Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 564
Filtrar
1.
Toxicon ; 238: 107604, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38181838

RESUMEN

Ustiloxins is a mycotoxin produced by the metabolism of Rice false smut. Studies have shown that Ustiloxins may be toxic to animals, but there is still a lack of toxicological evidence. The liver, as the main organ for the biotransformation of foreign chemicals, may be the direct target organ of Ustiloxins toxicity. In this study, we found that cell viability decreased in a dose- and time-dependent manner when BNL CL.2 cells were treated with different concentrations of Ustiloxins (0, 5, 10, 20, 30, 40, 60, 80, 100, 150 and 200 µg/mL) for 24 and 48 h. In addition, scanning electron microscope observation showed that the cell membrane of the experimental group was damaged, with the appearance of apoptotic bodies. Moreover, the ROS and GSH levels were significantly increased in cells exposed to Ustiloxins. We analyzed the key action targets of Ustiloxins on hepatocyte injury using full-length transcriptomics. A total of 1099 differentially expressed genes were screened, of which 473 genes were up-regulated, and 626 genes were down-regulated. Besides, we also found that the expression of MCM7 and CDC45 in BNL CL.2 cells treated with Ustiloxins decreased, and the expression of CCl-2, CYP1b1, CYP4f13, and GSTM1 increased according to qRT-PCR. Ustiloxins might change CYP450 and GST-related genes, affect DNA replication and cell cycle, and lead to oxidative stress and liver cell injury.


Asunto(s)
Oryza , Péptidos Cíclicos , Animales , Péptidos Cíclicos/toxicidad , Perfilación de la Expresión Génica , Hepatocitos , Hígado/química
2.
J Basic Microbiol ; 63(8): 877-887, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37154196

RESUMEN

Beneficial Bacillus strains can be administered to livestock as probiotics to improve animal health. Cyclic lipopeptides produced by Bacillus such as surfactins may be responsible for some of the beneficial effects due to their anti-inflammatory and immunomodulatory activity. The aim of the present study was to isolate and evaluate the biocompatibility of native Bacillus spp. strains and their surfactin-like lipopeptides in vitro and in vivo to determine their potential to be used on animals. Biocompatibility of endospore suspensions (108 UFC/mL), and different dilutions (1:10; 1:50; 1:100; 1:500, and 1:1000) of Bacillus lipopeptide extracts containing surfactin was tested on Caco-2 cells by microculture tetrazolium-based colorimetric assay. Genotoxicity was tested on BALB/c mice (n = 6) administered 0.2 mL of endospore suspensions by the bone marrow erythrocyte micronuclei assay. All the isolates tested produced between 26.96 and 239.97 µg mL- 1 of surfactin. The lipopeptide extract (LPE) from isolate MFF1.11 demonstrated significant cytotoxicity in vitro. In contrast, LPE from MFF 2.2; MFF 2.7, TL1.11, TL 2.5, and TC12 had no cytotoxic effect (V% > 70%) on Caco-2 cells, not affecting cell viability signifficantly in most treatments. Similarly, none of the endospore suspensions affected cell viability (V% > 80%). Likewise, endospores did not cause genotoxicity on BALB/c mice. This study was elementary as a first step for a new line of research, since it allowed us to choose the safest isolates to keep working on the search of new potentially probiotic strains destined to production animals to improve their performance and health.


Asunto(s)
Bacillus , Animales , Ratones , Humanos , Bacillus/metabolismo , Lipopéptidos/farmacología , Lipopéptidos/metabolismo , Células CACO-2 , Suspensiones , Péptidos Cíclicos/toxicidad , Extractos Vegetales , Bacillus subtilis/metabolismo
3.
Front Public Health ; 10: 910024, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910917

RESUMEN

Little evidence is available on the epidemiological and economical dimensions of certain foodborne diseases such as wild mushroom poisoning. This study aimed to investigate the epidemiology and estimate the costs of poisoning with cyclopeptide-containing mushrooms in Kermanshah province in 2018. In this study, poisoning was investigated in different subgroups. The cost of illness method with a bottom-up approach was used to estimate the poisoning costs. Both direct and indirect costs of the poisoning were included in the analysis. The perspective of the study was society. Required data were obtained from the medical records of Imam Khomeini hospital and completed through a line survey with the patients. Two hundred eighty-three patients were poisoned in Kermanshah due to poisoning with cyclopeptide-containing mushrooms. Of 283 patients, 143 (50.53%) were men and 59.01% of patients were rural residents. About 43% of admissions were out-patient cases and ~40% of patients were hospitalized within 1-3 days. Also, eight patients were pronounced dead in the area. The total cost of poisoning with cyclopeptide-containing mushrooms in Kermanshah province was $ 1,259,349.26. Of that, $ 69,281.65 was related to direct medical costs and $ 10,727.23 was direct non-medical costs. The indirect costs of death were estimated to be $ 1,125,829.7. The current study revealed that there is a significant financial burden due to cyclopeptide-containing mushrooms on patients, the health system, and society as a whole. Further studies are recommended to clarify the epidemiological and economic burden of foodborne illnesses related to wild mushroom poisonings. Sharing the outputs with health authorities, and informing the general public are warranted to reduce the burden of such diseases.


Asunto(s)
Agaricales , Intoxicación por Setas , Brotes de Enfermedades , Femenino , Estrés Financiero , Humanos , Irán/epidemiología , Masculino , Intoxicación por Setas/epidemiología , Péptidos Cíclicos/toxicidad
4.
Toxins (Basel) ; 13(8)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34437393

RESUMEN

Cyanobacteria are microorganisms with photosynthetic mechanisms capable of colonizing several distinct environments worldwide. They can produce a vast spectrum of bioactive compounds with different properties, resulting in an improved adaptative capacity. Their richness in secondary metabolites is related to their unique and diverse metabolic apparatus, such as Non-Ribosomal Peptide Synthetases (NRPSs). One important class of peptides produced by the non-ribosomal pathway is anabaenopeptins. These cyclic hexapeptides demonstrated inhibitory activity towards phosphatases and proteases, which could be related to their toxicity and adaptiveness against zooplankters and crustaceans. Thus, this review aims to identify key features related to anabaenopeptins, including the diversity of their structure, occurrence, the biosynthetic steps for their production, ecological roles, and biotechnological applications.


Asunto(s)
Péptidos Cíclicos , Animales , Ecología , Estructura Molecular , Péptidos Cíclicos/biosíntesis , Péptidos Cíclicos/química , Péptidos Cíclicos/toxicidad , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Inhibidores de Proteasas/toxicidad
5.
Chem Commun (Camb) ; 57(60): 7422-7425, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34231564

RESUMEN

Bioactive molecules that enhance or induce osteogenic potential of bone precursor cells have shown vital roles in bone tissue engineering. Herein, we report the design and synthesis of a novel diketopiperazine (DT) that induces osteoblastic differentiation of pre-osteoblasts and bone-marrow-derived stem cells in vitro and enhances the osteogenic potential of cryogel matrix. Such functional diketopiperazines can serve as potential scaffolds for bone healing and regeneration.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Criogeles/química , Dicetopiperazinas/farmacología , Osteogénesis/efectos de los fármacos , Péptidos Cíclicos/farmacología , Andamios del Tejido/química , Animales , Proliferación Celular/efectos de los fármacos , Dicetopiperazinas/síntesis química , Dicetopiperazinas/toxicidad , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Osteoblastos/efectos de los fármacos , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/toxicidad , Taurina/análogos & derivados , Taurina/farmacología , Taurina/toxicidad , Ingeniería de Tejidos/métodos
6.
Pharm Biol ; 59(1): 933-936, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34236286

RESUMEN

CONTEXT: Streptomyces species are prolific sources of bioactive secondary metabolites known especially for their antimicrobial and anticancer activities. OBJECTIVE: This study sought to isolate and characterize antioxidant molecules biosynthesized by Streptomyces sp. KTM18. The antioxidant potential of an isolated compound and its toxicity were accessed. MATERIALS AND METHODS: The compound was purified using bioassay-guided chromatography techniques. Nuclear magnetic resonance (NMR) experiments were carried out for structure elucidation. The antioxidant potential of the isolated compound was determined using DPPH free radical scavenging assay. The toxicity of the isolated compound was measured using a brine shrimp lethality (BSL) assay. RESULTS: Ethyl acetate extract of Streptomyces sp. KTM18 showed more than 90% inhibition of DPPH free radical at 50 µg/mL of the test concentration. These data were the strongest among 13 Streptomyces isolates (KTM12-KTM24). The active molecule was isolated and characterized as maculosin (molecular formula, C14H16N2O3 as determined by the [M + H]+ peak at 261.1259). The DPPH free radical scavenging activity of pure maculosin was higher (IC50, 2.16 ± 0.05 µg/mL) than that of commercial butylated hydroxyanisole (BHA) (IC50, 4.8 ± 0.05 µg/mL). No toxicity was observed for maculosin (LD50, <128 µg/mL) in brine shrimp lethality assay (BSLA) up to the compound's antioxidant activity (IC50) concentration range. The commercial standard, berberine chloride, showed toxicity in BSLA with an LD50 value of 8.63 ± 0.15 µg/mL. CONCLUSIONS: Maculosin may be a leading drug candidate in various cosmetic and therapeutic applications owing to its strong antioxidant and non-toxic properties.


Asunto(s)
Antioxidantes/farmacología , Depuradores de Radicales Libres/farmacología , Péptidos Cíclicos/farmacología , Piperazinas/farmacología , Streptomyces/metabolismo , Animales , Antioxidantes/aislamiento & purificación , Antioxidantes/toxicidad , Artemia , Compuestos de Bifenilo , Depuradores de Radicales Libres/aislamiento & purificación , Depuradores de Radicales Libres/toxicidad , Concentración 50 Inhibidora , Espectroscopía de Resonancia Magnética , Péptidos Cíclicos/aislamiento & purificación , Péptidos Cíclicos/toxicidad , Picratos , Piperazinas/aislamiento & purificación , Piperazinas/toxicidad , Metabolismo Secundario , Pruebas de Toxicidad
7.
J Med Chem ; 64(9): 6198-6208, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33914531

RESUMEN

In the marine environment, sessile cyanobacteria have developed chemical strategies for protection against grazers. In turn, herbivores have to circumvent these defenses and in certain cases even take advantage of them as shelter from their own predators. This is the case of Stylocheilus striatus, a sea hare that feeds on Anabaena torulosa, a cyanobacterium that produces toxic cyclic lipopeptides of the laxaphycin B family. S. striatus consumes the cyanobacterium without being affected by the toxicity of its compounds and also uses it as an invisibility cloak against predators. In this article, using different substrates analogous to laxaphycin B, we demonstrate the presence of an enzyme in the digestive gland of the mollusk that is able to biotransform laxaphycin B derivatives. The enzyme belongs to the poorly known family of d-peptidases that are suspected to be involved in antibiotic resistance.


Asunto(s)
Farmacorresistencia Bacteriana/efectos de los fármacos , Moluscos/metabolismo , Péptido Hidrolasas/metabolismo , Péptidos Cíclicos/metabolismo , Animales , Péptidos Cíclicos/química , Péptidos Cíclicos/toxicidad
8.
Ecotoxicology ; 30(5): 996-1003, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33755843

RESUMEN

A natural compound with the algicidal effect was isolated from the culture medium of Aspergillus sp. SCSIOW2 and was identified as malformin C, which was based on the data of 1H-NMR, 13C-NMR, and ESI-MS. Malformin C exhibited dose-dependent algicidal activities against two strains of noxious red tide algae, Akashiwo sanguinea and Chattonella marina. The activity against A. sanguinea was stronger than that against C. marina (the algicidal activity of 58 and 36% at 50 µM treatment for 2 h, respectively). Morphology changes including perforation, plasmolysis, and fragmentation of algal cells were observed. Malformin C induced a significant increase in ROS level, caused the damage of SOD activity, and led to the massive generation of MDA contents in algae cells. To our knowledge, this is the first report of the cyclic peptide described as an algicidal compound against HABs.


Asunto(s)
Floraciones de Algas Nocivas , Péptidos Cíclicos , Aspergillus , Hongos , Péptidos Cíclicos/toxicidad
9.
ACS Chem Biol ; 16(2): 414-428, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33533253

RESUMEN

Peptides are being developed as targeted anticancer drugs to modulate cytosolic protein-protein interactions involved in cancer progression. However, their use as therapeutics is often limited by their low cell membrane permeation and/or inability to reach cytosolic targets. Conjugation to cell penetrating peptides has been successfully used to improve the cytosolic delivery of high affinity binder peptides, but cellular uptake does not always result in modulation of the targeted pathway. To overcome this limitation, we developed "angler peptides" by conjugating KD3, a noncell permeable but potent and specific peptide inhibitor of p53:MDM2 and p53:MDMX interactions, with a set of cyclic cell-penetrating peptides. We examined their binding affinity for MDM2 and MDMX, the cell entry mechanism, and role in reactivation of the p53 pathway. We identified two angler peptides, cTAT-KD3 and cR10-KD3, able to activate the p53 pathway in cancer cells. cTAT-KD3 entered cells via endocytic pathways, escaped endosomes, and activated the p53 pathway in breast (MCF7), lung (A549), and colon (HCT116) cancer cell lines at concentrations in the range of 1-12 µM. cR10-KD3 reached the cytosol via direct membrane translocation and activated the p53 pathway at 1 µM in all the tested cell lines. Our work demonstrates that nonpermeable anticancer peptides can be delivered into the cytosol and inhibit intracellular cancer pathways when they are conjugated with stable cell penetrating peptides. The mechanistic studies suggest that direct translocation leads to less toxicity, higher cytosol delivery at lower concentrations, and lower dependencies on the membrane of the tested cell line than occurs for an endocytic pathway with endosomal escape. The angler strategy can rescue high affinity peptide binders identified from high throughput screening and convert them into targeted anticancer therapeutics, but investigation of their cellular uptake and cell death mechanisms is essential to confirming modulation of the targeted cancer pathways.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Péptidos Cíclicos/farmacología , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Secuencia de Aminoácidos , Antineoplásicos/síntesis química , Antineoplásicos/toxicidad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Péptidos de Penetración Celular/síntesis química , Péptidos de Penetración Celular/farmacología , Péptidos de Penetración Celular/toxicidad , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Eritrocitos , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/toxicidad , Conformación Proteica en Hélice alfa
10.
J Appl Toxicol ; 41(10): 1660-1672, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33624853

RESUMEN

Nodularin (NOD) is a cyclic peptide released by bloom-forming toxic cyanobacteria Nodularia spumigena commonly occurring in brackish waters throughout the world. Although its hepatotoxic effects are well known, other negative effects of NOD have not yet been completely elucidated. The present study aims were to evaluate and compare the cytotoxic and immunotoxic effects of the toxin on primary leukocytes (from head kidney [HK]) and stable fish leukocytes (carp leucocyte cell line [CLC] cells). The cells were incubated with the cyanotoxin at concentrations of 0.001, 0.01, 0.05, or 0.1 µg/ml. After 24 h of exposure, the concentrations ≥0.05 µg/ml of toxin resulted in cytotoxicity in the primary cells, while in CLC cells, the toxic effect was obtained only with the highest concentration. Similarly, depending on the concentration, exposure to NOD causes a significant inhibition of chemotaxis of the phagocytic abilities of primary leukocytes and a significant reduction in the proliferation of lymphocytes isolated from the HKs. Moreover, CLC cells and HK leukocytes incubated with this toxin at all the mentioned concentrations showed an increased production of reactive oxygen and nitrogen species. NOD also evidently influenced the expression of genes of cytokine TNF-α and IL-10 and, to a minor extent, IL-1ß and TGF-ß. Notably, the observed changes in the mRNA levels of cytokines in NOD-exposed cells were evident, but not clearly dose-dependent. Interestingly, NOD did not affect the production and release of IL-1ß of the CLC cells. This study provides evidence that NOD may exert cytotoxicity and immune-toxicity effects depending on cell type and toxin concentration.


Asunto(s)
Toxinas Bacterianas/toxicidad , Carpas/crecimiento & desarrollo , Células Cultivadas/efectos de los fármacos , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Péptidos Cíclicos/toxicidad , Animales , Citotoxinas/efectos adversos , Leucocitos/inmunología , Nodularia/química
11.
Arterioscler Thromb Vasc Biol ; 41(1): e1-e17, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33232198

RESUMEN

OBJECTIVE: TSP-1 (thrombospondin 1) is one of the most expressed proteins in platelet α-granules and plays an important role in the regulation of hemostasis and thrombosis. Interaction of released TSP-1 with CD47 membrane receptor has been shown to regulate major events leading to thrombus formation, such as, platelet adhesion to vascular endothelium, nitric oxide/cGMP (cyclic guanosine monophosphate) signaling, platelet activation as well as aggregation. Therefore, targeting TSP-1:CD47 axis may represent a promising antithrombotic strategy. Approach and Results: A CD47-derived cyclic peptide was engineered, namely TAX2, that targets TSP-1 and selectively prevents TSP-1:CD47 interaction. Here, we demonstrate for the first time that TAX2 peptide strongly decreases platelet aggregation and interaction with collagen under arterial shear conditions. TAX2 also delays time for complete thrombotic occlusion in 2 mouse models of arterial thrombosis following chemical injury, while Thbs1-/- mice recapitulate TAX2 effects. Importantly, TAX2 administration is not associated with increased bleeding risk or modification of hematologic parameters. CONCLUSIONS: Overall, this study sheds light on the major contribution of TSP-1:CD47 interaction in platelet activation and thrombus formation while putting forward TAX2 as an innovative antithrombotic agent with high added-value.


Asunto(s)
Arteriopatías Oclusivas/prevención & control , Antígeno CD47/antagonistas & inhibidores , Fibrinolíticos/farmacología , Péptidos Cíclicos/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Agregación Plaquetaria/efectos de los fármacos , Trombosis/prevención & control , Trombospondina 1/antagonistas & inhibidores , Animales , Arteriopatías Oclusivas/sangre , Arteriopatías Oclusivas/metabolismo , Antígeno CD47/metabolismo , Colágeno/metabolismo , Modelos Animales de Enfermedad , Fibrinolíticos/toxicidad , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Péptidos Cíclicos/toxicidad , Inhibidores de Agregación Plaquetaria/toxicidad , Ratas Sprague-Dawley , Transducción de Señal , Trombosis/sangre , Trombosis/metabolismo , Trombospondina 1/genética , Trombospondina 1/metabolismo , Factores de Tiempo
12.
Fish Shellfish Immunol ; 103: 464-471, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32450300

RESUMEN

This study evaluated the effect of dietary inclusion of lyophilized açaí Euterpe oleracea (LEO) on redox status of shrimp Litopenaeus vannamei (initial weight 1.5 ± 0.39 g) upon exposure to cyanotoxin nodularin (NOD) in bioflocs system. Three hundred juvenile shrimps were randomly divided into two groups and fed twice a day with two diets: one containing 0.00 (control diet) and the other 10.0% LEO (w/w) for 30-days. After the feeding period, both shrimp groups were submitted to three treatments (14 L; 7 shrimp/tank) with different concentrations of cyanotoxin NOD (0.00; 0.25; and 1.00 µg/L) dissolved in water with 96 h of exposure. Then, the shrimps were sampled (n = 15/treatment) for the determination of reduced glutathione (GSH), the activity of glutathione-S-transferase (GST), sulfhydryl groups associated to proteins (P-SH), and lipid peroxidation (TBARS) in the hepatopancreas, gills and muscle. The NOD accumulation was measured in the muscle. The results revealed that dietary LEO significantly increased GSH levels in the hepatopancreas and gills of the shrimps exposed to NOD. Toxin exposure did not modify GST activity in all organs. Muscle TBARS levels were lower in the shrimp fed with the LEO diet and exposed to NOD. The NOD toxin did not accumulate in the muscle but notably was detected in the control groups fed or not with dietary LEO. Açaí was able to induce the antioxidant system of L. vannamei, as well as lowered the oxidative damage in shrimps exposed to NOD, suggesting its use as a chemoprotectant against cyanotoxins.


Asunto(s)
Toxinas Bacterianas/toxicidad , Suplementos Dietéticos/análisis , Euterpe/química , Toxinas Marinas/toxicidad , Penaeidae/inmunología , Péptidos Cíclicos/toxicidad , Sustancias Protectoras/farmacología , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Liofilización , Nodularia , Oxidación-Reducción , Distribución Aleatoria
13.
Brain Res Bull ; 159: 79-86, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32224159

RESUMEN

Aging represents the largest risk factor for developing Parkinson's disease (PD); another salient feature of this disorder is a decreased brain levels of somatostatin. Recently, in aged Wistar rats, we simulated the central somatostatinergic deficiency by intracerebroventricular injections of a somatostatin antagonist, cyclosomatostatin (cSST). The treated animals displayed catalepsy, a state that resembles the extrapyramidal signs of Parkinson's disease; young animals were insensitive to cSST. The neuroanatomical substrates responsible for the increased cataleptogenic activity of cSST in aged animals, are currently unknown. To study this issue, we assessed the cSST effect on brain c-Fos-protein expression in aged and young rats; thirty three brain regions were examined. cSST was employed at the dose cataleptogenic for aged animals and non-cataleptogenic for young ones. c-Fos expression patterns in the 'cataleptic' and 'non-cataleptic' animals were very similar, with the only distinction being a decrease in the c-Fos expression in the aged lateral entorhinal cortex (LEntCx). This decrease was not observed when the cSST-induced cataleptic response was inhibited by administration of diphenhydramine and nicotine. Thus, the development of catalepsy in the aged Wistar rats appeared to be associated with a hypoactivation of the LEntCx; possibly, there exists a mechanistic link between the LEntCx hypoactivation and increased susceptibility of aged rats to catalepsy. Apparently, these findings may provide novel insight into the link between mechanisms of parkinsonian motor disorders and aging.


Asunto(s)
Envejecimiento/metabolismo , Catalepsia/inducido químicamente , Catalepsia/metabolismo , Corteza Entorrinal/metabolismo , Péptidos Cíclicos/toxicidad , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Envejecimiento/efectos de los fármacos , Animales , Corteza Entorrinal/efectos de los fármacos , Expresión Génica , Masculino , Proteínas Proto-Oncogénicas c-fos/genética , Ratas , Ratas Wistar
14.
Ecotoxicol Environ Saf ; 194: 110444, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32169726

RESUMEN

Nodularin (NOD) is a kind of cyanobacterial toxins. It is of concern due to elicit severe genotoxicity in humans and animals. The comprehensive evaluation of NOD-induced adverse effects in living organisms is urgently needed. This study is aimed to report the developmental toxicity and molecular mechanism using zebrafish embryos exposed to NOD. The embryonic toxicity induced by NOD is demonstrated by inhibition of embryo hatching, increase in mortality rate, abnormal heart rate, embryonic malformation as well as defects in angiogenesis and common cardinal vein remodeling. NOD triggered a decreased rate of angiogenesis through inhibiting endothelial cells migration. NOD induced embryonic cell apoptosis and DNA damage, which can be alleviated by antioxidant N-acetyl-L-cysteine. NOD significantly caused oxidative damage as indicated by changes in reactive oxygen species, superoxide dismutase, catalase, glutathione and malondialdehyde. NOD also altered the expression of vascular development-genes (DLL4, CDH5, VEGFA, VEGFC) and apoptosis-related genes (BAX, BCL-2, P53, CASPASE 3). Taken together, NOD induced adverse effect on zebrafish embryos development, which may be associated with oxidative stress and apoptosis through the activation of P53-BAX/BCL-2-CASPASE 3-mediated pathway.


Asunto(s)
Toxinas Bacterianas/toxicidad , Embrión no Mamífero/efectos de los fármacos , Toxinas Marinas/toxicidad , Microcistinas/toxicidad , Péptidos Cíclicos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/embriología , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Toxinas de Cianobacterias , Daño del ADN , Células Endoteliales/metabolismo , Humanos , Malondialdehído/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Pez Cebra/metabolismo
15.
J Am Chem Soc ; 142(9): 4114-4120, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32045230

RESUMEN

This report describes the first application of the novel NMR-based machine learning tool "Small Molecule Accurate Recognition Technology" (SMART 2.0) for mixture analysis and subsequent accelerated discovery and characterization of new natural products. The concept was applied to the extract of a filamentous marine cyanobacterium known to be a prolific producer of cytotoxic natural products. This environmental Symploca extract was roughly fractionated, and then prioritized and guided by cancer cell cytotoxicity, NMR-based SMART 2.0, and MS2-based molecular networking. This led to the isolation and rapid identification of a new chimeric swinholide-like macrolide, symplocolide A, as well as the annotation of swinholide A, samholides A-I, and several new derivatives. The planar structure of symplocolide A was confirmed to be a structural hybrid between swinholide A and luminaolide B by 1D/2D NMR and LC-MS2 analysis. A second example applies SMART 2.0 to the characterization of structurally novel cyclic peptides, and compares this approach to the recently appearing "atomic sort" method. This study exemplifies the revolutionary potential of combined traditional and deep learning-assisted analytical approaches to overcome longstanding challenges in natural products drug discovery.


Asunto(s)
Productos Biológicos/química , Aprendizaje Automático , Redes Neurales de la Computación , Productos Biológicos/aislamiento & purificación , Productos Biológicos/toxicidad , Línea Celular Tumoral , Quimioinformática , Cianobacterias/química , Humanos , Espectroscopía de Resonancia Magnética , Péptidos Cíclicos/química , Péptidos Cíclicos/aislamiento & purificación , Péptidos Cíclicos/toxicidad
16.
J Med Chem ; 63(4): 1576-1596, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32003991

RESUMEN

Human cathepsin D (CatD), a pepsin-family aspartic protease, plays an important role in tumor progression and metastasis. Here, we report the development of biomimetic inhibitors of CatD as novel tools for regulation of this therapeutic target. We designed a macrocyclic scaffold to mimic the spatial conformation of the minimal pseudo-dipeptide binding motif of pepstatin A, a microbial oligopeptide inhibitor, in the CatD active site. A library of more than 30 macrocyclic peptidomimetic inhibitors was employed for scaffold optimization, mapping of subsite interactions, and profiling of inhibitor selectivity. Furthermore, we solved high-resolution crystal structures of three macrocyclic inhibitors with low nanomolar or subnanomolar potency in complex with CatD and determined their binding mode using quantum chemical calculations. The study provides a new structural template and functional profile that can be exploited for design of potential chemotherapeutics that specifically inhibit CatD and related aspartic proteases.


Asunto(s)
Catepsina D/antagonistas & inhibidores , Catepsina D/metabolismo , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Sitios de Unión , Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Materiales Biomiméticos/toxicidad , Células CACO-2 , Catepsina D/química , Pruebas de Enzimas , Humanos , Cinética , Estructura Molecular , Pepstatinas/química , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/toxicidad , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/toxicidad , Unión Proteica , Relación Estructura-Actividad
17.
Toxicon ; 175: 49-56, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31887317

RESUMEN

Cyanobacteria are known to produce many toxins and other secondary metabolites. The study of their specific mode of action may reveal the biotechnological potential of such compounds. Portoamides A and B (PAB) are cyclic peptides isolated from the cyanobacteria Phormidium sp. due to their growth repression effect on microalgae and were shown to be cytotoxic against certain cancer cell lines. In the present work, viability was assessed on HCT116 colon cancer cells grown as monolayer culture and as multicellular spheroids (MTS), non-carcinogenic cells and on zebrafish larvae. HCT116 cells and epithelial RPE-1hTERT cells showed very similar degrees of sensitivities to PAB. PAB were able to penetrate the MTS, showing a four-fold high IC50 compared to monolayer cultures. The toxicity of PAB was similar at 4 °C and 37 °C suggesting energy-independent uptake. PAB exposure decreased ATP production, mitochondrial maximal respiration rates and induced mitochondrial membrane hyperpolarization. PAB induced general organelle stress response, indicated by an increase of the mitochondrial damage sensor PINK-1, and of phosphorylation of eIF2α, characteristic for endoplasmic reticulum stress. In summary, these findings show general toxicity of PAB on immortalized cells, cancer cells and zebrafish embryos, likely due to mitochondrial toxicity.


Asunto(s)
Toxinas Bacterianas/toxicidad , Citotoxinas/toxicidad , Toxinas Marinas/toxicidad , Microcistinas/toxicidad , Péptidos Cíclicos/toxicidad , Animales , Antineoplásicos/toxicidad , Cianobacterias , Toxinas de Cianobacterias , Células HCT116 , Humanos , Mitocondrias/efectos de los fármacos , Neoplasias
18.
Environ Pollut ; 258: 113653, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31801670

RESUMEN

In freshwater ecosystems with frequent cyanobacterial blooms, the cyanobacteria toxin pollution is becoming increasingly serious. Nodularin (NOD), which has strong biological toxicity, has emerged as a new pollutant and affects the normal growth, development and reproduction of aquatic organisms. However, little information is available regarding this toxin. In this study, a graphene oxide material modified by L-cysteine was synthesized and used to immobilize microcystin-LR (MC-LR)-degrading enzyme (MlrA) to form an immobilized enzyme nanocomposite, CysGO-MlrA. Free-MlrA was used as a control. The efficiency of NOD removal by CysGO-MlrA was investigated. Additionally, the effects of CysGO-MlrA and the NOD degradation product on zebrafish lymphocytes were detected to determine the biological toxicity of these two substances. The results showed the following: (1) There was no significant difference in the degradation efficiency of NOD between CysGO-MlrA and free-MlrA; the degradation rate of both was greater than 80% at 1 h (2) The degradation efficiency of the enzyme could retain greater than 81% of the initial degradation efficiency after the CysGO-MlrA had been reused 7 times. (3) CysGO-MlrA retained greater than 50% of its activity on the 8th day when preserved at 0 °C, while free-MlrA lost 50% of its activity on the 4th day. (4) CysGO-MlrA and the degradation product of NOD showed no obvious cytotoxicity to zebrafish lymphocytes. Therefore, CysGO-MlrA might be used as an efficient and ecologically safe degradation material for NOD.


Asunto(s)
Microcistinas/química , Péptidos Cíclicos/química , Animales , Cianobacterias , Ecosistema , Enzimas Inmovilizadas , Toxinas Marinas , Microcistinas/toxicidad , Péptidos Cíclicos/toxicidad
19.
Contrast Media Mol Imaging ; 2019: 9502712, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31598115

RESUMEN

Triple negative breast cancer (TNBC), the most aggressive breast cancer type, is associated with high mortality and recurrence rates. An active-targeted strategy based on homing peptides is an effective approach to diagnose and treat cancer as it can deliver imaging agents or therapeutic drugs into desired tissues and accumulate less into off-target tissues. As a homing peptide, LyP-1 has shown properties of targeting, internalization, and proapoptosis to TNBC. In the study, we designed a Technetium-99m- (99mTc-) labeled LyP-1 and investigated its feasibility for targeted single-positron emission computed tomography (SPECT) imaging of TNBC. The results showed that the LyP-1 peptide had acceptable biocompatibility in the studied concentration range and could specifically bind to TNBC cells in vitro. 99mTc-labeled LyP-1 showed high radiochemical purity and stability and could be used as a probe for targeted SPECT imaging of TNBC cells in vitro and in a TNBC tumor-bearing mouse model. Our findings indicate that this active-targeted strategy has great potential to be developed into a new imaging tool for TNBC diagnosis.


Asunto(s)
Carcinoma/diagnóstico por imagen , Fluoresceína-5-Isotiocianato , Péptidos Cíclicos , Radiofármacos , Tecnecio , Tomografía Computarizada de Emisión de Fotón Único/métodos , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Animales , Materiales Biocompatibles , Carcinoma/patología , Línea Celular Tumoral , Estabilidad de Medicamentos , Femenino , Metástasis Linfática/diagnóstico por imagen , Neoplasias Mamarias Animales/diagnóstico por imagen , Neoplasias Mamarias Animales/patología , Ratones Endogámicos BALB C , Ratones Desnudos , Microscopía Confocal , Trasplante de Neoplasias , Péptidos Cíclicos/toxicidad , Radiofármacos/toxicidad , Distribución Aleatoria , Neoplasias de la Mama Triple Negativas/patología
20.
ACS Chem Biol ; 14(9): 2071-2087, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31390185

RESUMEN

The tumor suppressor protein p53 is inactive in a large number of cancers, including some forms of sarcoma, breast cancer, and leukemia, due to overexpression of its intrinsic inhibitors MDM2 and MDMX. Reactivation of p53 tumor suppressor activity, via disruption of interactions between MDM2/X and p53 in the cytosol, is a promising strategy to treat cancer. Peptides able to bind MDM2 and/or MDMX were shown to prevent MDM2/X:p53 interactions, but most possess low cell penetrability, low stability, and/or high toxicity to healthy cells. Recently, the designed peptide cHLH-p53-R was reported to possess high affinity for MDM2, resistance toward proteases, cell-penetrating properties, and toxicity toward cancer cells. This peptide uses a stable cyclic helix-loop-helix (cHLH) scaffold, which includes two helices connected with a Gly loop and cyclized to improve stability. In the current study, we were interested in examining the cell selectivity of cHLH-p53-R, its cellular internalization, and ability to reactivate the p53 pathway. We designed analogues of cHLH-p53-R and employed biochemical and biophysical methodologies using in vitro model membranes and cell-based assays to compare their structure, activity, and mode-of-action. Our studies show that cHLH is an excellent scaffold to stabilize and constrain p53-mimetic peptides with helical conformation, and reveal that anticancer properties of cHLH-p53-R are mediated by its ability to selectively target, cross, and disrupt cancer cell membranes, and not by activation of the p53 pathway. These findings highlight the importance of examining the mode-of-action of designed peptides to fully exploit their potential to develop targeted therapies.


Asunto(s)
Antineoplásicos/farmacología , Membrana Celular/metabolismo , Péptidos de Penetración Celular/farmacología , Péptidos Cíclicos/farmacología , Proteínas Supresoras de Tumor/farmacología , Secuencia de Aminoácidos , Antineoplásicos/síntesis química , Antineoplásicos/toxicidad , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Péptidos de Penetración Celular/síntesis química , Péptidos de Penetración Celular/toxicidad , Secuencias Hélice-Asa-Hélice , Humanos , Membrana Dobles de Lípidos/metabolismo , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/toxicidad , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/síntesis química , Proteínas Supresoras de Tumor/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA