RESUMEN
The histidine bridge is a rare and often overlooked structural motif in macrocyclic peptide natural products, yet there are several examples in nature of cyclic peptides bearing this moiety that exhibit potent biological activity. These interesting compounds have been the focus of several studies reporting their isolation, biosynthesis and chemical synthesis over the last four decades. This review summarises the findings on the structure, biological activity and, where possible, proposed biosynthesis and progress towards the synthesis of histidine-bridged cyclic peptides.
Asunto(s)
Productos Biológicos , Histidina , Péptidos Cíclicos , Péptidos Cíclicos/química , Péptidos Cíclicos/biosíntesis , Péptidos Cíclicos/síntesis química , Productos Biológicos/química , Productos Biológicos/síntesis química , Productos Biológicos/metabolismo , Histidina/química , HumanosRESUMEN
The first total synthesis of the Australian marine tunicate fungus-derived cyclic peptide talarolide A (1) has confirmed the structure previously proposed on the basis of spectroscopic and chemical analyses and re-affirmed the importance of the unique hydroxamate H-bond bridge in ring conformer stabilization. The unexpected co-synthesis of atrop-talarolide A (8) revealed, for the first time, that hydroxamate H-bond bridging in the talarolide framework invokes non-canonical atropisomerism and that talarolides A (1), C (3), and D (4) all exist naturally as atropisomers. These discoveries raise the intriguing prospect that comparable functionalisation of other cyclic peptides, including those with commercial value, could provide ready access to new "unnatural atropisomeric" chemical space, with new and/or improved chemical and biological properties.
Asunto(s)
Enlace de Hidrógeno , Ácidos Hidroxámicos , Péptidos Cíclicos , Péptidos Cíclicos/química , Péptidos Cíclicos/síntesis química , Ácidos Hidroxámicos/química , Estereoisomerismo , Urocordados/química , Animales , AustraliaRESUMEN
Surugamides are a group of non-ribosomal peptides produced by Streptomyces spp. Several derivatives possess acyl groups, which are proposed to be attached to a lysine side chain after backbone-macrocyclization during biosynthesis. To date, five different acyl groups have been identified in nature, yet their impacts on biological activity remain underexplored. Here we synthesized surugamide B derivatives with varied acyl moieties. Biological evaluations revealed that larger hydrophobic acyl groups on lysine ε-NH2 enhance cytotoxicity.
Asunto(s)
Péptidos Cíclicos , Péptidos Cíclicos/química , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/farmacología , Humanos , Relación Estructura-Actividad , Estructura Molecular , Supervivencia Celular/efectos de los fármacos , Streptomyces/química , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Línea Celular TumoralRESUMEN
The zelkovamycin family is a class of cyclic octapeptides with potent antibacterial and antiviral activity. Due to their unique chemical structures and excellent bioactivity, zelkovamycins have consistently attracted the interest of synthetic chemists. However, only the total synthesis of zelkovamycin and zelkovamycin G has been reported until now. The current work presents, for the first time, the synthesis of zelkovamycin analogues, along with their anticancer activity assessment. Firstly, the corresponding chain peptide based on the amino acid sequence of zelkovamycin H was synthesized using the Fmoc solid-phase peptide strategy. This was followed by cyclization under high dilution conditions to obtain compound 21, and its structure was elucidated by NMR analysis. The results confirm that compound 21 is not the natural product of zelkovamycin H. We deduced that during the synthesis of peptide 12, the D-Abu residue epimerized to the L-Abu form, leading to the formation of peptide 20, which blocked our efforts during the synthesis of zelkovamycin H. Two more analogues, 22 and 23, were synthesized by changing the structure of amino acid residues using the same strategy. The anticancer activity of analogues 21-23 against Huh-7 cells was evaluated in vitro; however, their IC50 values were >50 µM.
Asunto(s)
Antineoplásicos , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/química , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Estructura MolecularRESUMEN
Lymphocyte activation gene 3 (LAG-3) is an inhibitory immune checkpoint crucial for suppressing the immune response against cancer. Blocking LAG-3 interactions enables T cells to recover their cytotoxic capabilities and diminishes the immunosuppressive effects of regulatory T cells. A cyclic peptide (Cys-Val-Pro-Met-Thr-Tyr-Arg-Ala-Cys, disulfide bridge: 1-9) was recently reported as a LAG-3 inhibitor. Based on this peptide, we designed 19 derivatives by substituting tyrosine residue to maximize LAG-3 inhibition. Screening via TR-FRET assay identified 8 outperforming derivatives, with cyclic peptides 12 [Tyr6(L-3-CN-Phe)], 13 [Tyr6(L-4-NH2-Phe)], and 17 [Tyr6(L-3,5-DiF-Phe)] as top candidates. Cyclic peptide 12 exhibited the highest inhibition (IC50 = 4.45 ± 1.36 µM). MST analysis showed cyclic peptides 12 and 13 bound LAG-3 with KD values of 2.66 ± 2.06 µM and 1.81 ± 1.42 µM, respectively, surpassing the original peptide (9.94 ± 4.13 µM). Docking simulations revealed that cyclic peptide 12 exhibited significantly enhanced binding, with a docking score of -7.236 kcal/mol, outperforming the original peptide (-5.236 kcal/mol) and cyclic peptide 5 (L-4-CN-Phe) (-5.131 kcal/mol). A per-residue decomposition of the interaction energy indicated that the 3-cyano group in cyclic peptide 12 contributes to a more favorable conformation, yielding an interaction energy of -9.22 kcal/mol with Phe443 of MHC-II, compared to -6.03 kcal/mol and -5.619 kcal/mol for cyclic peptides 0 and 5, respectively. Despite promising in vitro results, cyclic peptide 12 failed to inhibit tumor growth in vivo, underscoring the importance of dual immunotherapies targeting several immune checkpoints to achieve anti-tumor efficacy.
Asunto(s)
Diseño de Fármacos , Inmunoterapia , Proteína del Gen 3 de Activación de Linfocitos , Péptidos Cíclicos , Animales , Humanos , Ratones , Antígenos CD/metabolismo , Antígenos CD/química , Antígenos CD/inmunología , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Relación Dosis-Respuesta a Droga , Estructura Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/síntesis química , Relación Estructura-Actividad , Nitrilos/química , Nitrilos/metabolismoRESUMEN
Macrocyclization presents a valuable strategy for enhancing the pharmacokinetic and pharmacodynamic profiles of short bioactive peptides. The exploration of various macrocyclic characteristics, such as crosslinking tethers, ring size, and orientation, is generally conducted during the early stages of development. Herein, starting from a potent and selective C-X-C chemokine receptor 4 (CXCR4) cyclic heptapeptide antagonist mimicking the N-terminal region of CXCL12, we demonstrated that the disulfide bridge could be successfully replaced with a side-chain to side-chain lactam bond, which is commonly not enlisted among the conventional disulfide mimetics. An extensive investigation was carried out to explore the chemical space of the resulting peptides, including macrocyclization width, stereochemical configuration, and lactam orientation, all of which were correlated with biochemical activity. We identified a novel heptapeptide that fully replicates the pharmacological profile of the parent peptide on CXCR4, including its potency, selectivity, and antagonistic activity, while demonstrating enhanced stability in a reductive environment. At this stage, computational studies were instructed to shed light on how the lactam cyclization features influenced the overall structure of 21 and, in turn, its ability to interact with the receptor. We envisage that these findings can give new momentum to the use of lactam cyclization as a disulfide bond mimetic and contribute to the enhancement of the repertoire for peptide-based drug development, thereby paving the way for novel avenues in therapeutic innovation.
Asunto(s)
Receptores CXCR4 , Receptores CXCR4/antagonistas & inhibidores , Receptores CXCR4/metabolismo , Humanos , Relación Estructura-Actividad , Estructura Molecular , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/síntesis química , Relación Dosis-Respuesta a Droga , CiclizaciónRESUMEN
Macrocyclic peptides are promising scaffolds for the covalent ligand discovery. However, platforms enabling the direct identification of covalent macrocyclic ligands in a high-throughput manner are limited. In this study, we present an mRNA display platform allowing selection of covalent macrocyclic inhibitors using 1,3-dibromoacetone-vinyl sulfone (DBA-VS). Testcase selections on TEV protease resulted in potent covalent inhibitors with diverse cyclic structures, among which cTEV6-2, a macrocyclic peptide with a unique C-terminal cyclization, emerged as the most potent covalent inhibitor of TEV protease described to-date. This study outlines the workflow for integrating chemical functionalizationâinstallation of a covalent warheadâwith mRNA display and showcases its application in targeted covalent ligand discovery.
Asunto(s)
ARN Mensajero , ARN Mensajero/antagonistas & inhibidores , Ciclización , Sulfuros/química , Sulfuros/farmacología , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/síntesis química , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/farmacología , Compuestos Macrocíclicos/síntesis química , Sulfonas/química , Sulfonas/farmacología , Descubrimiento de Drogas , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/síntesis química , Estructura MolecularRESUMEN
Transforming growth factor (TGF)-ß1 is a multifunctional protein that is essential in many cellular processes that include fibrosis, inflammation, chondrogenesis, and cartilage repair. In particular, cartilage repair is important to avoid physical disability since this tissue does not have the inherent capacity to regenerate beyond full development. We report here on supramolecular coassemblies of two peptide amphiphile molecules, one containing a TGF-ß1 mimetic peptide, and another which is one of two constitutional isomers lacking bioactivity. Using human articular chondrocytes, we investigated the bioactivity of the supramolecular copolymers of each isomer displaying either the previously reported linear form of the mimetic peptide or a novel cyclic analogue. Based on fluorescence depolarization and 1H NMR spin-lattice relaxation times, we found that coassemblies containing the cyclic compound and the most dynamic isomer exhibited the highest intracellular TGF-ß1 signaling and gene expression of cartilage extracellular matrix components. We conclude that control of supramolecular motion is emerging as an important factor in the binding of synthetic molecules to receptors that can be tuned through chemical structure.
Asunto(s)
Condrocitos , Condrogénesis , Péptidos Cíclicos , Factor de Crecimiento Transformador beta1 , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/química , Factor de Crecimiento Transformador beta1/farmacología , Humanos , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/síntesis química , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Condrocitos/citología , Condrogénesis/efectos de los fármacosRESUMEN
Kappa opioid receptor (KOR) antagonists have potential therapeutic applications in the treatment of stress-induced relapse to substance abuse and mood disorders. The dynorphin A analog arodyn (Ac[Phe1,2,3,Arg4,D-Ala8]dynorphin A-(1-11)-NH2) exhibits potent and selective kappa opioid receptor antagonism. Multiple cyclizations in longer peptides, such as dynorphin and its analogs, can extend the conformational constraint to additional regions of the peptide beyond what is typically constrained by a single cyclization. Here, we report the design, synthesis, and pharmacological evaluation of a bicyclic arodyn analog with two constraints in the opioid peptide sequence. The peptide, designed based on structure-activity relationships of monocyclic arodyn analogs, was synthesized by solid-phase peptide synthesis and cyclized by sequential ring-closing metathesis (RCM) in the C- and N-terminal sequences. Molecular modeling studies suggest similar interactions of key aromatic and basic residues in the bicyclic peptide with KOR as found in the cryoEM structure of KOR-bound dynorphin, despite substantial differences in the backbone conformations of the two peptides. The bicyclic peptide's affinities at KOR and mu opioid receptors (MOR) were determined in radioligand binding assays, and its KOR antagonism was determined in the [35S]GTPγS assay in KOR-expressing cells. The bicyclic analog retains KOR affinity and selectivity (Ki = 26 nM, 97-fold selectivity over MOR) similar to arodyn and exhibits potent KOR antagonism in the dynorphin-stimulated [35S]GTPγS assay. This bicyclic peptide represents a promising advance in preparing cyclic opioid peptide ligands and opens avenues for the rational design of additional bicyclic opioid peptide analogs.
Asunto(s)
Dinorfinas , Receptores Opioides kappa , Receptores Opioides kappa/antagonistas & inhibidores , Receptores Opioides kappa/metabolismo , Dinorfinas/química , Dinorfinas/farmacología , Humanos , Animales , Relación Estructura-Actividad , Modelos Moleculares , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/síntesis química , Secuencia de AminoácidosRESUMEN
Tropomyosin receptor kinases (Trks) are receptor tyrosine kinases activated by neurotrophic factors, called neurotrophins. Among them, TrkA interacts with the nerve growth factor (NGF), which leads to pain induction. mRNA-display screening was carried out to discover a hit compound 2, which inhibits protein-protein interactions between TrkA and NGF. Subsequent structure optimization improving phosphorylation inhibitory activity and serum stability was pursued using a unique process that took advantage of the peptide being synthesized by translation from mRNA. This gave peptide 19, which showed an analgesic effect in a rat incisional pain model. The peptides described here can serve as a new class of analgesics, and the structure optimization methods reported provide a strategy for discovering new peptide drugs.
Asunto(s)
Receptor trkA , Receptor trkA/antagonistas & inhibidores , Receptor trkA/metabolismo , Animales , Ratas , Humanos , Relación Estructura-Actividad , Descubrimiento de Drogas , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Analgésicos/farmacología , Analgésicos/química , Analgésicos/síntesis química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/química , Péptidos Cíclicos/síntesis química , Masculino , Factor de Crecimiento Nervioso/metabolismo , Fosforilación , Dolor/tratamiento farmacológico , Ratas Sprague-DawleyRESUMEN
The exploration of novel anticancer compounds based on natural cyclopeptides has emerged as a pivotal paradigm in the contemporary advancement of macrocyclic pharmaceuticals. Phakellistatin 13 is a cycloheptapeptide derived from the brown snubby sponge and exhibits remarkable antitumor activity. In this study, we have designed and synthesized a series of chiral cyclopeptides incorporating the rigid isoindolinone moiety at various sites within the natural cycloheptapeptide Phakellistatin 13, with the aim of investigating conformationally constrained cyclopeptides as potential antitumor agents. Cyclopeptide 3, comprising alternating l-/d-amino acid residues, exhibited promising antihepatocellular carcinoma effects. Detailed biological experiments have revealed that Phakellistatin 13 analogs effectively inhibit the proliferation of tumor cells and induce apoptosis and autophagy, while also causing cell cycle arrest through the modulation of the p53 and mitogen-activated protein kinase (MAPK) signaling pathway. This study not only provides valuable insights into chemical structural modifications but also contributes to a deeper understanding of the biological mechanisms underlying the development of natural cyclopeptide-based drugs.
Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Péptidos Cíclicos , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Humanos , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Autofagia/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , AnimalesRESUMEN
Liver fibrosis is a condition characterized by aberrant proliferation of connective tissue in the liver resulting from diverse etiological factors. G protein-coupled receptor GPR55 has recently been identified as a regulator of liver diseases. Herein, we report the discovery of a cyclic peptide P1-1 that antagonizes GPR55 and suppresses collagen secretion in hepatic stellate cells. The alanine scanning and docking study was carried out to predict the binding mode and allowed for further structural optimization of peptide antagonists for GPR55. The subsequent in vivo study demonstrated that P1-1 ameliorates CCl4-induce and MCD-diet-induce acute liver inflammation and fibrosis. Further study indicates that P1-1 reduces reactive oxygen species (ROS) production, attenuates ER stress, and inhibits mitochondria-associated hepatocyte apoptosis. In this work, we provided the first successful example of antagonizing GPR55 for liver inflammation and fibrosis, which validates GPR55 as a promising target for the treatment of liver fibrosis and affords a high-potent GPR55 antagonist P1-1 as a potential therapeutic candidate.
Asunto(s)
Cirrosis Hepática , Receptores de Cannabinoides , Receptores Acoplados a Proteínas G , Animales , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Receptores de Cannabinoides/metabolismo , Ratones , Masculino , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Simulación del Acoplamiento Molecular , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/química , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/uso terapéutico , Descubrimiento de Drogas , Relación Estructura-Actividad , Estrés del Retículo Endoplásmico/efectos de los fármacosRESUMEN
Bicyclic peptides are a powerful modality for engaging challenging drug targets such as protein-protein interactions. Here, we use 1,2,3-tris(bromomethyl)benzene (1,2,3-TBMB) to access bicyclic peptides with diverse conformations that differ from conventional bicyclisation products formed with 1,3,5-TBMB. Bicyclisation at cysteine residues under aqueous buffer conditions proceeds efficiently, with broad substrate scope, compatibility with high-throughput screening, and clean conversion (>90%) for 96 of the 115 peptides tested. We envisage that the 1,2,3-TBMB linker will be applicable to a variety of peptide screening techniques in drug discovery.
Asunto(s)
Péptidos Cíclicos , Péptidos Cíclicos/química , Péptidos Cíclicos/síntesis química , Conformación Proteica , Derivados del Benceno/química , CiclizaciónRESUMEN
Contemporary developments in the field of peptide macrocyclization methodology are imperative for enabling the advance of drug design in medicinal chemistry. This report discloses a Rh(III)-catalyzed macrocyclization via carboamidation, reacting acryloyl-peptide-dioxazolone precursors and arylboronic acids to form complex cyclic peptides with concomitant incorporation of noncanonical α-amino acids. The diverse and modular technology allows for expedient access to a wide variety of cyclic peptides from 4 to 15 amino acids in size and features simultaneous formation of unnatural phenylalanine and tyrosine derivatives with up to >20:1 diastereoselectivity. The reaction showcases an expansive substrate scope with 45 examples and is compatible with the majority of standard protected amino acids used in Fmoc-solid phase peptide synthesis. The methodology is applied to the synthesis of multiple peptidomimetic macrocyclic analogs, including derivatives of cyclosomatostatin and gramicidin S.
Asunto(s)
Péptidos Cíclicos , Rodio , Rodio/química , Catálisis , Péptidos Cíclicos/química , Péptidos Cíclicos/síntesis química , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/síntesis química , Ciclización , Estructura MolecularRESUMEN
Peptide cyclization is often used to introduce conformational rigidity and to enhance the physiological stability of the peptide. This study presents a novel late-stage cyclization method for creating thioketal cyclic peptides from bis-cysteine peptides and drugs. Symmetrical cyclic ketones and acetone were found to react with bis-cysteine unprotected peptides efficiently to form thioketal linkages in trifluoroacetic acid (TFA) without any other additive. The attractive features of this method include high chemoselectivity, operational simplicity, and robustness. In addition, TFA as the reaction solvent can dissolve any unprotected peptide. As a showcase, the dimethyl thioketal versions of lanreotide and octreotide were prepared and evaluated, both of which showed much improved reductive stability and comparable activity.
Asunto(s)
Disulfuros , Cetonas , Péptidos Cíclicos , Ácido Trifluoroacético , Cetonas/química , Ácido Trifluoroacético/química , Ciclización , Péptidos Cíclicos/química , Péptidos Cíclicos/síntesis química , Estructura Molecular , Disulfuros/química , Cisteína/química , Octreótido/química , Octreótido/síntesis química , Péptidos/química , Péptidos/síntesis químicaRESUMEN
Cyclic peptides are attracting attention as therapeutic agents due to their potential for oral absorption and easy access to tough intracellular targets. LUNA18, a clinical KRAS inhibitor, was transformed-without scaffold hopping-from the initial hit by using an mRNA display library that met our criteria for drug-likeness. In drug discovery using mRNA display libraries, hit compounds always possess a site linked to an mRNA tag. Here, we describe our examination of the Structure-Activity Relationship (SAR) using X-ray structures for chemical optimization near the site linked to the mRNA tag, equivalent to the C-terminus. Structural modifications near the C-terminus demonstrated a relatively wide range of tolerance for side chains. Furthermore, we show that a single atom modification is enough to change the pharmacokinetic (PK) profile. Since there are four positions where side chain modification is permissible in terms of activity, it is possible to flexibly adjust the pharmacokinetic profile by structurally optimizing the side chain. The side chain transformation findings demonstrated here may be generally applicable to hits obtained from mRNA display libraries.
Asunto(s)
Péptidos Cíclicos , Proteínas Proto-Oncogénicas p21(ras) , ARN Mensajero , Relación Estructura-Actividad , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/farmacocinética , Humanos , ARN Mensajero/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Estructura Molecular , Animales , Relación Dosis-Respuesta a DrogaRESUMEN
Ten macrocyclic peptides, each comprising 14 amino acids, were designed and synthesized based on the Tau aggregation model hexapeptides AcPHF6* and AcPHF6. The design took into account the aggregation tendencies of each residue in AcPHF6* and AcPHF6, their aggregation models, while employing peptide-based structural design principles including N-methylation to promote turns and to block hydrogen bond propagation and elongation of the aggregation chain. NMR analysis supported that all these peptides adopted an antiparallel ß-sheet conformation. Self-aggregation studies characterized the aggregation properties of these peptides, identifying two peptides with the highest (P3) and lowest (P8) aggregation tendencies. In cross-aggregation studies with the parent peptides AcPHF6* and AcPHF6, P3 and P8 were found to promote and reduce aggregation, respectively. Furthermore, P3 and P8 demonstrated an enhancement and diminution effect on the aggregation of K18wt, indicating their capacity to modulate aggregation even at the macromolecular level. Thus, the two simple peptides, P3 and P8 selectively exhibit pro- or anti-aggregation effects on PHF peptides and Tau. This study, has thus developed structurally well-defined non-complex peptides, derived from AcPHF6* and AcPHF6, to modulate Tau aggregation as desired, offering applications in Tau model studies and the development of Tau aggregation inhibitors or promoters.
Asunto(s)
Agregado de Proteínas , Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/química , Proteínas tau/antagonistas & inhibidores , Agregado de Proteínas/efectos de los fármacos , Humanos , Estructura Molecular , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/síntesis química , Oligopéptidos/química , Oligopéptidos/farmacología , Oligopéptidos/síntesis química , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/farmacología , Compuestos Macrocíclicos/síntesis química , Relación Dosis-Respuesta a DrogaRESUMEN
While most FDA-approved peptide drugs are cyclic, robust cyclization chemistry of peptides and the deconvolution of the cyclic peptide sequences using tandem mass spectrometry render cyclic peptide drug discovery difficult. In this chapter, the protocol for the successful synthesis of tetrazine-linked cyclic peptide library in solid phase, which shows both robust cyclization and easy sequence deconvolution, is described. The protocol for the linearization and cleavage of cyclic peptides from the solid phase by simple UV light irradiation, followed by accurate sequencing using tandem mass spectrometry, is described. We describe the troubleshooting for this dithiol bis-arylation reaction and for the successful cleavage of the aryl cyclic peptide into linear form. This method for efficient solid-phase macrocyclization can be used for the rapid production of loop-based peptides and screening for inhibition of protein-protein interactions, by using the covalent inverse electron-demand Diels Alder reaction to supplement the non-covalent interaction between a protein and its peptide binder, isolating highly selective peptides in the process.
Asunto(s)
Biblioteca de Péptidos , Péptidos Cíclicos , Péptidos Cíclicos/química , Péptidos Cíclicos/síntesis química , Ciclización , Espectrometría de Masas en Tándem/métodos , Técnicas de Síntesis en Fase Sólida/métodos , Compuestos Heterocíclicos con 1 Anillo/químicaRESUMEN
The synthesis of constrained 12-membered rings is notably difficult. The main challenges result from constraints during the linear peptide cyclization. Attempts to overcome constraints through excessive activation frequently cause peptidyl epimerization, while insufficient activation of the C-terminus hampers cyclization and promotes intermolecular oligomer formation. We present a ß-thiolactone framework that enables the synthesis of cyclo-tetrapeptides via direct aminolysis. This tactic utilizes a mechanism that restricts C-terminal carbonyl rotation while maintaining high reactivity, thereby enabling efficient head-to-tail amidation, reducing oligomerization, and preventing epimerization. A broad range of challenging cyclo-tetrapeptides ( > 20 examples) are synthesized in buffer and exhibits excellent tolerance toward nearly all proteinogenic amino acids. Previously unattainable macrocycles, such as cyclo-L-(Pro-Tyr-Pro-Val), have been produced and identified as µ-opioid receptor (MOR) agonists, with an EC50 value of 2.5 nM. Non-epimerizable direct aminolysis offers a practical solution for constrained peptide cyclization, and the discovery of MOR agonist activity highlights the importance of overcoming synthetic challenges for therapeutic development.