter sequencing analysis revealed cis-elements that likely interact with plant stress-responsive, growth-related, and phytohormones, like auxin and abscisic acid. A comprehensive genome-wide comparison, between C. arabica and A. thaliana was conducted to understand the characteristics of CCO genes. RTqPCR data indicated that CaNCED5, CaNCED6, CaNCED12, and CaNCED20 are target genes involved in the growth of drought coffee plants leading to increased crop yield, in a conditions, with limited water availability. This reveals the role of coffee CCOs in responding to abiotic stress and identifies potential genes useful for breeding stress-resistant coffee varieties.


Asunto(s)
Coffea , Oxigenasas , Filogenia , Estrés Fisiológico , Estrés Fisiológico/genética , Oxigenasas/genética , Oxigenasas/metabolismo , Coffea/genética , Familia de Multigenes , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Genoma de Planta/genética , Café/genética , Regiones Promotoras Genéticas/genética , Carotenoides/metabolismo , Estudio de Asociación del Genoma Completo
19.
Genes (Basel) ; 15(6)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38927664

RESUMEN

Chilling stress is one of the main abiotic factors affecting rice growth and yield. In rice, chlorophyllide a oxygenase encoded by OsCAO1 is responsible for converting chlorophyllide a to chlorophyllide b, playing a crucial role in photosynthesis and thus rice growth. However, little is known about the function of OsCAO1 in chilling stress responses. The presence of the cis-acting element involved in low-temperature responsiveness (LTR) in the OsCAO1 promoter implied that OsCAO1 probably is a cold-responsive gene. The gene expression level of OsCAO1 was usually inhibited by low temperatures during the day and promoted by low temperatures at night. The OsCAO1 knockout mutants generated by the CRISPR-Cas9 technology in rice (Oryza sativa L.) exhibited significantly weakened chilling tolerance at the seedling stage. OsCAO1 dysfunction led to the accumulation of reactive oxygen species and malondialdehyde, an increase in relative electrolyte leakage, and a reduction in antioxidant gene expression under chilling stress. In addition, the functional deficiency of OsCAO1 resulted in more severe damage to chloroplast morphology, such as abnormal grana thylakoid stacking, caused by low temperatures. Moreover, the rice yield was reduced in OsCAO1 knockout mutants. Therefore, the elevated expression of OsCAO1 probably has the potential to increase both rice yield and chilling tolerance simultaneously, providing a strategy to cultivate chilling-tolerant rice varieties with high yields.


Asunto(s)
Frío , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Plantones , Oryza/genética , Oryza/crecimiento & desarrollo , Plantones/genética , Plantones/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxigenasas/genética , Oxigenasas/metabolismo , Respuesta al Choque por Frío/genética , Técnicas de Inactivación de Genes , Especies Reactivas de Oxígeno/metabolismo , Clorofila/metabolismo , Fotosíntesis/genética
20.
Int J Mol Sci ; 25(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891781

RESUMEN

Carotenoid cleavage oxygenases can cleave carotenoids into a range of biologically important products. Carotenoid isomerooxygenase (NinaB) and ß, ß-carotene 15, 15'-monooxygenase (BCO1) are two important oxygenases. In order to understand the roles that both oxygenases exert in crustaceans, we first investigated NinaB-like (EsNinaBl) and BCO1-like (EsBCO1l) within the genome of Chinese mitten crab (Eriocheir sinensis). Their functions were then deciphered through an analysis of their expression patterns, an in vitro ß-carotene degradation assay, and RNA interference. The results showed that both EsNinaBl and EsBCO1l contain an RPE65 domain and exhibit high levels of expression in the hepatopancreas. During the molting stage, EsNinaBl exhibited significant upregulation in stage C, whereas EsBCO1l showed significantly higher expression levels at stage AB. Moreover, dietary supplementation with ß-carotene resulted in a notable increase in the expression of EsNinaBl and EsBCO1l in the hepatopancreas. Further functional assays showed that the EsNinaBl expressed in E. coli underwent significant changes in its color, from orange to light; in addition, its ß-carotene cleavage was higher than that of EsBCO1l. After the knockdown of EsNinaBl or EsBCO1l in juvenile E. sinensis, the expression levels of both genes were significantly decreased in the hepatopancreas, accompanied by a notable increase in the redness (a*) values. Furthermore, a significant increase in the ß-carotene content was observed in the hepatopancreas when EsNinaBl-mRNA was suppressed, which suggests that EsNinaBl plays an important role in carotenoid cleavage, specifically ß-carotene. In conclusion, our findings suggest that EsNinaBl and EsBCO1l may exhibit functional co-expression and play a crucial role in carotenoid cleavage in crabs.


Asunto(s)
Braquiuros , Hepatopáncreas , beta Caroteno , beta-Caroteno 15,15'-Monooxigenasa , Animales , beta Caroteno/metabolismo , Braquiuros/metabolismo , Braquiuros/genética , beta-Caroteno 15,15'-Monooxigenasa/metabolismo , beta-Caroteno 15,15'-Monooxigenasa/genética , Hepatopáncreas/metabolismo , Muda/genética , Oxigenasas/metabolismo , Oxigenasas/genética , Filogenia , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA