Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Exp Neurol ; 362: 114339, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36717013

RESUMEN

Large scale studies in populations of European and Han Chinese ancestry found a series of rare gain-of-function microduplications in VIPR2, encoding VPAC2, a receptor that binds vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide with high affinity, that were associated with an up to 13-fold increased risk for schizophrenia. To address how VPAC2 receptor overactivity might affect brain development, we used a well-characterized Nestin-Cre mouse strain and a knock-in approach to overexpress human VPAC2 in the central nervous system. Mice that overexpressed VPAC2 were found to exhibit a significant reduction in brain weight. Magnetic resonance imaging analysis confirmed a decrease in brain size, a specific reduction in the hippocampus grey matter volume and a paradoxical increase in whole-brain white matter volume. Sex-specific changes in behavior such as impaired prepulse inhibition and contextual fear memory were observed in VPAC2 overexpressing mice. The data indicate that the VPAC2 receptor may play a critical role in brain morphogenesis and suggest that overactive VPAC2 signaling during development plays a mechanistic role in some forms of schizophrenia.


Asunto(s)
Receptores de Tipo II del Péptido Intestinal Vasoactivo , Sustancia Blanca , Masculino , Humanos , Femenino , Ratones , Animales , Receptores de Tipo II del Péptido Intestinal Vasoactivo/metabolismo , Sustancia Blanca/metabolismo , Péptido Intestinal Vasoactivo/química , Péptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Inhibición Prepulso
2.
Front Endocrinol (Lausanne) ; 12: 652045, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815297

RESUMEN

Background: Pheochromocytoma (PHEO) clinical manifestations generally mirror excessive catecholamines secretion; rarely the clinical picture may reflect secretion of other hormones. Watery diarrhea, hypokalemia and achlorhydria (WDHA) is a rare syndrome related to excessive secretion of vasoactive intestinal peptide (VIP). Clinical Case: A 73-year-old hypotensive man affected by adrenal PHEO presented with weight loss and watery diarrhea associated with hypokalemia, hyperchloremic metabolic acidosis (anion gap 15 mmol/l) and a negative urinary anion gap. Abdominal computed tomography scan showed a right adrenal PHEO, 8.1 cm in maximum diameter, with tracer uptake on 68GaDOTA-octreotate positron emission tomography. Metastasis in lumbar region and lung were present. Both chromogranin A and VIP levels were high (more than10 times the normal value) with slightly elevated urine normetanephrine and metanephrine excretion. Right adrenalectomy was performed and a somatostatin analogue therapy with lanreotide started. Immunostaining showed chromogranin A and VIP co-expression, with weak somatostatin-receptor-2A positivity. In two months, patient clinical conditions deteriorated with severe WDHA and multiple liver and lung metastasis. Metabolic acidosis and hypokalemia worsened, leading to hemodynamic shock and exitus. Conclusions: A rare case of WDHA syndrome caused by malignant VIP-secreting PHEO was diagnosed. High levels of circulating VIP were responsible of the rapidly evolving clinical picture with massive dehydration and weight loss along with severe hyperchloremic metabolic acidosis and hypokalemia due to the profuse untreatable diarrhea. The rescue treatment with lanreotide was unsuccessful because of the paucity of somatostatin-receptor-2A on VIP-secreting PHEO chromaffin cells.


Asunto(s)
Acidosis/diagnóstico , Diarrea/diagnóstico , Hipopotasemia/diagnóstico , Feocromocitoma/fisiopatología , Péptido Intestinal Vasoactivo/química , Acidosis/complicaciones , Neoplasias de las Glándulas Suprarrenales/complicaciones , Neoplasias de las Glándulas Suprarrenales/diagnóstico , Adrenalectomía , Anciano , Células Cromafines/citología , Diarrea/complicaciones , Humanos , Hipopotasemia/complicaciones , Masculino , Péptidos Cíclicos/uso terapéutico , Neoplasias del Sistema Nervioso Periférico , Cintigrafía , Receptores de Somatostatina/uso terapéutico , Somatostatina/análogos & derivados , Somatostatina/uso terapéutico , Síndrome , Tomografía Computarizada por Rayos X , Pérdida de Peso
3.
J Mol Neurosci ; 68(3): 397-407, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30542799

RESUMEN

Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) belong to the same peptide family and exert a variety of biological functions. Both PACAP and VIP have protective effects in several tissues. While PACAP is known to be a stronger retinoprotective peptide, VIP has very potent anti-inflammatory effects. The need for a non-invasive therapeutic approach has emerged and PACAP has been shown to be retinoprotective when administered in the form of eye drops as well. The cell penetrating peptide TAT is composed of 11 amino acids and tagging of TAT at the C-terminus of neuropeptides PACAP/VIP can enhance the traversing ability of the peptides through the biological barriers. We hypothesized that TAT-bound PACAP and VIP could be more effective in exerting retinoprotective effects when given in eye drops, by increasing the traversing efficacy and enhancing the activation of the PAC1 receptor. Rats were subjected to bilateral carotid artery occlusion (BCCAO), and retinas were processed for histological analysis 14 days later. The efficiency of the TAT-bound peptides to reach the retina was assessed as well as their cAMP increasing ability. Our present study provides evidence, for the first time, that topically administered PACAP and VIP derivatives (PACAP-TAT and VIP-TAT) attenuate ischemic retinal degeneration via the PAC1 receptor presumably due to a multifactorial protective mechanism.


Asunto(s)
Antiinflamatorios/farmacología , Fármacos Neuroprotectores/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Retina/efectos de los fármacos , Degeneración Retiniana/tratamiento farmacológico , Péptido Intestinal Vasoactivo/farmacología , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/uso terapéutico , Células CHO , Cricetinae , Cricetulus , Masculino , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/uso terapéutico , Soluciones Oftálmicas , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/química , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología , Retina/metabolismo , Péptido Intestinal Vasoactivo/química , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
4.
Drug Des Devel Ther ; 12: 3817-3824, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30464413

RESUMEN

BACKGROUND: Guillain-Barré syndrome is an acute inflammatory demyelinating polyneuropathy that is characterized histologically by demyelination of peripheral nerves and nerve roots, infiltrates of T lymphocytes, and an inflammatory response that includes macrophage infiltrates. The aim of this study was to evaluate the effects of vasoactive intestinal peptide (VIP) in a rat model of experimental autoimmune neuritis (EAN). METHODS: Forty male Lewis rats were divided into a control group (N=10), an EAN group (N=10), an EAN group treated with 15 nmol of VIP (N=10), and an EAN group treated with 30 nmol of VIP (N=10). The rat model was created by subcutaneous injection of P2 polypeptide (200 µg P257-81) into the base of the tail. Intraperitoneal injection of VIP was given on day 7. Rats were weighed and functionally evaluated using an EAN score (0-10). On day 16, the rats were euthanized. The sciatic nerve was examined histologically and using immunohistochemistry with antibodies against CD8, CD68, and forkhead box p3 (Foxp3). Serum concentrations of IL-17 and interferon-α (IFN-α) were measured by ELISA on day 16 after creating the EAN model. RESULTS: The VIP-treated EAN groups had increased body weight and improved EAN scores compared with the untreated EAN group. CD8-positive and CD68-positive cells were significantly reduced in the EAN group treated with 30 nmol of VIP compared with 15 nmol of VIP. Foxp3-positive cells were significantly decreased in both EAN groups treated with VIP, and serum concentrations of IL-17 and IFN-α were significantly lower compared with the untreated EAN group (P<0.05). CONCLUSION: In a rat model of EAN, treatment with VIP resulted in functional improvement, reduced nerve inflammation, and decreased serum levels of inflammatory cytokines.


Asunto(s)
Modelos Animales de Enfermedad , Síndrome de Guillain-Barré/tratamiento farmacológico , Neuritis Autoinmune Experimental/tratamiento farmacológico , Péptido Intestinal Vasoactivo/uso terapéutico , Vasodilatadores/uso terapéutico , Animales , Relación Dosis-Respuesta a Droga , Síndrome de Guillain-Barré/sangre , Síndrome de Guillain-Barré/patología , Interferón-alfa/sangre , Interleucina-17/sangre , Masculino , Neuritis Autoinmune Experimental/sangre , Neuritis Autoinmune Experimental/patología , Ratas , Ratas Endogámicas Lew , Péptido Intestinal Vasoactivo/síntesis química , Péptido Intestinal Vasoactivo/química , Vasodilatadores/síntesis química , Vasodilatadores/química
5.
Biochem Biophys Res Commun ; 503(3): 1973-1979, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30077368

RESUMEN

Vasoactive intestinal peptide receptor 2 (VIPR2, also known as VPAC2) is a class B G-protein coupled receptor (GPCR) and plays important roles in the physiology of central nervous system (CNS) by interaction with natural ligands; vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP). Because it has been reported that high-expression and/or overactivation of VIPR2 link to schizophrenic symptoms, VIPR2 antagonists could be good drug candidates for schizophrenia therapeutics. In this study, we discovered several artificial peptides that antagonize both human and rodent VIPR2 with selectivities against receptor subtypes VIPR1 (also known as VPAC1) and pituitary adenylate cyclase-activating polypeptide type-1 receptor (PAC1). Of them, the representative 16-mer cyclic peptide VIpep-3 (Ac-CPPYLPRRLCTLLLRS-OH) exhibited strong binding affinity with KD value of 41 nM to extracellular domain of human VIPR2 in SPR analysis and showed potent antagonist activity with IC50 values of 47 nM (human), 180 nM (mouse), and 44 nM (rat) against VIP-VIPR2 signal in cell-based Ca influx assay. This is not only the first report on artificial VIPR2-selective antagonist peptides but also good example of the effective approach to discover novel antagonist against class B GPCR. Our peptides will contribute to study and development of the novel CNS drugs targeting to VIPR2.


Asunto(s)
Descubrimiento de Drogas , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Receptores de Tipo II del Péptido Intestinal Vasoactivo/antagonistas & inhibidores , Péptido Intestinal Vasoactivo/farmacología , Animales , Técnicas Biosensibles , Células CHO , Cricetulus , Humanos , Ligandos , Ratones , Biblioteca de Péptidos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/síntesis química , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/química , Ratas , Receptores de Tipo II del Péptido Intestinal Vasoactivo/metabolismo , Proteínas Recombinantes/metabolismo , Resonancia por Plasmón de Superficie , Péptido Intestinal Vasoactivo/síntesis química , Péptido Intestinal Vasoactivo/química
6.
Biomacromolecules ; 19(10): 3958-3969, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30130095

RESUMEN

Peptide therapeutics have the potential to self-associate, leading to aggregation and fibrillation. Noncovalent PEGylation offers a strategy to improve their physical stability; an understanding of the behavior of the resulting polymer/peptide complexes is, however, required. In this study, we have performed a set of experiments with additional mechanistic insight provided by in silico simulations to characterize the molecular organization of these complexes. We used palmitoylated vasoactive intestinal peptide (VIP-palm) stabilized by methoxy-poly(ethylene glycol)5kDa-cholane (PEG-cholane) as our model system. Homogeneous supramolecular assemblies were found only when complexes of PEG-cholane/VIP-palm exceeded a molar ratio of 2:1; at and above this ratio, the simulations showed minimal exposure of VIP-palm to the solvent. Supramolecular assemblies formed, composed of, on average, 9-11 PEG-cholane/VIP-palm complexes with 2:1 stoichiometry. Our in silico results showed the structural content of the helical conformation in VIP-palm increases when it is complexed with the PEG-cholane molecule; this behavior becomes yet more pronounced when these complexes assemble into larger supramolecular assemblies. Our experimental results support this: the extent to which VIP-palm loses helical structure as a result of thermal denaturation was inversely related to the PEG-cholane:VIP-palm molar ratio. The addition of divalent buffer species and increasing the ionic strength of the solution both accelerate the formation of VIP-palm fibrils, which was partially and fully suppressed by 2 and >4 mol equivalents of PEG-cholane, respectively. We conclude that the relative freedom of the VIP-palm backbone to adopt nonhelical conformations is a key step in the aggregation pathway.


Asunto(s)
Colanos/química , Ácido Palmítico/química , Polietilenglicoles/química , Polímeros/química , Péptido Intestinal Vasoactivo/química , Humanos , Lipoilación , Conformación Proteica
7.
Cell ; 173(3): 554-567, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677509

RESUMEN

The essential roles played by the immune system in the discrimination between self- versus non/altered-self and its integral role in promoting host defense against invading microbes and tumors have been extensively studied for many years. In these contexts, significant advances have been made in defining the molecular and cellular networks that orchestrate cell-cell communication to mediate host defense and pathogen expulsion. Notably, recent studies indicate that in addition to these classical immune functions, cells of the innate and adaptive immune system also sense complex tissue- and environment-derived signals, including those from the nervous system and the diet. In turn these responses regulate physiologic processes in multiple tissues throughout the body, including nervous system function, metabolic state, thermogenesis, and tissue repair. In this review we propose an integrated view of how the mammalian immune system senses and interacts with other complex organ systems to maintain tissue and whole-body homeostasis.


Asunto(s)
Metabolismo Energético , Sistema Inmunológico/fisiología , Inmunidad Innata/fisiología , Inmunidad Adaptativa , Animales , Comunicación Celular , Dieta , Homeostasis , Interacciones Huésped-Patógeno , Humanos , Inflamación , Neuronas/fisiología , Regeneración , Sistema Nervioso Simpático , Péptido Intestinal Vasoactivo/química
8.
Peptides ; 104: 35-40, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29654809

RESUMEN

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a naturally occurring cationic peptide with potent immunosuppressant and cytoprotective activities. We now show that full length PACAP38 and to a lesser extent, the truncated form PACAP27, and the closely related vasoactive intestinal peptide (VIP) and secretin had antimicrobial activity against the Gram-negative bacteria Escherichia coli in the radial diffusion assay. PACAP38 was more potent than either the bovine neutrophil antimicrobial peptide indolicidin or the synthetic antimicrobial peptide ARVA against E. coli. PACAP38 also had activity against the Gram-positive bacteria Staphylococcus aureus in the same assay with comparable potency to indolicidin and ARVA. In the more stringent broth dilution assay, PACAP38 had moderate sterilizing activity against E. coli, and potent sterilizing activity against the Gram-negative bacteria Pseudomonas aeruginosa. PACAP27, VIP and secretin were much less active than PACAP38 in this assay. PACAP38 also had some activity against the Gram-positive bacteria Bacillus cereus in the broth dilution assay. Many exopeptidase-resistant analogs of PACAP38, including both receptor agonists and antagonists, had antimicrobial activities equal to, or better than PACAP38, in both assays. PACAP38 made the membranes of E. coli permeable to SYTOX Green, suggesting a classical membrane lytic mechanism. These data suggest that analogs of PACPAP38 with a wide range of useful biological activities can be made by judicious substitutions in the sequence.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/química , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Membrana Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Hemólisis/efectos de los fármacos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Relación Estructura-Actividad , Péptido Intestinal Vasoactivo/química , Péptido Intestinal Vasoactivo/farmacología
9.
J Pept Sci ; 24(3)2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29441631

RESUMEN

The aim of present study was to develop a respirable powder (RP) of a shortened vasoactive intestinal peptide (VIP) analog for inhalation. VIP and C-terminally truncated VIP analogs were synthesized with a solid-phase method. A structure-activity relationship (SAR) study was carried out in terms with binding and relaxant activities of the peptides. Prepared RP formulation of a shortened VIP analog was physicochemically characterized by morphological, in vitro aerodynamic, and pharmacological assessments. The SAR study demonstrated that the N-terminal 23 amino acid residues were required for biological activity of VIP. Upon chemical modification of VIP(1-23), [R15, 20, 21 , L17 ]-VIP(1-23) was newly developed, which had higher binding activity in rat lung and smooth muscle relaxant effect in mouse stomach than VIP(1-23). The [R15, 20, 21 , L17 ]-VIP(1-23)-based RP, [R15, 20, 21 , L17 ]-VIP(1-23)/RP, exhibited fine in vitro inhalation performance. Airway inflammation evoked by sensitization of antigen in rats was attenuated by pre-treatment with the [R15, 20, 21 , L17 ]-VIP(1-23)/RP at a dose of 50 µg-[R15, 20, 21 , L17 ]-VIP(1-23)/rat as evidenced by a 70% reduction of recruited inflammatory cells in bronchoalveolar lavage fluid. On the basis of these results, [R15, 20, 21 , L17 ]-VIP(1-23)/RP might be a promising agent for treatment of airway inflammatory diseases.


Asunto(s)
Asma/tratamiento farmacológico , Fármacos Gastrointestinales/administración & dosificación , Fármacos Gastrointestinales/síntesis química , Péptido Intestinal Vasoactivo/análogos & derivados , Administración por Inhalación , Animales , Líquido del Lavado Bronquioalveolar/citología , Modelos Animales de Enfermedad , Fármacos Gastrointestinales/farmacología , Pulmón/efectos de los fármacos , Masculino , Ratones , Polvos , Ratas , Estómago/efectos de los fármacos , Relación Estructura-Actividad , Péptido Intestinal Vasoactivo/química
10.
Anal Chem ; 90(3): 2263-2270, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29280620

RESUMEN

In this work, a luminol-centric biosensor was constructed for the ultrasensitive detection of tryptase (TPS) combining dissolved O2 as the endogenous coreactant and Au-Ag-Pt heteronanostructures (AAPHNs) as coreaction accelerator. Dissolved O2 could rapidly generate superoxide anion radical (O2•-) with the catalysis of AAPHNs to in situ react with luminol anion radical (L•-) to generate excited-state species 3-aminophthalate (AP2-*) for emitting ECL signal, resulting in a remarkable "single on" state. In order to further improve the sensitivity of the sensor, we employed self-assembled DNA nanotubes (DNANTs) as a carrier to immobilize the luminophore of doxorubicin-luminol (Dox-Lu) complex. In this assay system, target tryptase could directly induce the cleavage of vasoactive intestinal peptide (VIP), which caused the ECL probe of DNANTs-Dox-Lu releasing from the electrode surface to obtain a significant "signal off" state. By changing the signal from "on" to "off", the proposed ECL peptide-based biosensor for TPS detection achieved a dynamic concentration range (2.5 pg/mL-200 ng/mL) with an extremely low detection limit of 0.81 pg/mL. This work presented a new signal amplification method for the construction of the sensor based on the luminol-dissolved O2 ECL system.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Mediciones Luminiscentes/métodos , Nanoestructuras/química , Triptasas/sangre , ADN/química , Doxorrubicina/análogos & derivados , Humanos , Límite de Detección , Luminol/análogos & derivados , Péptido Intestinal Vasoactivo/química
11.
Curr Biol ; 28(1): 77-83.e4, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29249656

RESUMEN

Brain-computer interfaces have seen an increase in popularity due to their potential for direct neuroprosthetic applications for amputees and disabled individuals. Supporting this promise, animals-including humans-can learn even arbitrary mapping between the activity of cortical neurons and movement of prosthetic devices [1-4]. However, the performance of neuroprosthetic device control has been nowhere near that of limb control in healthy individuals, presenting a dire need to improve the performance. One potential limitation is the fact that previous work has not distinguished diverse cell types in the neocortex, even though different cell types possess distinct functions in cortical computations [5-7] and likely distinct capacities to control brain-computer interfaces. Here, we made a first step in addressing this issue by tracking the plastic changes of three major types of cortical inhibitory neurons (INs) during a neuron-pair operant conditioning task using two-photon imaging of IN subtypes expressing GCaMP6f. Mice were rewarded when the activity of the positive target neuron (N+) exceeded that of the negative target neuron (N-) beyond a set threshold. Mice improved performance with all subtypes, but the strategies were subtype specific. When parvalbumin (PV)-expressing INs were targeted, the activity of N- decreased. However, targeting of somatostatin (SOM)- and vasoactive intestinal peptide (VIP)-expressing INs led to an increase of the N+ activity. These results demonstrate that INs can be individually modulated in a subtype-specific manner and highlight the versatility of neural circuits in adapting to new demands by using cell-type-specific strategies.


Asunto(s)
Interfaces Cerebro-Computador , Neuronas/fisiología , Animales , Femenino , Masculino , Ratones , Neocórtex/fisiología , Inhibición Neural , Parvalbúminas/química , Somatostatina/química , Péptido Intestinal Vasoactivo/química
12.
Molecules ; 22(11)2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29135962

RESUMEN

Antimicrobial peptides represent an emerging category of therapeutic agents with remarkable structural and functional diversity. Modified vasoactive intestinal peptide (VIP) (VIP analogue 8 with amino acid sequence "FTANYTRLRRQLAVRRYLAAILGRR") without haemolytic activity and cytotoxicity displayed enhanced antimicrobial activities against Staphylococcus aureus (S. aureus) ATCC 25923 and Escherichia coli (E. coli) ATCC 25922 than parent VIP even in the presence of 180 mM NaCl or 50 mM MgCl2, or in the range of pH 4-10. VIP analogue 8 was expressed as fusion protein thioredoxin (Trx)-VIP8 in E. coli BL21(DE) at a yield of 45.67 mg/L. The minimum inhibitory concentration (MIC) of the recombinant VIP analogue 8 against S. aureus ATCC 25923 and E. coli ATCC 25922 were 2 µM. These findings suggest that VIP analogue 8 is a promising candidate for application as a new and safe antimicrobial agent.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Diseño de Fármacos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/farmacología , Péptido Intestinal Vasoactivo/química , Péptido Intestinal Vasoactivo/farmacología , Secuencia de Aminoácidos , Animales , Antibacterianos , Antiinfecciosos/aislamiento & purificación , Hemólisis/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Péptido Intestinal Vasoactivo/genética , Péptido Intestinal Vasoactivo/aislamiento & purificación
13.
Eur J Pharmacol ; 791: 811-820, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27771365

RESUMEN

Asthma is a chronic respiratory disease characterized by airway inflammation, bronchoconstriction, airway hyperresponsiveness and recurring attacks of impaired breathing. Vasoactive intestinal peptide (VIP) has been proposed as a novel anti-asthma drug due to its effects on airway smooth muscle relaxation, bronchodilation and vasodilation along with its immunomodulatory and anti-inflammatory properties. In the current study, we investigated the therapeutic effects of VIP when conjugated with α-alumina nanoparticle (α-AN) to prevent enzymatic degradation of VIP in the respiratory tract. VIP was conjugated with α-AN. Balb/c mice were sensitized and challenges with ovalbumin (OVA) or PBS and were divided in four groups; VIP-treated, α-AN-treated, α-AN-VIP-treated and beclomethasone-treated as a positive control group. Specific and total IgE level, airway hyperresponsiveness (AHR), bronchial cytokine expression and lung histology were measured. α-AN-VIP significantly reduced the number of eosinophils (Eos), serum IgE level, Th2 cytokines and AHR. These effects of α-AN-VIP were more pronounced than that seen with beclomethasone or VIP alone (P<0.05). The current data indicate that α-AN-VIP can be considered as an effective nano-drug for the treatment of asthma.


Asunto(s)
Óxido de Aluminio/química , Antiasmáticos/química , Antiasmáticos/farmacología , Asma/tratamiento farmacológico , Nanopartículas/química , Péptido Intestinal Vasoactivo/química , Péptido Intestinal Vasoactivo/farmacología , Animales , Antiasmáticos/uso terapéutico , Asma/sangre , Asma/complicaciones , Asma/inmunología , Portadores de Fármacos/química , Estabilidad de Medicamentos , Eosinofilia/complicaciones , Femenino , Inmunoglobulina E/sangre , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Ratones , Péptido Intestinal Vasoactivo/uso terapéutico
14.
ACS Appl Mater Interfaces ; 8(11): 7411-21, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-26914154

RESUMEN

Vasoactive intestinal peptide (VIP) was reported to promote angiogenesis. Electrospun nanofibers lead to idea wound dressing substrates. Here we report a convenient and novel method to produce VIP loaded microspheres in polycaprolactone (PCL) nanofibrous membrane without complicated processes. We first coated mussel-inspired dopamine (DA) to nanofibers, then used strong adhesive DA to absorb the functional peptide. PCL membrane was then immersed into acetone to generate microspheres with VIP loading. We employed high pressure liquid chromatography to record encapsulation efficiency of (31.8 ± 2.2)% and loading capacity of (1.71 ± 0.16)%. The release profile of VIP from nanosheets showed a prolonged release. The results of laser scanning confocal microscope, scanning electron microscope and cell counting kit-8 proliferation assays showed that cell adhesion and proliferation were promoted. In order to verify the efficacy on wound healing, in vivo implantation was applied in the full-thickness defect wounds of BALB/c mice. Results showed that the wound healing was significantly promoted via favoring the growth of granulation tissue and angiogenesis. However, we found wound re-epithelialization was not significantly improved. The resulting VIP-DA-coated PCL (PCL-DA-VIP) nanosheets with spatiotemporal delivery of VIP could be a potential application in wound treatment and vascular tissue engineering.


Asunto(s)
Bivalvos , Microesferas , Nanofibras/química , Neovascularización Fisiológica/efectos de los fármacos , Poliésteres , Péptido Intestinal Vasoactivo , Cicatrización de Heridas/efectos de los fármacos , Animales , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Dopamina/química , Dopamina/farmacocinética , Dopamina/farmacología , Ratones , Ratones Endogámicos BALB C , Poliésteres/química , Poliésteres/farmacocinética , Poliésteres/farmacología , Péptido Intestinal Vasoactivo/química , Péptido Intestinal Vasoactivo/farmacocinética , Péptido Intestinal Vasoactivo/farmacología
15.
J Control Release ; 226: 35-46, 2016 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-26860282

RESUMEN

Poly(ethylene glycol) (PEG) may be covalently conjugated to peptide drugs to overcome their rapid clearance but in doing so their potency can be lost. Here, a non-covalent approach was used to conjugate PEG bearing a terminal cholanic moiety (mPEG5kDa-cholane) to a 28 amino acid peptide, vasoactive intestinal peptide (VIP). Palmitoylation of the peptide was essential to facilitate physical interaction via a single binding site involving two mPEG5kDa-cholane molecules with an affinity constant of ~3·10(4)M(-1); these calorimetry data corroborating Scatchard analysis of dissolution data. The peptide/polymer complex (below 10-12nm diameter) provided for up to 5000-fold greater solubility of the peptide at pH7.4 (4µg/mL) and markedly increased peptide solution stability at 25°C over 30days. Mannitol enabled the complex to be lyophilized to yield a freeze-dried formulation which was efficiently reconstituted albeit with an ~10% decrease in solubility. The predominantly α-helical conformation of the peptide alone at pH5-6.5 was lost at pH7.4 but fully recovered with 2 molar equivalents of mPEG5kDa-cholane. After lyophilization and reconstitution an ~10% loss of α-helical conformation was observed, which may reflect the equivalent decrease in solubility. Pharmacokinetic studies following subcutaneous administration of the peptide (0.1mg/Kg) alone and with 2 molar equivalents of polymer showed that mPEG5kDa-cholane dramatically increased peptide concentration in the systemic circulation. This is the first demonstration of non-covalent PEGylation of acylated peptides, an important biologic class, which improves in vitro and in vivo properties, and thereby may prove an alternative to covalent PEGylation strategies.


Asunto(s)
Colanos/química , Péptidos/sangre , Péptidos/química , Polietilenglicoles/química , Péptido Intestinal Vasoactivo/sangre , Péptido Intestinal Vasoactivo/química , Secuencia de Aminoácidos , Animales , Liofilización , Masculino , Ratas Sprague-Dawley , Solubilidad
16.
Adv Protein Chem Struct Biol ; 98: 145-68, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25819279

RESUMEN

Neuropeptides are potentially valuable tools for clinical applications as they offer many distinct advantages over other bioactive molecules like proteins and monoclonal antibodies due to their reduced side effects and simple chemical modifications. Despite such advantages, the difficulty with neuropeptides often relies on their poor metabolic stability and reduced biological activity intervals. Among the neuropeptides, VIP has been identified as a potentially bioactive agent for inflammatory, neurodegenerative, and cancer-related diseases. However, the effective translation of preclinical studies related to VIP to clinical realities faces several major challenges, most of which are commonplace for other neuropeptides. Here, we present recent studies aimed at developing nanostructured organic and inorganic systems either for the appropriate delivery of VIP or for VIP targeting. These technologies stand as an alternative starting point for chemical manipulations of the neuropeptides in order to improve potency, selectivity, or pharmacokinetic parameters.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Terapia Molecular Dirigida , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Péptido Intestinal Vasoactivo/química , Antineoplásicos/química , Antineoplásicos/farmacología , Expresión Génica , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas/ultraestructura , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/metabolismo , Unión Proteica , Receptores de Péptido Intestinal Vasoactivo/genética , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Electricidad Estática , Investigación Biomédica Traslacional , Péptido Intestinal Vasoactivo/metabolismo
17.
J Biosci Bioeng ; 119(6): 724-8, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25561328

RESUMEN

The bacterial strain Sphingosinicella sp. B-9 was originally discovered to have the ability to degrade cyanobacterial cyclic peptides (microcystins), and has three hydrolytic enzymes (MlrA, MlrB, and MlrC). The purpose of this study was to examine in detail the degradation of glucagon/vasoactive intestinal polypeptide (VIP) family peptides by B-9, and to investigate the substrate specificity of B-9 proteases and the possibility of using a B-9 protease as a novel protease for peptide quantification by using a surrogate peptide and mass spectrometry (MS). The effective use of inhibitors revealed the following hydrolytic capability of B-9: One of the B-9 proteases (presumably MlrB) that was not inhibited by ethylenediaminetetraacetic acid (EDTA) cleaved bioactive peptides into medium-sized peptides with broad selectivity, similar to neutral endopeptidase, and another protease that was not inhibited by phenylmethylsulfonyl fluoride (PMSF) corresponded to MlrC and cleaved the resulting medium-sized peptides to smaller peptides or amino acids. The former property was desirable to obtain a suitable surrogate peptide, which was used successfully to quantify peptide using liquid chromatography (LC)-MS. Thus, the present study verified that one of the B-9 proteases has broad cleavage selectivity and cleavage sites, not seen in commercially available proteases, and is applicable to protein and peptide quantification using LC-MS.


Asunto(s)
Sphingomonadaceae/metabolismo , Péptido Intestinal Vasoactivo/análisis , Péptido Intestinal Vasoactivo/metabolismo , Aminoácidos/metabolismo , Cromatografía Liquida , Hidrólisis/efectos de los fármacos , Espectrometría de Masas , Péptido Hidrolasas/metabolismo , Fluoruro de Fenilmetilsulfonilo/farmacología , Inhibidores de Proteasas/farmacología , Sphingomonadaceae/enzimología , Péptido Intestinal Vasoactivo/química
18.
Artículo en Inglés | MEDLINE | ID: mdl-25438751

RESUMEN

Vasoactive intestinal polypeptide (VIP) is an intrinsic 28-amino acid peptide, involved in a wide range of physiologic effects, and therefore considered as a promising drug candidate for the treatment of several diseases. But the clinical application of VIP has been limited for the easy in vivo digestion. Various researches aiming to prolong the VIP half-life, by modifying the VIP structure, have been reported. The first thing to be considered after structural modification is to know it is a VPAC agonist or antagonist. To analyze the structure-activity relationships of VIP derivatives and build classifiers to distinguish newly designed VIPs, here in this work, we collected 46 samples and two classifiers were established respectively for VPAC1 and VPAC2 receptors. The built classifiers are robust and predictive with high sensitivity, specificity and concordance for the prediction set. By analyzing the meanings of the used variables, we found that the electrostatic properties of VIP derivatives are vital in their interactions with VPAC receptors. Finally, these two classifiers were used to predict the bioactivities of novel VIPs, without experimental activities, which were suggested for experimental research groups to test their bioactivities and the possible practical applications in future.


Asunto(s)
Receptores de Tipo II del Péptido Intestinal Vasoactivo/agonistas , Receptores de Tipo II del Péptido Intestinal Vasoactivo/antagonistas & inhibidores , Receptores de Tipo I del Polipéptido Intestinal Vasoactivo/agonistas , Receptores de Tipo I del Polipéptido Intestinal Vasoactivo/antagonistas & inhibidores , Péptido Intestinal Vasoactivo/química , Péptido Intestinal Vasoactivo/farmacología , Secuencia de Aminoácidos , Simulación por Computador , Descubrimiento de Drogas , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Relación Estructura-Actividad
19.
Int J Nanomedicine ; 9: 4819-28, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25378923

RESUMEN

PURPOSE: As a potential protein therapeutic for type 2 diabetes mellitus (T2DM), BAY 55-9837 is limited by poor stability and a very short half-life in vivo. The purpose of this study was to construct a novel nanostructured biomaterial by conjugating BAY 55-9837 to chitosan-decorated selenium nanoparticles (CS-SeNPs) to prolong the in vivo half-life of BAY 55-9837 by reducing its renal clearance rate. MATERIALS AND METHODS: BAY 55-9837-loaded CS-SeNPs (BAY-CS-SeNPs) were prepared, and their surface morphology, particle size, zeta potential, and structure were characterized. The stability, protein-loading rate, and in vitro release of BAY 55-9837 from CS-SeNPs were also quantified. Additionally, a sensitive high-performance liquid chromatography (HPLC) assay was developed for the quantification of BAY 55-9837 in mouse plasma. Thereafter, mice were injected via the tail vein with either BAY 55-9837 or BAY-CS-SeNPs, and the plasma concentration of BAY 55-9837 was determined via our validated HPLC method at different time intervals postinjection. Relevant in vivo pharmacokinetic parameters (half-life, area under the curve from time 0 to last sampling point, observed clearance) were then calculated and analyzed. RESULTS: BAY-CS-SeNPs were successfully synthesized, with diameters of approximately 200 nm. BAY-CS-SeNPs displayed good stability with a high protein-loading rate, and the release process of BAY 55-9837 from the CS-SeNPs lasted for over 70 hours, with the cumulative release reaching 78.9%. Moreover, the conjugation of CS-SeNPs to BAY 55-9837 significantly reduced its renal clearance to a rate of 1.56 mL/h and extended its half-life to 20.81 hours. CONCLUSION: In summary, our work provides a simple method for reducing the renal clearance rate and extending the half-life of BAY 55-9837 in vivo by utilizing CS-SeNPs as nanocarriers.


Asunto(s)
Quitosano/química , Portadores de Fármacos/farmacocinética , Nanopartículas/química , Fragmentos de Péptidos/farmacocinética , Selenio/química , Animales , Diabetes Mellitus Tipo 2 , Portadores de Fármacos/química , Estabilidad de Medicamentos , Semivida , Ratones , Tamaño de la Partícula , Fragmentos de Péptidos/química , Péptido Intestinal Vasoactivo/química , Péptido Intestinal Vasoactivo/farmacocinética
20.
Yakugaku Zasshi ; 134(9): 987-95, 2014.
Artículo en Japonés | MEDLINE | ID: mdl-25174370

RESUMEN

We have designed a novel lipid analog (lipopeptide) that mimics the structural features of modified phospholipids. This lipopeptide is easily synthesized using a peptide synthesizer and has been shown to be useful for the modification of liposomes, which are used as an active targeted drug delivery system (DDS). Vasoactive intestinal peptide (VIP) has high homology with pituitary adenylate cyclase activating peptide (PACAP). There are three major PACAP receptors: PAC1R, VPAC1R, and VPAC2R. PAC1R has affinity only for PACAP, whereas VPAC1R and VPAC2R have the same affinity for both VIP and PACAP. In the present study, we synthesized several lipopeptides conjugated with VIP through different linkers and found that liposomes modified with these lipopeptides (VIP-Lips) selectively recognized the PACAP/VIP receptors. The anti-cancer activity of these VIP-Lips was evaluated by encapsulation of an antitumor drug, doxorubicin (DOX), into the modified liposomes (VIP-Lips-DOX) against the human osteosarcoma cell line, Saos-2, which highly expresses the VIP receptor. cAMP production was then measured to determine how well the VIP-Lips were able to recognize VPAC2R. The results clearly indicate that the proposed lipopeptide methodology holds promise as a DDS for cancer therapy.


Asunto(s)
Péptido Intestinal Vasoactivo/química , Línea Celular Tumoral , Supervivencia Celular , Sistemas de Liberación de Medicamentos , Humanos , Liposomas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA