Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Dis Model Mech ; 16(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37139703

RESUMEN

Hypokalemic periodic paralysis (HypoPP) is a rare genetic disease associated with mutations in CACNA1S or SCN4A encoding the voltage-gated Ca2+ channel Cav1.1 or the voltage-gated Na+ channel Nav1.4, respectively. Most HypoPP-associated missense changes occur at the arginine residues within the voltage-sensing domain (VSD) of these channels. It is established that such mutations destroy the hydrophobic seal that separates external fluid and the internal cytosolic crevices, resulting in the generation of aberrant leak currents called gating pore currents. Presently, the gating pore currents are thought to underlie HypoPP. Here, based on HEK293T cells and by using the Sleeping Beauty transposon system, we generated HypoPP-model cell lines that co-express the mouse inward-rectifier K+ channel (mKir2.1) and HypoPP2-associated Nav1.4 channel. Whole-cell patch-clamp measurements confirmed that mKir2.1 successfully hyperpolarizes the membrane potential to levels comparable to those of myofibers, and that some Nav1.4 variants induce notable proton-based gating pore currents. Importantly, we succeeded in fluorometrically measuring the gating pore currents in these variants by using a ratiometric pH indicator. Our optical method provides a potential in vitro platform for high-throughput drug screening, not only for HypoPP but also for other channelopathies caused by VSD mutations.


Asunto(s)
Parálisis Periódica Hipopotasémica , Ratones , Humanos , Animales , Parálisis Periódica Hipopotasémica/genética , Parálisis Periódica Hipopotasémica/metabolismo , Células HEK293 , Mutación/genética , Activación del Canal Iónico , Citosol/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4/genética , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo
2.
Acta Neuropathol Commun ; 9(1): 109, 2021 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-34120654

RESUMEN

Hypokalemic periodic paralysis is an autosomal dominant, rare disorder caused by variants in the genes for voltage-gated calcium channel CaV1.1 (CACNA1S) and NaV1.4 (SCN4A). Patients with hypokalemic periodic paralysis may suffer from periodic paralysis alone, periodic paralysis co-existing with permanent weakness or permanent weakness alone. Hypokalemic periodic paralysis has been known to be associated with vacuolar myopathy for decades, and that vacuoles are a universal feature regardless of phenotype. Hence, we wanted to investigate the nature and cause of the vacuoles. Fourteen patients with the p.R528H variation in the CACNA1S gene was included in the study. Histology, immunohistochemistry and transmission electron microscopy was used to assess general histopathology, ultrastructure and pattern of expression of proteins related to muscle fibres and autophagy. Western blotting and real-time PCR was used to determine the expression levels of proteins and mRNA of the proteins investigated in immunohistochemistry. Histology and transmission electron microscopy revealed heterogenous vacuoles containing glycogen, fibrils and autophagosomes. Immunohistochemistry demonstrated autophagosomes and endosomes arrested at the pre-lysosome fusion stage. Expression analysis showed a significant decrease in levels of proteins an mRNA involved in autophagy in patients, suggesting a systemic effect. However, activation level of the master regulator of autophagy gene transcription, TFEB, did not differ between patients and controls, suggesting competing control over autophagy gene transcription by nutritional status and calcium concentration, both controlling TFEB activity. The findings suggest that patients with hypokalemic periodic paralysis have disrupted autophagic processing that contribute to the vacuoles seen in these patients.


Asunto(s)
Autofagia/genética , Parálisis Periódica Hipopotasémica/patología , Enfermedades por Almacenamiento Lisosomal/patología , Enfermedades Musculares/patología , Adulto , Anciano , Canales de Calcio Tipo L/genética , Femenino , Humanos , Parálisis Periódica Hipopotasémica/genética , Parálisis Periódica Hipopotasémica/metabolismo , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/metabolismo , Masculino , Microscopía Electrónica de Transmisión , Persona de Mediana Edad , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo
3.
J Neuropathol Exp Neurol ; 79(12): 1276-1292, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33184660

RESUMEN

We investigated the immunohistochemical localization of several proteins related to excitation-contraction coupling and ultrastructural alterations of the sarcotubular system in biopsied muscles from a father and a daughter in a family with permanent myopathy with hypokalemic periodic paralysis (PMPP) due to a mutation in calcium channel CACNA1S; p. R1239H hetero. Immunostaining for L-type calcium channels (LCaC) showed linear hyper-stained regions indicating proliferation of longitudinal t-tubules. The margin of vacuoles was positive for ryanodine receptor, LCaC, calsequestrin (CASQ) 1, CASQ 2, SR/ER Ca2+-ATPase (SERCA) 1, SERCA2, dysferlin, dystrophin, α-actinin, LC3, and LAMP 1. Electron microscopy indicated that the vacuoles mainly originated from the sarcoplasmic reticulum (SR). These findings indicate impairment of the muscle contraction system related to Ca2+ dynamics, remodeling of t-tubules and muscle fiber repair. We speculate that PMPP in patients with a CACNA1S mutation might start with abnormal SR function due to impaired LCaC. Subsequent induction of muscular contractile abnormalities and the vacuoles formed by fused SR in the repair process including autophagy might result in permanent myopathy. Our findings may facilitate prediction of the pathomechanisms of PMPP seen on morphological observation.


Asunto(s)
Canales de Calcio Tipo L/genética , Parálisis Periódica Hipopotasémica/patología , Fibras Musculares Esqueléticas/patología , Enfermedades Musculares/patología , Mutación , Retículo Sarcoplasmático/patología , Adulto , Anciano , Canales de Calcio Tipo L/metabolismo , Femenino , Humanos , Parálisis Periódica Hipopotasémica/genética , Parálisis Periódica Hipopotasémica/metabolismo , Masculino , Fibras Musculares Esqueléticas/metabolismo , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
4.
PLoS One ; 15(5): e0233017, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32407401

RESUMEN

Myotonia congenita and hypokalemic periodic paralysis type 2 are both rare genetic channelopathies caused by mutations in the CLCN1 gene encoding voltage-gated chloride channel CLC-1 and the SCN4A gene encoding voltage-gated sodium channel Nav1.4. The patients with concomitant mutations in both genes manifested different unique symptoms from mutations in these genes separately. Here, we describe a patient with myotonia and periodic paralysis in a consanguineous marriage pedigree. By using whole-exome sequencing, a novel F306S variant in the CLCN1 gene and a known R222W mutation in the SCN4A gene were identified in the pedigree. Patch clamp analysis revealed that the F306S mutant reduced the opening probability of CLC-1 and chloride conductance. Our study expanded the CLCN1 mutation database. We emphasized the value of whole-exome sequencing for differential diagnosis in atypical myotonic patients.


Asunto(s)
Canales de Cloruro/genética , Parálisis Periódica Hipopotasémica/complicaciones , Parálisis Periódica Hipopotasémica/genética , Miotonía Congénita/complicaciones , Miotonía Congénita/genética , Canal de Sodio Activado por Voltaje NAV1.4/genética , Adolescente , Adulto , Anciano , Secuencia de Aminoácidos , China , Canales de Cloruro/química , Canales de Cloruro/metabolismo , Consanguinidad , Secuencia Conservada , Diagnóstico Diferencial , Femenino , Células HEK293 , Humanos , Parálisis Periódica Hipopotasémica/metabolismo , Masculino , Persona de Mediana Edad , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación , Miotonía Congénita/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Linaje , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Secuenciación del Exoma , Adulto Joven
5.
Sci Rep ; 8(1): 16681, 2018 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-30420713

RESUMEN

Periodic paralyses (PP) are characterized by episodic muscle weakness and are classified into the distinct hyperkalaemic (hyperPP) and hypokalaemic (hypoPP) forms. The dominantly-inherited form of hyperPP is caused by overactivity of Nav1.4 - the skeletal muscle voltage-gated sodium channel. Familial hypoPP results from a leaking gating pore current induced by dominant mutations in Nav1.4 or Cav1.1, the skeletal muscle voltage-gated calcium channel. Here, we report an individual with clinical signs of hyperPP and hypokalaemic episodes of muscle paralysis who was heterozygous for the novel p.Ala204Glu (A204E) substitution located in one region of Nav1.4 poor in disease-related variations. A204E induced a significant decrease of sodium current density, increased the window current, enhanced fast and slow inactivation of Nav1.4, and did not cause gating pore current in functional analyses. Interestingly, the negative impact of A204E on Nav1.4 activation was strengthened in low concentration of extracellular K+. Our data prove the existence of a phenotype combining signs of hyperPP and hypoPP due to dominant Nav1.4 mutations. The hyperPP component would result from gain-of-function effects on Nav1.4 and the hypokalemic episodes of paralysis from loss-of-function effects strengthened by low K+. Our data argue for a non-negligible role of Nav1.4 loss-of-function in familial hypoPP.


