RESUMEN
Liraglutide, an analog of the incretin hormone glucagon-like peptide 1 (GLP-1), is widely used for obesity and type 2 diabetes treatment. However, there is scarce information about its effects on testicular function. Within the testis, Sertoli cells (SCs) provide nutritional support for germ cells; they metabolize glucose to lactate, which is delivered to germ cells to be used as a preferred energy substrate. Besides, SCs use fatty acids (FAs) as an energy source and store them as triacylglycerols (TAGs) within lipid droplets (LDs), which serve as an important energy reserve. In the present study, 20-day-old rat SC cultures were used to assess whether liraglutide affects their metabolic functions related to nutritional support and lipid storage. The results show that liraglutide does not modify glucose consumption or lactate production. However, it increases TAG levels and LD content. These effects are accompanied by an increase in the mRNA levels of the fatty acid transporter FAT/CD36, glycerol-3-phosphate-acyltransferase 3, and perilipins 1 and 4. The participation of the cAMP/PKA signaling pathway was explored. We observed that H89 (a PKA inhibitor) decreases the LD upregulation elicited by liraglutide, and that dibutyryl cAMP increases LD content and the expression of related genes. In summary, liraglutide promotes lipid storage in SCs through the regulation of key regulatory genes involved in FA transport, TAG synthesis, and LD formation. Considering the importance of lipid storage in SC energetic homeostasis maintenance, we postulate that liraglutide might improve the overall energetic status of the seminiferous tubule.
Asunto(s)
Metabolismo Energético , Liraglutida , Células de Sertoli , Animales , Masculino , Liraglutida/farmacología , Células de Sertoli/metabolismo , Células de Sertoli/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Ratas , Células Cultivadas , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/análogos & derivados , Péptido 1 Similar al Glucagón/farmacología , Triglicéridos/metabolismo , Glucosa/metabolismo , Gotas Lipídicas/metabolismo , Gotas Lipídicas/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Antígenos CD36/metabolismo , Antígenos CD36/genéticaRESUMEN
Glucagon-like peptide-1-based medicines have weight loss-independent actions.
Asunto(s)
Sistema Cardiovascular , Péptido 1 Similar al Glucagón , Agonistas Receptor de Péptidos Similares al Glucagón , Péptidos Similares al Glucagón , Pérdida de Peso , Humanos , Sistema Cardiovascular/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Péptido 1 Similar al Glucagón/administración & dosificación , Péptido 1 Similar al Glucagón/farmacología , Receptor del Péptido 1 Similar al Glucagón/agonistas , Agonistas Receptor de Péptidos Similares al Glucagón/administración & dosificación , Agonistas Receptor de Péptidos Similares al Glucagón/farmacología , Péptidos Similares al Glucagón/administración & dosificación , Péptidos Similares al Glucagón/farmacología , Liraglutida/administración & dosificación , Liraglutida/farmacología , Isquemia Miocárdica/prevención & control , Isquemia Miocárdica/terapia , Pérdida de Peso/efectos de los fármacos , AnimalesRESUMEN
The incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), are rapidly degraded by dipeptidyl peptidase-4 (DPP-4) to their major circulating metabolites GLP-1(9-36) and GIP(3-42). This study investigates the possible effects of these metabolites, and the equivalent exendin molecule Ex(9-39), on pancreatic islet morphology and constituent alpha and beta cells in high-fat diet (HFD) fed mice. Male Swiss TO-mice (6-8 weeks-old) were maintained on a HFD or normal diet (ND) for 4 months and then received twice-daily subcutaneous injections of GLP-1(9-36), GIP(3-42), Ex(9-39) (25 nmol/kg bw) or saline vehicle (0.9% (w/v) NaCl) over a 60-day period. Metabolic parameters were monitored and excised pancreatic tissues were used for immunohistochemical analysis. Body weight and assessed metabolic indices were not changed by peptide administration. GLP-1(9-36) significantly (p<0.001) increased islet density per mm2 tissue, that was decreased (p<0.05) by HFD. Islet, beta and alpha cell areas were increased (p<0.01) following HFD and subsequently reduced (p<0.01-p<0.001) by GIP(3-42) and Ex(9-39) treatment. While GLP-1(9-36) did not affect islet and beta cell areas in HFD mice, it significantly (p<0.01) decreased alpha cell area. Compared to ND and HFD mice, GIP(3-42) treatment significantly (p<0.05) increased beta cell proliferation. Whilst HFD increased (p<0.001) beta cell apoptosis, this was reduced (p<0.01-p<0.001) by both GLP-1(9-36) and GIP(3-42). These data indicate that the major circulating forms of GLP-1 and GIP, namely GLP-1(9-36) and GIP(3-42) previously considered largely inactive, may directly impact pancreatic morphology, with an important protective effect on beta cell health under conditions of beta cell stress.
Asunto(s)
Dieta Alta en Grasa , Polipéptido Inhibidor Gástrico , Péptido 1 Similar al Glucagón , Incretinas , Células Secretoras de Insulina , Animales , Polipéptido Inhibidor Gástrico/farmacología , Polipéptido Inhibidor Gástrico/metabolismo , Masculino , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Ratones , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Dieta Alta en Grasa/efectos adversos , Incretinas/farmacología , Incretinas/metabolismo , Fragmentos de Péptidos/farmacología , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Apoptosis/efectos de los fármacos , Insulina/metabolismoRESUMEN
Breast cancer (BC) is associated with type 2 diabetes mellitus (T2DM) and obesity. Glucagon-like peptide (GLP)-1 regulates post-prandial insulin secretion, satiety, and gastric emptying. Several GLP-1 analogs have been FDA-approved for the treatment of T2DM and obesity. Moreover, GLP-1 regulates various metabolic activities across different tissues by activating metabolic signaling pathways like adenosine monophosphate (AMP) activated protein kinase (AMPK), and AKT. Rewiring metabolic pathways is a recognized hallmark of cancer, regulated by several cancer-related pathways, including AKT and AMPK. As GLP-1 regulates AKT and AMPK, we hypothesized that it alters BC cells' metabolism, thus inhibiting proliferation. The effect of the GLP-1 analogs exendin-4 (Ex4) and liraglutide on viability, AMPK signaling and metabolism of BC cell lines were assessed. Viability of BC cells was evaluated using colony formation and MTT/XTT assays. Activation of AMPK and related signaling effects were evaluated using western blot. Metabolism effects were measured for glucose, lactate and ATP. Exendin-4 and liraglutide activated AMPK in a cAMP-dependent manner. Blocking Ex4-induced activation of AMPK by inhibition of AMPK restored cell viability. Interestingly, Ex4 and liraglutide reduced the levels of glycolytic metabolites and decreased ATP production, suggesting that GLP-1 analogs impair glycolysis. Notably, inhibiting AMPK reversed the decline in ATP levels, highlighting the role of AMPK in this process. These results establish a novel signaling pathway for GLP-1 in BC cells through cAMP and AMPK modulation affecting proliferation and metabolism. This study suggests that GLP-1 analogs should be considered for diabetic patients with BC.
Asunto(s)
Neoplasias de la Mama , Exenatida , Péptido 1 Similar al Glucagón , Liraglutida , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Exenatida/farmacología , Femenino , Liraglutida/farmacología , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Péptido 1 Similar al Glucagón/análogos & derivados , Línea Celular Tumoral , Proteínas Quinasas Activadas por AMP/metabolismo , Transducción de Señal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Efecto Warburg en Oncología/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ponzoñas/farmacología , Adenilato Quinasa/metabolismo , Péptidos/farmacologíaRESUMEN
The spontaneous firing activity of nigral dopaminergic neurons is associated with some important roles including modulation of dopamine release, expression of tyrosine hydroxylase (TH), as well as neuronal survival. The decreased neuroactivity of nigral dopaminergic neurons has been revealed in Parkinson's disease. Central glucagon-like peptide-1 (GLP-1) functions as a neurotransmitter or neuromodulator to exert multiple brain functions. Although morphological studies revealed the expression of GLP-1 receptors (GLP-1Rs) in the substantia nigra pars compacta, the possible modulation of GLP-1 on spontaneous firing activity of nigral dopaminergic neurons is unknown. The present extracellular in vivo single unit recordings revealed that GLP-1R agonist exendin-4 significantly increased the spontaneous firing rate and decreased the firing regularity of partial nigral dopaminergic neurons of adult male C57BL/6 mice. Blockade of GLP-1Rs by exendin (9-39) decreased the firing rate of nigral dopaminergic neurons suggesting the involvement of endogenous GLP-1 in the modulation of firing activity. Furthermore, the PKA and the transient receptor potential canonical (TRPC) 4/5 channels are involved in activation of GLP-1Rs-induced excitatory effects of nigral dopaminergic neurons. Under parkinsonian state, both the exogenous and endogenous GLP-1 could still induce excitatory effects on the surviving nigral dopaminergic neurons. As the mild excitatory stimuli exert neuroprotective effects on nigral dopaminergic neurons, the present GLP-1-induced excitatory effects may partially contribute to its antiparkinsonian effects.
Asunto(s)
Potenciales de Acción , Neuronas Dopaminérgicas , Exenatida , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Ratones Endogámicos C57BL , Sustancia Negra , Animales , Masculino , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Exenatida/farmacología , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Ratones , Ponzoñas/farmacología , Péptidos/farmacología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/fisiopatología , Fragmentos de Péptidos/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismoRESUMEN
This study assesses the efficacy of an innovative therapeutic approach that combines GLP-1 and amylin analogues for weight reduction. Focusing on GLP-1 analogues from bullfrog (Rana catesbeiana), we designed ten bGLP-1 analogues with various modifications. Among them, bGLP-10 showed high potency in binding and activating GLP-1 receptors, with superior albumin affinity. In diet-induced obesity (DIO) mice fed a high-fat diet, bGLP-10 demonstrated significant superiority over semaglutide in reducing blood sugar and food intake at a dose of 10 nmol/kg (P < 0.001). Notably, in a chronic study involving DIO mice, the combination of bGLP-10 with the amylin analogue cagrilintide led to a more substantial weight loss (-38.4%, P < 0.001) compared to either the semaglutide-cagrilintide combination (-23.0%) or cagrilintide (-5.7%), bGLP-10 (-16.1%), and semaglutide (-10.9%) alone. Furthermore, the bGLP-10 and cagrilintide combination exhibited superior glucose control and liver lipid management compared to the semaglutide-cagrilintide combination (P < 0.001). These results highlight bGLP-10's potential in GLP-1 and amylin-based therapies and suggest exploring more GLP-1 analogues from natural sources for anti-obesity and anti-diabetic treatments.
Asunto(s)
Péptido 1 Similar al Glucagón , Péptidos Similares al Glucagón , Polipéptido Amiloide de los Islotes Pancreáticos , Obesidad , Animales , Ratones , Péptido 1 Similar al Glucagón/farmacología , Obesidad/tratamiento farmacológico , Péptidos Similares al Glucagón/farmacología , Péptidos Similares al Glucagón/análogos & derivados , Péptidos Similares al Glucagón/administración & dosificación , Masculino , Dieta Alta en Grasa/efectos adversos , Humanos , Quimioterapia Combinada , Glucemia/efectos de los fármacos , Receptor del Péptido 1 Similar al Glucagón/agonistas , Pérdida de Peso/efectos de los fármacosRESUMEN
AIM: To determine the effect of endogenous glucagon-like peptide 1 (GLP-1) on prandial counterregulatory response to hypoglycaemia after gastric bypass (GB). MATERIALS AND METHODS: Glucose fluxes, and islet-cell and gut hormone responses before and after mixed-meal ingestion, were compared during a hyperinsulinaemic-hypoglycaemic (~3.2 mmol/L) clamp with and without a GLP-1 receptor (GLP-1R) antagonist exendin-(9-39) infusion in non-diabetic patients who had previously undergone GB compared to matched participants who had previously undergone sleeve gastrectomy (SG) and non-surgical controls. RESULTS: Exendin-(9-39) infusion raised prandial endogenous glucose production (EGP) response to insulin-induced hypoglycaemia in the GB group but had no consistent effect on EGP response among the SG group or non-surgical controls (p < 0.05 for interaction). The rates of systemic appearance of ingested glucose or prandial glucose utilization did not differ among the three groups or between studies with and without exendin-(9-39) infusion. Blockade of GLP-1R had no effect on insulin secretion or insulin action but enhanced prandial glucagon in all three groups. CONCLUSIONS: These results indicate that impaired post-meal glucose counterregulatory response to hypoglycaemia after GB is partly mediated by endogenous GLP-1, highlighting a novel pathogenic mechanism of GLP-1 in developing hypoglycaemia in this population.
Asunto(s)
Glucemia , Derivación Gástrica , Péptido 1 Similar al Glucagón , Hipoglucemia , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Glucemia/metabolismo , Gastrectomía/efectos adversos , Derivación Gástrica/efectos adversos , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Técnica de Clampeo de la Glucosa , Hipoglucemia/prevención & control , Hipoglucemia/metabolismo , Insulina/metabolismo , Fragmentos de Péptidos/administración & dosificación , Periodo PosprandialRESUMEN
Glucagon-like peptide-1 (GLP-1) is an incretin released into the gastrointestinal tract after food ingestion, and stimulates insulin secretion from the beta cells of the pancreatic islets. Incretins have recently been reported to have extrapancreatic actions, and they are anticipated to have potential efficacy for conditions such as male infertility as well as diabetes. However, the effects of incretins on male reproductive function remain unclear. In this study, GLP-1 receptor expression and the effects of GLP-1 on spermatogenesis-associated genes were investigated using mouse testes and testis-derived cultured cell lines. Glp1r mRNA and GLP-1 protein were expressed in mouse testes at levels comparable to or greater than those in positive control adipose tissue, and the liver and intestine, and also in a Sertoli cell line (TM4) and a Leydig cell line (MA-10) as well as the GC-1 spg and GC-2 spd (ts) germ cell lines. TM4 cells treated with the GLP-1 receptor agonist exenatide showed transiently and significantly upregulated Kitl, Pdgfa, and Glp1r mRNA expression. Furthermore, at 1 hr post-exenatide administration to male mice, Kitl and Glp1r mRNA expression levels were significantly increased, and Pdgfa mRNA expression level also showed a tendency toward increase. TM4 cells were treated with various cell-activating agents, and bucladesine elicited significantly increased Glp1r mRNA expression. We suggest that GLP-1 provides acute stimulation of Sertoli cells in the mouse testis and has a stimulatory effect on the expression of spermatogenesis-related genes.
Asunto(s)
Exenatida , Péptido 1 Similar al Glucagón , Agonistas Receptor de Péptidos Similares al Glucagón , Espermatogénesis , Testículo , Animales , Masculino , Ratones , Línea Celular , Exenatida/farmacología , Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Péptido 1 Similar al Glucagón/farmacología , Péptido 1 Similar al Glucagón/metabolismo , Agonistas Receptor de Péptidos Similares al Glucagón/farmacología , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/metabolismo , Péptidos/farmacología , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Espermatogénesis/efectos de los fármacos , Testículo/efectos de los fármacos , Testículo/metabolismo , Ponzoñas/farmacologíaRESUMEN
BACKGROUND: Restoring the capacity of endothelial progenitor cells (EPCs) to promote angiogenesis is the major therapeutic strategy of diabetic peripheral artery disease. The aim of this study was to investigate the effects of GLP-1 (glucagon-like peptide 1; 32-36)-an end product of GLP-1-on angiogenesis of EPCs and T1DM (type 1 diabetes) mice, as well as its interaction with the classical GLP-1R (GLP-1 receptor) pathway and its effect on mitochondrial metabolism. METHODS: In in vivo experiments, we conducted streptozocin-induced type 1 diabetic mice as a murine model of unilateral hind limb ischemia to examine the therapeutic potential of GLP-1(32-36) on angiogenesis. We also generated Glp1r-/- mice to detect whether GLP-1R is required for angiogenic function of GLP-1(32-36). In in vitro experiments, EPCs isolated from the mouse bone marrow and human umbilical cord blood samples were used to detect GLP-1(32-36)-mediated angiogenic capability under high glucose treatment. RESULTS: We demonstrated that GLP-1(32-36) did not affect insulin secretion but could significantly rescue angiogenic function and blood perfusion in ischemic limb of streptozocin-induced T1DM mice, a function similar to its parental GLP-1. We also found that GLP-1(32-36) promotes angiogenesis in EPCs exposed to high glucose. Specifically, GLP-1(32-36) has a causal role in improving fragile mitochondrial function and metabolism via the GLP-1R-mediated pathway. We further demonstrated that GLP-1(32-36) rescued diabetic ischemic lower limbs by activating the GLP-1R-dependent eNOS (endothelial NO synthase)/cGMP/PKG (protein kinase G) pathway. CONCLUSIONS: Our study provides a novel mechanism with which GLP-1(32-36) acts in modulating metabolic reprogramming toward glycolytic flux in partnership with GLP-1R for improved angiogenesis in high glucose-exposed EPCs and T1DM murine models. We propose that GLP-1(32-36) could be used as a monotherapy or add-on therapy with existing treatments for peripheral artery disease. REGISTRATION: URL: www.ebi.ac.uk/metabolights/; Unique identifier: MTBLS9543.
Asunto(s)
Diabetes Mellitus Experimental , Células Progenitoras Endoteliales , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Glucólisis , Miembro Posterior , Isquemia , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Fisiológica , Transducción de Señal , Animales , Isquemia/tratamiento farmacológico , Isquemia/fisiopatología , Isquemia/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Neovascularización Fisiológica/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glucólisis/efectos de los fármacos , Péptido 1 Similar al Glucagón/análogos & derivados , Péptido 1 Similar al Glucagón/farmacología , Humanos , Miembro Posterior/irrigación sanguínea , Masculino , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/efectos de los fármacos , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/fisiopatología , Angiopatías Diabéticas/tratamiento farmacológico , Angiopatías Diabéticas/etiología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Células Cultivadas , Inductores de la Angiogénesis/farmacología , Fragmentos de Péptidos/farmacología , Ratones , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Modelos Animales de Enfermedad , Incretinas/farmacología , AngiogénesisRESUMEN
This review summarizes the complex relationship between medications used to treat type 2 diabetes and bone health. T2DM patients face an increased fracture risk despite higher bone mineral density; thus, we analyzed the impact of key drug classes, including Metformin, Sulphonylureas, SGLT-2 inhibitors, DPP-4 inhibitors, GLP-1 agonists, and Thiazolidinediones. Metformin, despite promising preclinical results, lacks a clear consensus on its role in reducing fracture risk. Sulphonylureas present conflicting data, with potential neutral effects on bone. SGLT-2 inhibitors seem to have a transient impact on serum calcium and phosphorus, but evidence on their fracture association is inconclusive. DPP-4 inhibitors emerge as promising contributors to bone health, and GLP-1 agonists exhibit positive effects on bone metabolism, reducing fracture risk. Thiazolidinediones, however, demonstrate adverse impacts on bone, inducing loss through mesenchymal stem cell effects. Insulin presents a complex relationship with bone health. While it has an anabolic effect on bone mineral density, its role in fracture risk remains inconsistent. In conclusion, a comprehensive understanding of diabetes medications' impact on bone health is crucial. Further research is needed to formulate clear guidelines for managing bone health in diabetic patients, considering individual profiles, glycemic control, and potential medication-related effects on bone.
Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Fracturas Óseas , Metformina , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Tiazolidinedionas , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Densidad Ósea , Hipoglucemiantes/uso terapéutico , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Fracturas Óseas/etiología , Fracturas Óseas/prevención & control , Metformina/uso terapéutico , Compuestos de Sulfonilurea/efectos adversos , Péptido 1 Similar al Glucagón/farmacología , Péptido 1 Similar al Glucagón/uso terapéutico , Tiazolidinedionas/uso terapéuticoRESUMEN
There is increasing evidence linking bitter taste receptor (BTR) signaling to gut hormone secretion and glucose homeostasis. However, its effect on islet hormone secretion has been poorly characterized. This study investigated the effect of the bitter substance, denatonium benzoate (DB), on hormone secretion from mouse pancreatic islets and INS-1 832/13 cells. DB (0.5-1 mM) augmented insulin secretion at both 2.8 mM and 16.7 mM glucose. This effect was no longer present at 5 mM DB likely due to the greater levels of cellular apoptosis. DB-stimulated insulin secretion involved closure of the KATP channel, activation of T2R signaling in beta-cells, and intraislet glucagon-like peptide-1 (GLP-1) release. DB also enhanced glucagon and somatostatin secretion, but the underlying mechanism was less clear. Together, this study demonstrates that the bitter substance, DB, is a strong potentiator of islet hormone secretion independent of glucose. This observation highlights the potential for widespread off-target effects associated with the clinical use of bitter-tasting substances.NEW & NOTEWORTHY We show that the bitter substance, denatonium benzoate (DB), stimulates insulin, glucagon, somatostatin, and GLP-1 secretion from pancreatic islets, independent of glucose, and that DB augments insulin release via the KATP channel, bitter taste receptor signaling, and intraislet GLP-1 secretion. Exposure to a high dose of DB (5 mM) induces cellular apoptosis in pancreatic islets. Therefore, clinical use of bitter substances to improve glucose homeostasis may have unintended negative impacts beyond the gut.
Asunto(s)
Islotes Pancreáticos , Compuestos de Amonio Cuaternario , Gusto , Ratones , Animales , Glucagón/farmacología , Insulina/farmacología , Glucosa/farmacología , Péptido 1 Similar al Glucagón/farmacología , Somatostatina/farmacología , Adenosina Trifosfato/farmacologíaRESUMEN
Non-alcoholic fatty liver disease (NAFLD) has recently emerged as a global public health concern. Currently, the cornerstone of NAFLD treatment is lifestyle modification and, if necessary, weight loss. However, compliance is a challenge, and this approach alone may not be sufficient to halt and treat the more serious disease development, so medication is urgently needed. Nevertheless, no medicines are approved to treat NAFLD. Glucagon-like peptide-1 (GLP-1) is an enteropeptide hormone that inhibits glucagon synthesis, promotes insulin secretion, and delays gastric emptying. GLP-1 has been found in recent studies to be beneficial for the management of NAFLD, and the marketed GLP-1 agonist drugs have different degrees of effectiveness for NAFLD while lowering blood glucose. In this article, we review GLP-1 and its physiological roles, the pathogenesis of NAFLD, the correlation between NAFLD and GLP-1 signaling, and potential strategies for GLP-1 treatment of NAFLD.
Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Péptido 1 Similar al Glucagón/farmacología , Péptido 1 Similar al Glucagón/fisiología , Glucagón/uso terapéutico , Glucemia , Secreción de Insulina , Receptor del Péptido 1 Similar al Glucagón , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/uso terapéuticoRESUMEN
Chondrichthyans have a novel proglucagon-derived peptide, glucagon-like peptide (GLP)-3, in addition to GLP-1 and GLP-2 that occur in other vertebrates. Given that the GLPs are important regulators of metabolic homeostasis across vertebrates, we sought to investigate whether GLP-3 displays functional actions on metabolism within a representative chondrichthyan, the Pacific spiny dogfish Squalus suckleyi. There were no observed effects of GLP-3 perfusion (10 nM for 15 min) on the rate of glucose or oleic acid acquisition at the level of the spiral valve nor were there any measured effects on intermediary metabolism within this tissue. Despite no effects on apparent glucose transport or glycolysis in the liver, a significant alteration to ketone metabolism occurred. Firstly, ketone flux through the perfused liver switched from a net endogenous production to consumption following hormone application. Accompanying this change, significant increases in mRNA transcript abundance of putative ketone transporters and in the activity of ß-hydroxybutyrate dehydrogenase (a key enzyme regulating ketone flux in the liver) were observed. Overall, while these results show effects on hepatic metabolism, the physiological actions of GLP are distinct between this chondrichthyan and those of GLP-1 on teleost fishes. Whether this is the result of the particular metabolic dependency on ketone bodies in chondrichthyans or a differential function of a novel GLP remains to be fully elucidated.
Asunto(s)
Squalus acanthias , Squalus , Animales , Squalus/metabolismo , Squalus acanthias/metabolismo , Cetonas/metabolismo , Cetonas/farmacología , Glucosa/metabolismo , Hígado/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/farmacologíaRESUMEN
BACKGROUND AND PURPOSE: Cotadutide is a dual GLP-1 and glucagon receptor agonist with balanced agonistic activity at each receptor designed to harness the advantages on promoting liver health, weight loss and glycaemic control. We characterised the effects of cotadutide on glucose, insulin, GLP-1, GIP, and glucagon over time in a quantitative manner using our glucose dynamics systems model (4GI systems model), in combination with clinical data from a multiple ascending dose/Phase 2a (MAD/Ph2a) study in overweight and obese subjects with a history of Type 2 diabetes mellitus (NCT02548585). EXPERIMENTAL APPROACH: The cotadutide PK-4GI systems model was calibrated to clinical data by re-estimating only food related parameters. In vivo cotadutide efficacy was scaled based on in vitro potency. The model was used to explore the effect of weight loss on insulin sensitivity and predict the relative contribution of the GLP-1 and glucagon receptor agonistic effects on glucose. KEY RESULTS: Cotadutide MAD/Ph2a clinical endpoints were successfully predicted. The 4GI model captured a positive effect of weight loss on insulin sensitivity and showed that the stimulating effect of glucagon on glucose production counteracts the GLP-1 receptor-mediated decrease in glucose, resulting in a plateau for glucose decrease around a 200-µg cotadutide dose. CONCLUSION AND IMPLICATIONS: The 4GI quantitative systems pharmacology model was able to predict the clinical effects of cotadutide on glucose, insulin, GLP-1, glucagon and GIP given known in vitro potency. The analyses demonstrated that the quantitative systems pharmacology model, and its successive refinements, will be a valuable tool to support the clinical development of cotadutide and related compounds.
Asunto(s)
Glucemia , Diabetes Mellitus Tipo 2 , Receptor del Péptido 1 Similar al Glucagón , Hipoglucemiantes , Modelos Biológicos , Receptores de Glucagón , Humanos , Receptores de Glucagón/agonistas , Receptores de Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Hipoglucemiantes/farmacología , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Masculino , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Control Glucémico , Persona de Mediana Edad , Femenino , Adulto , Glucagón/farmacología , Glucagón/metabolismo , Insulina/metabolismo , Insulina/farmacología , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Péptido 1 Similar al Glucagón/agonistas , Péptido 1 Similar al Glucagón/farmacología , Relación Dosis-Respuesta a Droga , PéptidosRESUMEN
The prevalence of obesity continues to rise in both adolescents and adults, in parallel obesity is strongly associated with the increased incidence of type 2 diabetes, heart failure, certain types of cancer, and all-cause mortality. In relation to obesity, many pharmacological approaches of the past have tried and failed to combat the rising obesity epidemic, particularly due to insufficient efficacy or unacceptable side effects. However, while the history of antiobesity medication is plagued by failures and disappointments, we have witnessed over the last 10 years substantial progress, particularly in regard to biochemically optimized agonists at the receptor for glucagon-like peptide-1 (GLP-1R) and unimolecular coagonists at the receptors for GLP-1 and the glucose-dependent insulinotropic polypeptide (GIP). Although the GIP receptor:GLP-1R coagonists are being heralded as premier pharmacological tools for the treatment of obesity and diabetes, uncertainty remains as to why these drugs testify superiority over best-in-class GLP-1R monoagonists. Particularly with regard to GIP, there remains great uncertainty if and how GIP acts on systems metabolism and if the GIP system should be activated or inhibited to improve metabolic outcome in adjunct to GLP-1R agonism. In this review, we summarize recent advances in GLP-1- and GIP-based pharmacology and discuss recent findings and open questions related to how the GIP system affects systemic energy and glucose metabolism.
Asunto(s)
Diabetes Mellitus Tipo 2 , Incretinas , Adulto , Humanos , Adolescente , Incretinas/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Péptido 1 Similar al Glucagón/uso terapéutico , Polipéptido Inhibidor Gástrico/uso terapéutico , Polipéptido Inhibidor Gástrico/metabolismo , Polipéptido Inhibidor Gástrico/farmacología , Obesidad/tratamiento farmacológico , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/uso terapéuticoRESUMEN
BACKGROUND: Glucagon-like peptide-1 (GLP-1) (7-36) amide, an endogenous active form of GLP-1, has been shown to modulate oxidative stress and neuronal cell survival in various neurological diseases. OBJECTIVE: This study investigated the potential effects of GLP-1(7-36) on oxidative stress and apoptosis in neuronal cells following traumatic brain injury (TBI) and explored the underlying mechanisms. METHODS: Traumatic brain injury (TBI) models were established in male SD rats for in vivo experiments. The extent of cerebral oedema was assessed using wet-to-dry weight ratios following GLP-1(7-36) intervention. Neurological dysfunction and cognitive impairment were evaluated through behavioural experiments. Histopathological changes in the brain were observed using haematoxylin and eosin staining. Oxidative stress levels in hippocampal tissues were measured. TUNEL staining and Western blotting were employed to examine cell apoptosis. In vitro experiments evaluated the extent of oxidative stress and neural apoptosis following ERK5 phosphorylation activation. Immunofluorescence colocalization of p-ERK5 and NeuN was analysed using immunofluorescence cytochemistry. RESULTS: Rats with TBI exhibited neurological deterioration, increased oxidative stress, and enhanced apoptosis, which were ameliorated by GLP-1(7-36) treatment. Notably, GLP-1(7-36) induced ERK5 phosphorylation in TBI rats. However, upon ERK5 inhibition, oxidative stress and neuronal apoptosis levels were elevated, even in the presence of GLP-1(7-36). CONCLUSION: In summary, this study suggested that GLP-1(7-36) suppressed oxidative damage and neuronal apoptosis after TBI by activating ERK5/CREB.
Asunto(s)
Lesiones Traumáticas del Encéfalo , Péptido 1 Similar al Glucagón , Fármacos Neuroprotectores , Animales , Masculino , Ratas , Apoptosis , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Modelos Animales de Enfermedad , Péptido 1 Similar al Glucagón/farmacología , Péptido 1 Similar al Glucagón/uso terapéutico , Hipocampo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo , Ratas Sprague-Dawley , Fragmentos de Péptidos/farmacología , Fragmentos de Péptidos/uso terapéutico , Proteína Quinasa 7 Activada por Mitógenos/efectos de los fármacos , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismoRESUMEN
It is well documented that estrogens inhibit fluid intake. Most of this research, however, has focused on fluid intake in response to dipsogenic hormone and/or drug treatments in euhydrated rats. Additional research is needed to fully characterize the fluid intake effects of estradiol in response to true hypovolemia. As such, the goals of this series of experiments were to provide a detailed analysis of water intake in response to water deprivation in ovariectomized female rats treated with estradiol. In addition, these experiments also tested if activation of estrogen receptor alpha is sufficient to reduce water intake stimulated by water deprivation and tested for a role of glucagon like peptide-1 in the estrogenic control of water intake. As expected, estradiol reduced water intake in response to 24 and 48 h of water deprivation. The reduction in water intake was associated with a reduction in drinking burst number, with no change in drinking burst size. Pharmacological activation of estrogen receptor alpha reduced intake. Finally, estradiol-treatment caused a leftward shift in the behavioral dose response curve of exendin-4, the glucagon like peptide-1 agonist. While the highest dose of exendin-4 reduced 10 min intake in both oil and estradiol-treated rats, the intermediate dose only reduced intake in rats treated with estradiol. Together, this series of experiments extends previous research by providing a more thorough behavioral analysis of the anti-dipsogenic effect of estradiol in dehydrated rats, in addition to identifying the glucagon like peptide-1 system as a potential bioregulator involved in the underlying mechanisms by which estradiol reduces water intake in the female rat.
Asunto(s)
Ingestión de Líquidos , Péptido 1 Similar al Glucagón , Animales , Femenino , Ratas , Deshidratación , Ingestión de Líquidos/efectos de los fármacos , Estradiol/farmacología , Receptor alfa de Estrógeno , Exenatida/farmacología , Péptido 1 Similar al Glucagón/farmacología , Factores de TranscripciónRESUMEN
From the failure of gut extracts in diabetic patients' therapy to the effective action in cardiovascular outcomes [...].
Asunto(s)
Sistema Cardiovascular , Diabetes Mellitus Tipo 2 , Humanos , Péptido 1 Similar al Glucagón/farmacología , Péptido 1 Similar al Glucagón/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Corazón , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Receptor del Péptido 1 Similar al Glucagón , Hipoglucemiantes/farmacologíaRESUMEN
Obesity is the fifth leading risk factor for global deaths with numbers continuing to increase worldwide. In the last 20 years, the emergence of pharmacological treatments for obesity based on gastrointestinal hormones has transformed the therapeutic landscape. The successful development of glucagon-like peptide-1 (GLP-1) receptor agonists, followed by the synergistic combined effect of glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 receptor agonists achieved remarkable weight loss and glycemic control in those with the diseases of obesity and type 2 diabetes. The multiple cardiometabolic benefits include improving glycemic control, lipid profiles, blood pressure, inflammation, and hepatic steatosis. The 2023 phase 2 double-blind, randomized controlled trial evaluating a GLP-1/GIP/glucagon receptor triagonist (retatrutide) in patients with the disease of obesity reported 24.2% weight loss at 48 weeks with 12 mg retatrutide. This review evaluates the current available evidence for GLP-1 receptor agonists, dual GLP-1/GIP receptor co-agonists with a focus on GLP-1/GIP/glucagon receptor triagonists and discusses the potential future benefits and research directions.
Asunto(s)
Diabetes Mellitus Tipo 2 , Péptido 1 Similar al Glucagón , Receptores de la Hormona Gastrointestinal , Humanos , Péptido 1 Similar al Glucagón/farmacología , Péptido 1 Similar al Glucagón/uso terapéutico , Receptores de Glucagón/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Polipéptido Inhibidor Gástrico/farmacología , Polipéptido Inhibidor Gástrico/fisiología , Polipéptido Inhibidor Gástrico/uso terapéutico , Obesidad/tratamiento farmacológico , Pérdida de Peso , Receptores Acoplados a Proteínas G , Glucosa , Ensayos Clínicos Controlados Aleatorios como Asunto , Ensayos Clínicos Fase II como AsuntoRESUMEN
Berberine (BBR) is a principal component of Rhizoma coptidis known for its therapeutic potential in treating diseases such as type 2 diabetes mellitus (T2DM) and obesity. Despite the trace levels of BBR in plasma, it's believed that its metabolites play a pivotal role in its biological activities. While BBR is recognized to promote GLP-1 production in intestinal L cells, the cytoprotective effects of its metabolites on these cells are yet to be explored. The present study investigates the effects of BBR metabolites on GLP-1 secretion and the underlying mechanisms. Our results revealed that, out of six BBR metabolites, berberrubine (BBB) and palmatine (PMT) significantly increased the production and glucose-stimulated secretion of GLP-1 in GLUTag cells. Notably, both BBB and PMT could facilitate GLP-1 and insulin secretion and enhance glucose tolerance in standard mice. Moreover, a single dose of PMT could markedly increase plasma GLP-1 and improve glucose tolerance in mice with obesity induced by a high-fat diet. In palmitic acid or TNF[Formula: see text]-treated GLUTag cells, BBB and PMT alleviated cell death, oxidative stress, and mitochondrial dysfunction. Furthermore, they could effectively reverse inflammation-induced inhibition of the Akt signaling pathway. In general, these insights suggest that the beneficial effects of orally administered BBR on GLP-1 secretion are largely attributed to the pharmacological activity of BBB and PMT by their above cytoprotective effects on L cells, which provide important ideas for stimulating GLP-1 secretion and the treatment of T2DM.