Asunto(s)
Parálisis Periódica Hipopotasémica/genética , Parálisis Periódica Hipopotasémica/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4/genética , Adulto , Canales de Calcio/genética , Canales de Calcio Tipo L , Canales de Cloruro/genética , Células HEK293 , Humanos , Masculino , Mutación/genética , Potasio/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Sodio Activados por Voltaje/metabolismo
6.
Sci Rep ; 8(1): 9714, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29946067

RESUMEN

Dominantly inherited channelopathies of the skeletal muscle voltage-gated sodium channel NaV1.4 include hypokalaemic and hyperkalaemic periodic paralysis (hypoPP and hyperPP) and myotonia. HyperPP and myotonia are caused by NaV1.4 channel overactivity and overlap clinically. Instead, hypoPP is caused by gating pore currents through the voltage sensing domains (VSDs) of NaV1.4 and seldom co-exists clinically with myotonia. Recessive loss-of-function NaV1.4 mutations have been described in congenital myopathy and myasthenic syndromes. We report two families with the NaV1.4 mutation p.R1451L, located in VSD-IV. Heterozygous carriers in both families manifest with myotonia and/or hyperPP. In contrast, a homozygous case presents with both hypoPP and myotonia, but unlike carriers of recessive NaV1.4 mutations does not manifest symptoms of myopathy or myasthenia. Functional analysis revealed reduced current density and enhanced closed state inactivation of the mutant channel, but no evidence for gating pore currents. The rate of recovery from inactivation was hastened, explaining the myotonia in p.R1451L carriers and the absence of myasthenic presentations in the homozygous proband. Our data suggest that recessive loss-of-function NaV1.4 variants can present with hypoPP without congenital myopathy or myasthenia and that myotonia can present even in carriers of homozygous NaV1.4 loss-of-function mutations.


Asunto(s)
Parálisis Periódica Hipopotasémica/genética , Parálisis Periódica Hipopotasémica/metabolismo , Miotonía/genética , Miotonía/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Adulto , Animales , Electrofisiología , Células HEK293 , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Masculino , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.4/genética , Linaje , Estructura Secundaria de Proteína , Adulto Joven
7.
Nature ; 557(7706): 590-594, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29769724

RESUMEN

Potassium-sensitive hypokalaemic and normokalaemic periodic paralysis are inherited skeletal muscle diseases characterized by episodes of flaccid muscle weakness1,2. They are caused by single mutations in positively charged residues ('gating charges') in the S4 transmembrane segment of the voltage sensor of the voltage-gated sodium channel Nav1.4 or the calcium channel Cav1.11,2. Mutations of the outermost gating charges (R1 and R2) cause hypokalaemic periodic paralysis1,2 by creating a pathogenic gating pore in the voltage sensor through which cations leak in the resting state3,4. Mutations of the third gating charge (R3) cause normokalaemic periodic paralysis 5 owing to cation leak in both activated and inactivated states 6 . Here we present high-resolution structures of the model bacterial sodium channel NavAb with the analogous gating-charge mutations7,8, which have similar functional effects as in the human channels. The R2G and R3G mutations have no effect on the backbone structures of the voltage sensor, but they create an aqueous cavity near the hydrophobic constriction site that controls gating charge movement through the voltage sensor. The R3G mutation extends the extracellular aqueous cleft through the entire length of the activated voltage sensor, creating an aqueous path through the membrane. Conversely, molecular modelling shows that the R2G mutation creates a continuous aqueous path through the membrane only in the resting state. Crystal structures of NavAb(R2G) in complex with guanidinium define a potential drug target site. Molecular dynamics simulations illustrate the mechanism of Na+ permeation through the mutant gating pore in concert with conformational fluctuations of the gating charge R4. Our results reveal pathogenic mechanisms of periodic paralysis at the atomic level and suggest designs of drugs that may prevent ionic leak and provide symptomatic relief from hypokalaemic and normokalaemic periodic paralysis.


Asunto(s)
Activación del Canal Iónico , Canal de Sodio Activado por Voltaje NAV1.4/química , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Parálisis Periódicas Familiares/metabolismo , Sitios de Unión , Conductividad Eléctrica , Guanidina/metabolismo , Humanos , Parálisis Periódica Hipopotasémica/genética , Parálisis Periódica Hipopotasémica/metabolismo , Activación del Canal Iónico/genética , Simulación de Dinámica Molecular , Mutación , Canal de Sodio Activado por Voltaje NAV1.4/genética , Parálisis Periódicas Familiares/genética , Sodio/metabolismo , Termodinámica
8.
J Gen Physiol ; 149(12): 1139-1148, 2017 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-29114033

RESUMEN

Type 1 hypokalemic periodic paralysis (HypoPP1) is a poorly understood genetic neuromuscular disease characterized by episodic attacks of paralysis associated with low blood K+ The vast majority of HypoPP1 mutations involve the replacement of an arginine by a neutral residue in one of the S4 segments of the α1 subunit of the skeletal muscle voltage-gated Ca2+ channel, which is thought to generate a pathogenic gating pore current. The V876E HypoPP1 mutation has the peculiarity of being located in the S3 segment of domain III, rather than an S4 segment, raising the question of whether such a mutation induces a gating pore current. Here we successfully transfer cDNAs encoding GFP-tagged human wild-type (WT) and V876E HypoPP1 mutant α1 subunits into mouse muscles by electroporation. The expression profile of these WT and V876E channels shows a regular striated pattern, indicative of their localization in the t-tubule membrane. In addition, L-type Ca2+ current properties are the same in V876E and WT fibers. However, in the presence of an external solution containing low-Cl- and lacking Na+ and K+, V876E fibers display an elevated leak current at negative voltages that is increased by external acidification to a higher extent in V876E fibers, suggesting that the leak current is carried by H+ ions. However, in the presence of Tyrode's solution, the rate of change in intracellular pH produced by external acidification was not significantly different in V876E and WT fibers. Simultaneous measurement of intracellular Na+ and current in response to Na+ readmission in the external solution reveals a rate of Na+ influx associated with an inward current, which are both significantly larger in V876E fibers. These data suggest that the V876E mutation generates a gating pore current that carries strong resting Na+ inward currents in physiological conditions that are likely responsible for the severe HypoPP1 symptoms associated with this mutation.


Asunto(s)
Caveolina 1/metabolismo , Parálisis Periódica Hipopotasémica/metabolismo , Activación del Canal Iónico , Mutación Missense , Sodio/metabolismo , Animales , Caveolina 1/química , Caveolina 1/genética , Células Cultivadas , Humanos , Parálisis Periódica Hipopotasémica/genética , Ratones , Fibras Musculares Esqueléticas/metabolismo
9.
Biophys J ; 113(7): 1485-1495, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28978442

RESUMEN

Mutations of positively charged amino acids in the S4 transmembrane segment of a voltage-gated ion channel form ion-conducting pathways through the voltage-sensing domain, named ω-current. Here, we used structure modeling and MD simulations to predict pathogenic ω-currents in CaV1.1 and CaV1.3 Ca2+ channels bearing several S4 charge mutations. Our modeling predicts that mutations of CaV1.1-R1 (R528H/G, R897S) or CaV1.1-R2 (R900S, R1239H) linked to hypokalemic periodic paralysis type 1 and of CaV1.3-R3 (R990H) identified in aldosterone-producing adenomas conducts ω-currents in resting state, but not during voltage-sensing domain activation. The mechanism responsible for the ω-current and its amplitude depend on the number of charges in S4, the position of the mutated S4 charge and countercharges, and the nature of the replacing amino acid. Functional characterization validates the modeling prediction showing that CaV1.3-R990H channels conduct ω-currents at hyperpolarizing potentials, but not upon membrane depolarization compared with wild-type channels.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Adenoma/genética , Adenoma/metabolismo , Animales , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/genética , Simulación por Computador , Células HEK293 , Humanos , Parálisis Periódica Hipopotasémica/genética , Parálisis Periódica Hipopotasémica/metabolismo , Potenciales de la Membrana/fisiología , Modelos Moleculares , Mutación , Dominios Proteicos , Estructura Secundaria de Proteína , Conejos , Homología Estructural de Proteína , Agua/química , Agua/metabolismo
11.
J Gen Physiol ; 144(2): 137-45, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25024265

RESUMEN

Missense mutations at arginine residues in the S4 voltage-sensor domains of NaV1.4 are an established cause of hypokalemic periodic paralysis, an inherited disorder of skeletal muscle involving recurrent episodes of weakness in conjunction with low serum K(+). Expression studies in oocytes have revealed anomalous, hyperpolarization-activated gating pore currents in mutant channels. This aberrant gating pore conductance creates a small inward current at the resting potential that is thought to contribute to susceptibility to depolarization in low K(+) during attacks of weakness. A critical component of this hypothesis is the magnitude of the gating pore conductance relative to other conductances that are active at the resting potential in mammalian muscle: large enough to favor episodes of paradoxical depolarization in low K(+), yet not so large as to permanently depolarize the fiber. To improve the estimate of the specific conductance for the gating pore in affected muscle, we sequentially measured Na(+) current through the channel pore, gating pore current, and gating charge displacement in oocytes expressing R669H, R672G, or wild-type NaV1.4 channels. The relative conductance of the gating pore to that of the pore domain pathway for Na(+) was 0.03%, which implies a specific conductance in muscle from heterozygous patients of ∼ 10 µS/cm(2) or 1% of the total resting conductance. Unexpectedly, our data also revealed a substantial decoupling between gating charge displacement and peak Na(+) current for both R669H and R672G mutant channels. This decoupling predicts a reduced Na(+) current density in affected muscle, consistent with the observations that the maximal dV/dt and peak amplitude of the action potential are reduced in fibers from patients with R672G and in a knock-in mouse model of R669H. The defective coupling between gating charge displacement and channel activation identifies a previously unappreciated mechanism that contributes to the reduced excitability of affected fibers seen with these mutations and possibly with other R/X mutations of S4 of NaV, CaV, and KV channels associated with human disease.


Asunto(s)
Parálisis Periódica Hipopotasémica/genética , Parálisis Periódica Hipopotasémica/metabolismo , Canales de Sodio/genética , Canales de Sodio/metabolismo , Potenciales de Acción , Animales , Técnicas de Sustitución del Gen , Humanos , Parálisis Periódica Hipopotasémica/fisiopatología , Activación del Canal Iónico/genética , Ratones , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Oocitos/metabolismo , Técnicas de Placa-Clamp , Xenopus laevis
12.
Conn Med ; 77(8): 487-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24156178

RESUMEN

Thyrotoxic Hypokalemic Periodic Paralysis (THPP) is a rare complication of thyrotoxicosis and can sometimes be fatal. It needs early recognition for proper management and prevention of recurrences. Here we describe two cases presenting with acute onset of paresis, low potassium levels, low levels of thyroid-stimulating hormones (TSH), and elevated thyroid hormone levels.


Asunto(s)
Parálisis Periódica Hipopotasémica/diagnóstico , Parálisis Periódica Hipopotasémica/metabolismo , Hormonas Tiroideas/metabolismo , Tirotropina/metabolismo , Adulto , Humanos , Masculino , Tirotoxicosis/etiología
13.
Semin Nephrol ; 33(3): 237-47, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23953801

RESUMEN

Extracellular potassium makes up only about 2% of the total body's potassium store. The majority of the body potassium is distributed in the intracellular space, of which about 80% is in skeletal muscle. Movement of potassium in and out of skeletal muscle thus plays a pivotal role in extracellular potassium homeostasis. The exchange of potassium between the extracellular space and skeletal muscle is mediated by specific membrane transporters. These include potassium uptake by Na(+), K(+)-adenosine triphosphatase and release by inward-rectifier K(+) channels. These processes are regulated by circulating hormones, peptides, ions, and by physical activity of muscle as well as dietary potassium intake. Pharmaceutical agents, poisons, and disease conditions also affect the exchange and alter extracellular potassium concentration. Here, we review extracellular potassium homeostasis, focusing on factors and conditions that influence the balance of potassium movement in skeletal muscle. Recent findings that mutations of a skeletal muscle-specific inward-rectifier K(+) channel cause hypokalemic periodic paralysis provide interesting insights into the role of skeletal muscle in extracellular potassium homeostasis. These recent findings are reviewed.


Asunto(s)
Espacio Extracelular/metabolismo , Homeostasis/fisiología , Parálisis Periódica Hipopotasémica/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Potasio/metabolismo , Animales , Humanos , Parálisis Periódica Hipopotasémica/genética , Músculo Esquelético , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
14.
J Biol Chem ; 286(11): 9526-41, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21209095

RESUMEN

Precise trafficking, localization, and activity of inward rectifier potassium Kir2 channels are important for shaping the electrical response of skeletal muscle. However, how coordinated trafficking occurs to target sites remains unclear. Kir2 channels are tetrameric assemblies of Kir2.x subunits. By immunocytochemistry we show that endogenous Kir2.1 and Kir2.2 are localized at the plasma membrane and T-tubules in rodent skeletal muscle. Recently, a new subunit, Kir2.6, present in human skeletal muscle, was identified as a gene in which mutations confer susceptibility to thyrotoxic hypokalemic periodic paralysis. Here we characterize the trafficking and interaction of wild type Kir2.6 with other Kir2.x in COS-1 cells and skeletal muscle in vivo. Immunocytochemical and electrophysiological data demonstrate that Kir2.6 is largely retained in the endoplasmic reticulum, despite high sequence identity with Kir2.2 and conserved endoplasmic reticulum and Golgi trafficking motifs shared with Kir2.1 and Kir2.2. We identify amino acids responsible for the trafficking differences of Kir2.6. Significantly, we show that Kir2.6 subunits can coassemble with Kir2.1 and Kir2.2 in vitro and in vivo. Notably, this interaction limits the surface expression of both Kir2.1 and Kir2.2. We provide evidence that Kir2.6 functions as a dominant negative, in which incorporation of Kir2.6 as a subunit in a Kir2 channel heterotetramer reduces the abundance of Kir2 channels on the plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , Regulación de la Expresión Génica/fisiología , Músculo Esquelético/metabolismo , Canales de Potasio de Rectificación Interna/biosíntesis , Canales de Potasio de Rectificación Interna/metabolismo , Animales , Células COS , Membrana Celular/genética , Chlorocebus aethiops , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Humanos , Parálisis Periódica Hipopotasémica/genética , Parálisis Periódica Hipopotasémica/metabolismo , Ratones , Músculo Esquelético/citología , Mutación , Canales de Potasio de Rectificación Interna/genética , Crisis Tiroidea/genética , Crisis Tiroidea/metabolismo
15.
Muscle Nerve ; 42(3): 315-27, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20589886

RESUMEN

We evaluated voltage-gated Na(+) (I(Na)) and inward rectifier K(+) (I(Kir)) currents and Na(+) conductance (G(Na)) in patients with Type 1 hypokalemic (HOPP) and thyrotoxic periodic paralysis (TPP). We studied intercostal muscle fibers from five subjects with HOPP and one with TPP. TPP was studied when the patient was thyrotoxic (T-toxic) and euthyroid. We measured: (1) I(Kir), (2) action potential thresholds, (3) I(Na), (4) G(Na), (5) intracellular [Ca(2+)], and (6) histochemical fiber type. HOPP fibers had lower I(Na), G(Na), and I(Kir) and increased action potential thresholds. Paralytic attack frequency correlated with the action potential threshold, G(Na) and I(Na), but not with I(Kir). G(Na), I(Na), and [Ca(2+)] varied with fiber type. HOPP fibers had increased [Ca(2+)]. The subject with TPP had values for G(Na), I(Na), action potential threshold, I(Kir), and [Ca(2+)] that were similar to HOPP when T-toxic and to controls when euthyroid. HOPP T-toxic TPP fibers had altered G(Na), I(Na), and I(Kir) associated with elevation in [Ca(2+)].


Asunto(s)
Parálisis Periódica Hipopotasémica/metabolismo , Canales de Potasio de Rectificación Interna/fisiología , Canales de Sodio/fisiología , Tirotoxicosis/metabolismo , Potenciales de Acción/fisiología , Membrana Celular/metabolismo , ADN/genética , Electrofisiología , Familia , Histocitoquímica , Humanos , Parálisis Periódica Hipopotasémica/genética , Parálisis Periódica Hipopotasémica/patología , Insulina/farmacología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Microelectrodos , Fibras Musculares Esqueléticas/fisiología , Debilidad Muscular/etiología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Potasio/farmacología , Tirotoxicosis/genética
16.
Cell ; 140(1): 88-98, 2010 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-20074522

RESUMEN

Thyrotoxic hypokalemic periodic paralysis (TPP) is characterized by acute attacks of weakness, hypokalemia, and thyrotoxicosis of various etiologies. These transient attacks resemble those of patients with familial hypokalemic periodic paralysis (hypoKPP) and resolve with treatment of the underlying hyperthyroidism. Because of the phenotypic similarity of these conditions, we hypothesized that TPP might also be a channelopathy. While sequencing candidate genes, we identified a previously unreported gene (not present in human sequence databases) that encodes an inwardly rectifying potassium (Kir) channel, Kir2.6. This channel, nearly identical to Kir2.2, is expressed in skeletal muscle and is transcriptionally regulated by thyroid hormone. Expression of Kir2.6 in mammalian cells revealed normal Kir currents in whole-cell and single-channel recordings. Kir2.6 mutations were present in up to 33% of the unrelated TPP patients in our collection. Some of these mutations clearly alter a variety of Kir2.6 properties, all altering muscle membrane excitability leading to paralysis.


Asunto(s)
Predisposición Genética a la Enfermedad , Parálisis Periódica Hipopotasémica/genética , Mutación , Canales de Potasio de Rectificación Interna/genética , Secuencia de Aminoácidos , Secuencia de Bases , Análisis Mutacional de ADN , Fenómenos Electrofisiológicos , Humanos , Parálisis Periódica Hipopotasémica/metabolismo , Datos de Secuencia Molecular , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/metabolismo , Transcripción Genética , Triyodotironina/metabolismo
17.
Biochem Biophys Res Commun ; 391(1): 974-8, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19962959

RESUMEN

Familial hypokalemic periodic paralysis is an autosomal-dominant channelopathy that features episodic attacks of flaccid paralysis with concomitant hypokalemia. Reduced activity of ATP-sensitive K(+) (K(ATP)) channels is suggested to be responsible for this disorder; however, the molecular mechanisms have not yet been elucidated. In this study, we investigated the molecular mechanism of reduced K(ATP) channel activity in skeletal muscle cells of patients with familial hypokalemic periodic paralysis. We examined the mRNA and protein levels of SUR2A, a K(ATP) channel subunit, in cells from patients (patient cells) and normal individuals (normal cells). Our results demonstrated that normal cells exposed to 50mM potassium buffer, which was used to induce depolarization, did not show significant change in the SUR2A mRNA levels; however, the protein level significantly increased in the cytosolic fraction. When the patient cells were exposed to 50mM potassium buffer, the SUR2A mRNA level significantly decreased. Further, the protein level of SUR2A significantly increased in the membrane fraction but decreased in the cytosolic fraction in patient cells. These findings suggest that abnormal localization of the SUR2A K(+) channel protein leads to reduced K(ATP) channel activity in familial hypokalemic periodic paralysis.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Parálisis Periódica Hipopotasémica/metabolismo , Músculo Esquelético/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Receptores de Droga/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Citosol/metabolismo , Humanos , Parálisis Periódica Hipopotasémica/patología , Músculo Esquelético/patología , Canales de Potasio de Rectificación Interna/genética , ARN Mensajero/biosíntesis , Receptores de Droga/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Receptores de Sulfonilureas
19.
Clin Endocrinol (Oxf) ; 70(5): 794-7, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-18759868

RESUMEN

BACKGROUND: Hyperinsulinaemia has been suggested as an important factor for developing hypokalaemic paralysis in patients with thyrotoxic periodic paralysis (TPP). Since hyperinsulinaemia is a common feature of insulin resistance, there may be a causal relationship between insulin resistance and TPP. OBJECTIVE: To compare insulin sensitivity between subjects with a history of TPP and others with a history of thyrotoxicosis without periodic paralysis. METHODS: Insulin sensitivity measured by euglycaemic hyperinsulinaemic clamp and 75-g oral glucose tolerance test (OGTT) were performed nonselectively in 10 subjects with a history of TPP (TPP group) and 10 age- and sex-matched subjects with a history of simple thyrotoxicosis (control group). All participants had euthyroidism and fasting plasma glucose of < 5.55 mmol/l at the time of the study. RESULTS: Body mass index and waist circumference of the TPP group were higher than that of the control group. One of 10 (10%) subjects in the TPP group and 6 of 10 (60%) in the control group had BMI of < 23 kg/m2. Areas under the curve (AUC) of plasma glucose after OGTT were comparable, while the AUC of serum insulin of the TPP group was higher than in the control group. The TPP group had lower insulin sensitivity than the control group. CONCLUSION: The subjects with a history of TPP were more obese and had lower insulin sensitivity than those with a history of simple thyrotoxicosis. Insulin resistance with compensatory hyperinsulinaemia may be a key feature of the pathogenesis of TPP.


Asunto(s)
Parálisis Periódica Hipopotasémica/etiología , Parálisis Periódica Hipopotasémica/metabolismo , Resistencia a la Insulina , Tirotoxicosis/complicaciones , Tirotoxicosis/metabolismo , Adulto , Glucemia/metabolismo , Índice de Masa Corporal , Estudios de Casos y Controles , Técnica de Clampeo de la Glucosa , Prueba de Tolerancia a la Glucosa , Humanos , Hiperinsulinismo/complicaciones , Hiperinsulinismo/metabolismo , Parálisis Periódica Hipopotasémica/patología , Insulina/sangre , Masculino , Persona de Mediana Edad , Obesidad/complicaciones , Obesidad/metabolismo , Obesidad/patología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Tirotoxicosis/patología , Circunferencia de la Cintura
20.
Neuromuscul Disord ; 18(1): 74-80, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17825556

RESUMEN

We investigated on the mechanism responsible for the reduced ATP-sensitive K(+)(K(ATP)) channel activity recorded from skeletal muscle of K(+)-depleted rats. Patch-clamp and gene expression measurements of K(ATP) channel subunits were performed. A down-regulation of the K(ATP) channel subunits Kir6.2(-70%) and SUR2A(-46%) in skeletal muscles of K(+)-depleted rats but no changes in the expression of Kir6.1, SUR1 and SUR2B subunits were observed. A reduced K(ATP) channel currents of -69.5% in K(+)-depleted rats was observed. The Kir6.2/SUR2A-B agonist cromakalim showed similar potency in activating the K(ATP) channels of normokalaemic and K(+)-depleted rats but reduced efficacy in K(+)-depleted rats. The Kir6.2/SUR1-2B agonist diazoxide activated K(ATP) channels in normokalaemic and K(+)-depleted rats with equal potency and efficacy. The down-regulation of the Kir6.2 explains the reduced K(ATP) channel activity in K(+)-depleted rats. The lower expression of SUR2A explains the reduced efficacy of cromakalim; preserved SUR1 expression accounts for the efficacy of diazoxide. Kir6.2/SUR2A deficiency is associated with impaired muscle function in K(+)-depleted rats and in hypoPP.


Asunto(s)
Canales KATP/deficiencia , Músculo Esquelético/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Deficiencia de Potasio/metabolismo , Animales , Cromakalim/farmacología , Diazóxido/farmacología , Parálisis Periódica Hipopotasémica/genética , Parálisis Periódica Hipopotasémica/metabolismo , Parálisis Periódica Hipopotasémica/fisiopatología , Canales KATP/efectos de los fármacos , Canales KATP/genética , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Músculo Esquelético/fisiopatología , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Canales de Potasio de Rectificación Interna/genética , Deficiencia de Potasio/genética , Deficiencia de Potasio/fisiopatología , Ratas , Ratas Wistar , Sarcolema/efectos de los fármacos , Sarcolema/genética , Sarcolema/metabolismo , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA