Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 891
Filtrar
1.
Talanta ; 279: 126653, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39098239

RESUMEN

Patulin (PAT) is a mycotoxin-produced secondary metabolite that can contaminate foods, causing toxic effects on animal and human health. Therefore, for the first time, we have constructed a "turn-on" dual-mode aptamer sensor for PAT using oleic acid-coated upconversion nanomaterials (OA-UCNPs) and G-Quadruplex-hemin DNAzyme (G4-DNAzyme) as fluorescent and colorimetry probes. The sensor employs aptamers binding to PAT as recognition elements for specific molecule detection. Mxene-Au can be used as a biological inducer to assist OA-UCNPs in controlling fluorescence intensity. In addition, colorimetric signal amplification was performed using the trivalent G4-DNAzyme to increase detection sensitivity and reduce false positives. Under optimal conditions, the dual-mode aptasensor has a detection limit of 5.3 pg mL-1 in fluorescence and 2.4 pg mL-1 in colorimetric methods, respectively, with the wider linear range and limit of detection (LOD) of the colorimetric assay. The combination aptasensor can detect PAT with high sensitivity and high specificity and has broad application prospects in the field of food safety detection.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , ADN Catalítico , G-Cuádruplex , Hemina , Patulina , Patulina/análisis , Aptámeros de Nucleótidos/química , ADN Catalítico/química , Técnicas Biosensibles/métodos , Hemina/química , Colorimetría/métodos , Límite de Detección , Nanoestructuras/química
2.
Food Chem Toxicol ; 192: 114951, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39182638

RESUMEN

Humans are exposed to complex mixtures of mycotoxins through diet. Despite the serious threat they pose, mycotoxin risk assessment often overlooks co-exposure. With the aim of filling this gap, the present study investigates the combined cytotoxicity of sterigmatocystin (STE), ochratoxin A (OTA) and patulin (PAT) in human tumour Neuroblastoma and healthy Mesenchymal Stem Cells three-dimensional (3D) spheroids. The range of concentrations tested (1.56-50 µM for STE, 0.78-25 µM for OTA and 0.15-5 µM for PAT) was selected considering the IC50 values obtained in previous studies and the estimated dietary exposure of consumers. To ensure appropriate experimental conditions, assessments for single mycotoxins and their combinations were conducted simultaneously. The nature of the toxicological interactions among the mycotoxins was then defined using the isobologram analysis. Our results demonstrated increased cytotoxicity in mycotoxin mixtures compared to individual exposure, with abundance of synergistic interactions. These findings highlight that the co-occurrence of STE, OTA and PAT in food may increase their individual toxic effects and should not be underestimated. Moreover, the use of advanced culture models increased the reliability and physiological relevance of our results which can serve as a groundwork for formulating standardized regulatory approaches towards mycotoxin mixtures in food and feed.


Asunto(s)
Ocratoxinas , Patulina , Esferoides Celulares , Esterigmatocistina , Ocratoxinas/toxicidad , Humanos , Patulina/toxicidad , Esterigmatocistina/toxicidad , Esferoides Celulares/efectos de los fármacos , Línea Celular Tumoral , Células Madre Mesenquimatosas/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neuroblastoma/patología
3.
Int J Mol Sci ; 25(16)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39201284

RESUMEN

Patulin (PAT) is a fungal toxin prevalent in apples and apple products and associated with several toxic effects, potentially harming multiple organs, including the kidneys, liver, and colon. However, the precise molecular mechanism through which PAT affects the intestines remains comprehensively unclear. Therefore, this study aims to investigate the molecular effects of PAT on the intestinal epithelium. Gene expression profiling was conducted, hypothesizing that PAT induces cell cycle arrest and apoptosis through the PI3K-Akt signaling pathway. Cell cycle analysis, along with Annexin-V and propidium iodide staining, confirmed that PAT induced G2/M phase arrest and apoptosis in IPEC-J2 cells. Additionally, PAT activated the expression of cell cycle-related genes (CDK1, CCNB1) and apoptosis-related genes (BCL6, CASP9). Treatment with SC79, an AKT activator, mitigated cell cycle arrest and apoptosis. To identify natural products that could mitigate the harmful effects of PAT in small intestinal epithelial cells in pigs, the high-throughput screening of a natural product library was conducted, revealing 10-Eicosanol as a promising candidate. In conclusion, our study demonstrates that 10-Eicosanol alleviates PAT-induced cell cycle arrest and apoptosis in IPEC-J2 cells by activating AKT.


Asunto(s)
Apoptosis , Puntos de Control del Ciclo Celular , Células Epiteliales , Mucosa Intestinal , Patulina , Proteínas Proto-Oncogénicas c-akt , Animales , Apoptosis/efectos de los fármacos , Patulina/farmacología , Patulina/toxicidad , Proteínas Proto-Oncogénicas c-akt/metabolismo , Porcinos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular , Transducción de Señal/efectos de los fármacos
4.
Food Res Int ; 192: 114846, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147475

RESUMEN

Patulin (PAT) is a mycotoxin commonly found in fruits and vegetables, prompting the need for effective removal and detoxification methods, which have garnered significant research attention in recent years. Among these methods, the utilization of microbial-derived enzymes stands out due to their mild operating conditions, specificity in targeted functional groups, and the production of non-toxic by-products, making it a preferred degradation approach. In this study, a novel PAT-degrading enzyme derived from Cyberlindnera fabianii (Cyfa-SDR) was identified, demonstrating its highest catalytic activity at pH 7.0 and 80 °C against PAT. This temperature tolerance level represents the highest reported for PAT-degrading enzymes to date. The enzyme was further characterized as a short-chain dehydrogenase through analysis of its amino acid composition, conserved GXXXGXG motif, and dependency on NADPH. Moreover, the study evaluated the efficiency of PAT degradation by Cyfa-SDR at varying substrate and enzyme concentrations, surpassing the performance of other PAT-degrading enzymes, thus highlighting its substantial potential for the biological control of PAT. In conclusion, the enzymatic treatment using the PAT-degrading enzyme Cyfa-SDR presents a viable and promising solution for enhancing the quality and safety of fruit juice.


Asunto(s)
Patulina , Patulina/metabolismo , Patulina/química , Concentración de Iones de Hidrógeno , Temperatura , Contaminación de Alimentos/análisis , Jugos de Frutas y Vegetales/análisis
5.
Int J Biol Macromol ; 278(Pt 2): 134689, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39142475

RESUMEN

Patulin (PAT) is a highly toxic mycotoxin, which can contaminate fruits and their products and cause harm to human health. Cellulose nanocrystals (CNCs) were functionalized by magnetite nanoparticles, dopamine (DA) and polyethyleneimine (PEI) to form a multifunctional nanocarrier (DA/PEI@Fe3O4/CNCs) for immobilizing aldo-keto reductase (MgAKR) to degrade PAT. The MgAKR-DA/PEI@Fe3O4/CNCs were reusable and environmentally friendly due to its surface area, high magnetization value, and oxygen/amine function. The immobilization method significantly improved reusability, resistance to proteolysis, temperature stability and storage stability of MgAKR-DA/PEI@Fe3O4/CNCs. With NADPH as a coenzyme, the detoxification rate of MgAKR-DA/PEI@Fe3O4/CNCs on PAT reached 100 % in phosphate buffer and 98 % in fresh pear juice. The quality of fresh pear juice was unaffected by MgAKR-DA/PEI@Fe3O4/CNCs and could be quickly separated by magnet after detoxification, which was convenient for recycling. It has broad application prospects in the control of PAT contamination in beverage products containing fruit and vegetable ingredients.


Asunto(s)
Aldo-Ceto Reductasas , Celulosa , Dopamina , Enzimas Inmovilizadas , Jugos de Frutas y Vegetales , Patulina , Polietileneimina , Pyrus , Celulosa/química , Polietileneimina/química , Pyrus/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Patulina/química , Jugos de Frutas y Vegetales/análisis , Dopamina/química , Aldo-Ceto Reductasas/química , Aldo-Ceto Reductasas/metabolismo , Nanopartículas de Magnetita/química , Nanopartículas/química
6.
Food Chem ; 461: 140930, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39191034

RESUMEN

Patulin (PAT) is a widespread fruit toxin. Trace-level PAT exposure can cause serious harm to human health. Herein, a multimodal PAT aptasensor was designed based on Ru(bpy)32+-based metal organic framework composited hydrogel (RuMOF@hydrogel) and versatile banana peel-derived carbonized polymer dots (BPPDs). RuMOF@hydrogel modified magnetic-electrode exhibited excellent anodic and cathodic electrochemiluminescence (ECL) emission and stability. Meanwhile, the BPPDs could enhance anodic ECL of RuMOF@hydrogel, and also show excellent fluorescence (FL) and photothermal (PT) properties. With the aid of PAT-triggered hybridization chain reaction and magnetic separation, ECL, FL, and PT responses could be recorded concurrently. The detection limit can reach as low as 0.25 fg mL-1. The ratiometric ECL quantitation ensured the sensitivity and accuracy of this assay. And visual FL and portable PT modes contributed to the utility. Furthermore, this aptasensor demonstrated better performances than HPLC in fruit products and the protocol can be extended to determine various contaminants in foods.


Asunto(s)
Técnicas Biosensibles , Contaminación de Alimentos , Frutas , Patulina , Polímeros , Frutas/química , Patulina/análisis , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Contaminación de Alimentos/análisis , Polímeros/química , Hidrogeles/química , Aptámeros de Nucleótidos/química , Límite de Detección , Estructuras Metalorgánicas/química , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Puntos Cuánticos/química , Musa/química , Mediciones Luminiscentes/instrumentación , Mediciones Luminiscentes/métodos
7.
Toxins (Basel) ; 16(7)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39057959

RESUMEN

Tenuazonic acid (TeA), usually found in cereals, fruits, vegetables, oil crops, and their products, was classified as one of the highest public health problems by EFSA as early as 2011, but it has still not been regulated by legislation due to the limited toxicological profile. Moreover, it has been reported that the coexistence of TeA and patulin (PAT) has been found in certain agricultural products; however, there are no available data about the combined toxicity. Considering that the gastrointestinal tract is the physiological barrier of the body, it would be the first target site at which exogenous substances interact with the body. Thus, we assessed the combined toxicity (cell viability, ROS, CAT, and ATP) in Caco-2 cells using mathematical modeling (Chou-Talalay) and explored mechanisms using non-targeted metabolomics and molecular biology methods. It revealed that the co-exposure of TeA + PAT (12.5 µg/mL + 0.5 µg/mL) can induce enhanced toxic effects and more severe oxidative stress. Mechanistically, the lipid and amino acid metabolisms and PI3K/AKT/FOXO signaling pathways were mainly involved in the TeA + PAT-induced synergistic toxic effects. Our study not only enriches the scientific basis for the development of regulatory policies but also provides potential targets and treatment options for alleviating toxicities.


Asunto(s)
Supervivencia Celular , Sinergismo Farmacológico , Metaboloma , Estrés Oxidativo , Patulina , Ácido Tenuazónico , Células CACO-2 , Patulina/toxicidad , Humanos , Ácido Tenuazónico/toxicidad , Ácido Tenuazónico/metabolismo , Metaboloma/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
8.
Anal Methods ; 16(28): 4873-4879, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38973381

RESUMEN

A tungsten disulfide (WS2) nanosheet-based aptamer sensor was developed to detect patulin (PAT). The 5'-end of the PAT aptamer was modified with a cyanine 3 (Cy3) fluorophore, which self-assembled on WS2 nanosheets. The interaction between the Cy3 fluorophore at the 5'-end of the PAT aptamer and the WS2 nanosheets resulted in reduced fluorescence (FL) intensity due to fluorescence resonance energy transfer (FRET). The introduction of PAT into this sensing system led to hybridization with the PAT aptamer, forming a G-quadruplex/PAT complex with low affinity for the WS2 nanosheet surface. This hybridization increased the distance between the Cy3 fluorophore and the WS2 nanosheets, inhibiting FRET and producing a strong FL signal. Under optimal experimental conditions, the FL intensity of the sensing system demonstrated an excellent linear correlation with PAT concentrations ranging from 0.5 to 40.0 ng mL-1, and it achieved a detection limit (S/N = 3) of 0.23 ng mL-1. This sensing system offers enhanced specificity for PAT detection and has the potential for broad application in detecting other toxins by substituting the sequence of the recognition aptamer.


Asunto(s)
Aptámeros de Nucleótidos , Transferencia Resonante de Energía de Fluorescencia , Nanoestructuras , Patulina , Patulina/análisis , Patulina/química , Aptámeros de Nucleótidos/química , Nanoestructuras/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Límite de Detección , Técnicas Biosensibles/métodos , Compuestos de Tungsteno/química , Colorantes Fluorescentes/química , Carbocianinas/química
9.
Biosensors (Basel) ; 14(7)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39056598

RESUMEN

Patulin, an emerging mycotoxin with high toxicity, poses great risks to public health. Considering the poor antibody production in patulin immunization, this study focuses on the four-dimensional data-independent acquisition (4D-DIA) quantitative proteomics to reveal the immune response of patulin in rabbits. The rabbit immunization was performed with the complete developed antigens of patulin, followed by the identification of the immune serum. A total of 554 differential proteins, including 292 up-regulated proteins and 262 down-regulated proteins, were screened; the differential proteins were annotated; and functional enrichment analysis was performed. The differential proteins were associated with the pathways of metabolism, gene information processing, environmental information processing, cellular processes, and organismal systems. The functional enrichment analysis indicated that the immunization procedures mostly resulted in the regulation of biochemical metabolic and signal transduction pathways, including the biosynthesis of amino acid (glycine, serine, and threonine), ascorbate, and aldarate metabolism; fatty acid degradation; and antigen processing and presentation. The 14 key proteins with high connectivity included G1U9T1, B6V9S9, G1SCN8, G1TMS5, G1U9U0, A0A0G2JH20, G1SR03, A0A5F9DAT4, G1SSA2, G1SZ14, G1T670, P30947, P29694, and A0A5F9C804, which were obtained by the analysis of protein-protein interaction networks. This study could provide potential directions for protein interaction and antibody production for food hazards in animal immunization.


Asunto(s)
Patulina , Proteómica , Animales , Conejos
10.
Food Microbiol ; 122: 104532, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839238

RESUMEN

Penicillium spp. produce a great variety of secondary metabolites, including several mycotoxins, on food substrates. Chestnuts represent a favorable substrate for Penicillium spp. development. In this study, the genomes of ten Penicillium species, virulent on chestnuts, were sequenced and annotated: P. bialowiezense. P. pancosmium, P. manginii, P. discolor, P. crustosum, P. palitans, P. viridicatum, P. glandicola, P. taurinense and P. terrarumae. Assembly size ranges from 27.5 to 36.8 Mb and the number of encoded genes ranges from 9,867 to 12,520. The total number of predicted biosynthetic gene clusters (BGCs) in the ten species is 551. The most represented families of BGCs are non ribosomal peptide synthase (191) and polyketide synthase (175), followed by terpene synthases (87). Genome-wide collections of gene phylogenies (phylomes) were reconstructed for each of the newly sequenced Penicillium species allowing for the prediction of orthologous relationships among our species, as well as other 20 annotated Penicillium species available in the public domain. We investigated in silico the presence of BGCs for 10 secondary metabolites, including 5 mycotoxins, whose production was validated in vivo through chemical analyses. Among the clusters present in this set of species we found andrastin A and its related cluster atlantinone A, mycophenolic acid, patulin, penitrem A and the cluster responsible for the synthesis of roquefortine C/glandicoline A/glandicoline B/meleagrin. We confirmed the presence of these clusters in several of the Penicillium species conforming our dataset and verified their capacity to synthesize them in a chestnut-based medium with chemical analysis. Interestingly, we identified mycotoxin clusters in some species for the first time, such as the andrastin A cluster in P. flavigenum and P. taurinense, and the roquefortine C cluster in P. nalgiovense and P. taurinense. Chestnuts proved to be an optimal substrate for species of Penicillium with different mycotoxigenic potential, opening the door to risks related to the occurrence of multiple mycotoxins in the same food matrix.


Asunto(s)
Genoma Fúngico , Familia de Multigenes , Micotoxinas , Penicillium , Filogenia , Metabolismo Secundario , Penicillium/genética , Penicillium/metabolismo , Micotoxinas/metabolismo , Micotoxinas/genética , Contaminación de Alimentos/análisis , Patulina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Nueces/microbiología , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Microbiología de Alimentos , Corylus/microbiología , Compuestos Heterocíclicos de 4 o más Anillos , Indoles , Piperazinas
11.
Toxicology ; 506: 153863, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38878878

RESUMEN

Patulin (PAT), the most common mycotoxin, is widespread in foods and beverages which poses a serious food safety issue to human health. Our previous research confirmed that exposure to PAT can lead to acute kidney injury (AKI). Curcumin is the most abundant active ingredient in turmeric rhizome with various biological activities. The aim of this study is to investigate whether curcumin can prevent the renal injury caused by PAT, and to explore potential mechanisms. In vivo, supplementation with curcumin attenuated PAT-induced ferroptosis. Mechanically, curcumin inhibited autophagy, led to the accumulation of p62 and its interaction with Keap1, promoted the nuclear translocation of nuclear factor E2 related factor 2 (Nrf2), and increased the expression of antioxidant stress factors in the process of ferroptosis. These results have also been confirmed in HKC cell experiments. Furthermore, knockdown of Nrf2 in HKC cells abrogated the protective effect of curcumin on ferroptosis. In conclusion, we confirmed that curcumin mitigated PAT-induced AKI by inhibiting ferroptosis via activation of the p62/Keap1/Nrf2 pathway. This study provides new potential targets and ideas for the prevention and treatment of PAT.


Asunto(s)
Curcumina , Ferroptosis , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Patulina , Transducción de Señal , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Curcumina/farmacología , Ferroptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Humanos , Masculino , Patulina/toxicidad , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Proteína Sequestosoma-1/metabolismo , Línea Celular , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Ratones , Ratones Endogámicos C57BL
12.
Artículo en Inglés | MEDLINE | ID: mdl-38913828

RESUMEN

Mycotoxins are secondary fungal metabolites harmful to humans and animals. Patulin (PAT) is a toxin found in different food products but especially in apples and their derivative products. The most common fungi producers of this compound are Aspergillus clavatus and Penicillium expansum. The production of patulin, as other mycotoxins, can be impacted by diverse phenomena such as water and nutrient availability, UV exposure, and the presence of antagonistic organisms. Consequently, gaining a comprehensive understanding of climate and environmental conditions is a crucial step in combating patulin contamination. In this study, moulds were isolated from 40 apple samples collected from seven locations across Hungary: Csenger, Damak, Pallag, Lövopetri, Nagykálló, and Újfehértó. A total of 183 moulds were morphologically identified, with 67 isolates belonging to the Alternaria, 45 to the Aspergillus, and 13 to the Penicillium groups. The location possessed a higher influence than farming method on the distribution of mould genera. Despite the requirement of higher temperature, Aspergillus species dominated only for the region of Újfehértó with approximately 50% of the isolates belonging to the genus. Four of the seven locations assessed: Csenger, Debrecen-Pallag, Nyírtass and Nagykálló, were dominated by Alternaria species. All isolates belonging to the genera Aspergillus and Penicillium were tested for the presence of the isoepoxidone dehydrogenase (idh) gene, a key player in the patulin metabolic pathway. To guarantee patulin production, this ability was confirmed with TLC assays. The only Aspergillus strain that presented a positive result was the strain Aspergillus clavatus B9/6, originated from the apple cultivar Golden Reinders grown in Debrecen-Pallag by integrated farming. Of the Penicillium isolates only one strain, B10/6, presented a band of the right size (500-600 bp) for the idh gene. Further sequencing of the ITS gene showed that this strain should be classified as Talaromyces pinophilus. The TLC tests confirmed this microorganism as the only patulin producer under the studied conditions for its cluster.


Asunto(s)
Aspergillus , Malus , Patulina , Penicillium , Patulina/análisis , Penicillium/metabolismo , Penicillium/aislamiento & purificación , Malus/química , Malus/microbiología , Aspergillus/metabolismo , Aspergillus/aislamiento & purificación , Aspergillus/química , Hungría , Contaminación de Alimentos/análisis , Microbiología de Alimentos
13.
Food Chem ; 456: 139994, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38914035

RESUMEN

Patulin is one of the mycotoxins frequently detected in apples and derivatives, representing a major food safety risk. This study aimed to validate a high-performance liquid chromatography (HPLC) method with an ultraviolet (UV) detector for patulin quantification and assess its occurrence in apple beverages marketed in Morocco. The validation parameters showed satisfactory results with adequate linearity (R > 0.997), a relative standard deviation below 2.5%, repeatability between 3.6 and 7.1%, reproducibility between 3.9 and 11.5%, a limit of quantification (LOQ) of 4 µg/L, and recoveries close to 100% for three levels. Analysis of 30 samples revealed patulin levels ranging from 0 to 16.36 µg/L, with 50% of samples showing negative levels. All positive results remained below the regulatory maximum limit of 50 µg/L. These findings affirm the efficacy of the HPLC proposed method in ensuring compliance with patulin regulations in apple beverages, underlining its importance in safeguarding food safety.


Asunto(s)
Contaminación de Alimentos , Malus , Patulina , Patulina/análisis , Malus/química , Cromatografía Líquida de Alta Presión , Marruecos , Contaminación de Alimentos/análisis , Bebidas/análisis , Frutas/química , Jugos de Frutas y Vegetales/análisis
14.
Fungal Biol ; 128(4): 1885-1897, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38876541

RESUMEN

Patulin is a mycotoxin produced by several species of Penicillium sp., Aspergillus sp., and Byssochlamys sp. on apples and pears. Most studies have been focused on Penicillium expansum, a common postharvest pathogen, but little is known about the characteristics of Penicillium paneum. In the present study, we evaluated the effects of temperature, pH, and relative humidity (RH) on the growth of P. paneum OM1, which was isolated from pears, and its patulin production. The fungal strain showed the highest growth rate at 25 °C and pH 4.5 on pear puree agar medium (PPAM) under 97 % RH, while it produced the highest amount of patulin at 20 °C and pH 4.5 on PPAM under 97 % RH. Moreover, RT-qPCR analysis of relative expression levels of 5 patulin biosynthetic genes (patA, patE, patK, patL, and patN) in P. paneum OM1 exhibited that the expression of the 4 patulin biosynthetic genes except patL was up-regulated in YES medium (patulin conducive), while it was not in PDB medium (patulin non-conducive). Our data demonstrated that the 3 major environmental parameters had significant impact on the growth of P. paneum OM1 and its patulin production. These results could be exploited to prevent patulin contamination by P. paneum OM1 during pear storage.


Asunto(s)
Patulina , Penicillium , Pyrus , Medios de Cultivo/química , Humedad , Concentración de Iones de Hidrógeno , Patulina/biosíntesis , Patulina/metabolismo , Penicillium/metabolismo , Penicillium/crecimiento & desarrollo , Penicillium/genética , Penicillium/aislamiento & purificación , Pyrus/microbiología , Temperatura
15.
Toxins (Basel) ; 16(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38922133

RESUMEN

Patulin, a toxic mycotoxin, can contaminate apple-derived products. The FDA has established an action level of 50 ppb (ng/g) for patulin in apple juice and apple juice products. To effectively monitor this mycotoxin, there is a need for adequate analytical methods that can reliably and efficiently determine patulin levels. In this work, we developed an automated sample preparation workflow followed by liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry (LC-APCI-MS/MS) detection to identify and quantify patulin in a single method, further expanding testing capabilities for monitoring patulin in foods compared to traditional optical methods. Using a robotic sample preparation system, apple juice, apple cider, apple puree, apple-based baby food, applesauce, fruit rolls, and fruit jam were fortified with 13C-patulin and extracted using dichloromethane (DCM) without human intervention, followed by an LC-APCI-MS/MS analysis in negative ionization mode. The method achieved a limit of quantification of 4.0 ng/g and linearity ranging from 2 to 1000 ng/mL (r2 > 0.99). Quantitation was performed with isotope dilution using 13C-patulin as an internal standard and solvent calibration standards. Average recoveries (relative standard deviations, RSD%) in seven spike matrices were 95% (9%) at 10 ng/g, 110% (5%) at 50 ng/g, 101% (7%) at 200 ng/g, and 104% (4%) at 1000 ng/g (n = 28). The ranges of within-matrix and between-matrix variability (RSD) were 3-8% and 4-9%, respectively. In incurred samples, the identity of patulin was further confirmed with a comparison of the information-dependent acquisition-enhanced product ion (IDA-EPI) MS/MS spectra to a reference standard. The metrological traceability of the patulin measurements in an incurred apple cider (21.1 ± 8.0 µg/g) and apple juice concentrate (56.6 ± 15.6 µg/g) was established using a certified reference material and calibration data to demonstrate data confidence intervals (k = 2, 95% confidence interval).


Asunto(s)
Contaminación de Alimentos , Jugos de Frutas y Vegetales , Malus , Patulina , Robótica , Espectrometría de Masas en Tándem , Patulina/análisis , Malus/química , Jugos de Frutas y Vegetales/análisis , Cromatografía Liquida , Contaminación de Alimentos/análisis , Frutas/química
16.
J Agric Food Chem ; 72(22): 12798-12809, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38772384

RESUMEN

Patulin (PAT) is a mycotoxin produced by Penicillium species, which often contaminates fruit and fruit-derived products, posing a threat to human health and food safety. This work aims to investigate the detoxification of PAT by Kluyveromyces marxianus YG-4 (K. marxianus YG-4) and its application in apple juice. The results revealed that the detoxification effect of K. marxianus YG-4 on PAT includes adsorption and degradation. The adsorption binding sites were polysaccharides, proteins, and some lipids on the cell wall of K. marxianus YG-4, and the adsorption groups were hydroxyl groups, amino acid side chains, carboxyl groups, and ester groups, which were combined through strong forces (ion interactions, electrostatic interactions, and hydrogen bonding) and not easily eluted. The degradation active substance was an intracellular enzyme, and the degradation product was desoxypatulinic acid (DPA) without cytotoxicity. K. marxianus YG-4 can also effectively adsorb and degrade PAT in apple juice. The contents of organic acids and polyphenols significantly increased after detoxification, significantly improving the quality of apple juice. The detoxification ability of K. marxianus YG-4 toward PAT would be a novel approach for the elimination of PAT contamination.


Asunto(s)
Jugos de Frutas y Vegetales , Kluyveromyces , Malus , Patulina , Kluyveromyces/metabolismo , Kluyveromyces/química , Patulina/metabolismo , Patulina/química , Malus/química , Malus/metabolismo , Jugos de Frutas y Vegetales/análisis , Contaminación de Alimentos/análisis , Adsorción
17.
Appl Environ Microbiol ; 90(6): e0029924, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38786360

RESUMEN

Bacteria, fungi, and mammals contain lactonases that can degrade the Gram-negative bacterial quorum sensing (QS) molecules N-acyl homoserine lactones (AHLs). AHLs are critical for bacteria to coordinate gene expression and pathogenicity with population density. However, AHL-degrading lactonases present variable substrate ranges, including degradation of the Pencillium expansum lactone mycotoxin patulin. We selected Erwinia spp. as our model bacteria to further investigate this interaction. We find both native apple microbiome Erwinia spp. and the fruit tree pathogen Erwinia amylovora to be inhibited by patulin. At patulin concentrations that inhibited E. amylovora growth, expression of E. amylovora lactonase encoded by EaaiiA was increased. EaAiiA demonstrated the ability to degrade patulin in vitro, as well, as in vivo where it reduced apple disease and patulin production by P. expansum. Fungal-bacterial co-cultures revealed that the E. amylovora Δeaaiia strain failed to protect apples from P. expansum infections, which contained significant amounts of patulin. Our results suggest that bacterial lactonase production can modulate the pathogenicity of P. expansum in response to the secretion of toxic patulin. IMPORTANCE: Chemical signaling in the microbial world facilitates the regulation of gene expression as a function of cell population density. This is especially true for the Gram-negative bacterial signal N-acyl homoserine lactone (AHL). Lactonases that deactivate AHLs have attracted a lot of attention because of their antibacterial potential. However, the involvement of these enzymes in inhibiting fungal pathogens and the potential role of these enzymes in bacterial-fungal interactions are unknown. Here, we find that a bacterial enzyme involved in the degradation of AHLs is also induced by and degrades the fungal lactone mycotoxin, patulin. This work supports the potential use of bacterial enzymes and/or the producing bacteria in controlling the post-harvest fruit disease caused by the patulin-producing fungus Penicillium expansum.


Asunto(s)
Hidrolasas de Éster Carboxílico , Erwinia amylovora , Malus , Patulina , Patulina/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/genética , Malus/microbiología , Erwinia amylovora/genética , Erwinia amylovora/efectos de los fármacos , Erwinia amylovora/enzimología , Erwinia amylovora/metabolismo , Enfermedades de las Plantas/microbiología , Penicillium/genética , Penicillium/enzimología , Penicillium/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Interacciones Microbianas , Percepción de Quorum , Lactonas/metabolismo , Lactonas/farmacología
18.
ACS Sens ; 9(6): 3377-3386, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38783424

RESUMEN

Comprehending the charge transfer mechanism at the semiconductor interfaces is crucial for enhancing the electronic and optical performance of sensing devices. Yet, relying solely on single signal acquisition methods at the interface hinders a comprehensive understanding of the charge transfer under optical excitation. Herein, we present an integrated photoelectrochemical surface-enhanced Raman spectroscopy (PEC-SERS) platform based on quantum dots/metal-organic framework (CdTe/Yb-TCPP) nanocomposites for investigating the charge transfer mechanism under photoexcitation in multiple dimensions. This integrated platform allows simultaneous PEC and SERS measurements with a 532 nm laser. The obtained photocurrent and Raman spectra of the CdTe/Yb-TCPP nanocomposites are simultaneously influenced by variable bias voltages, and the correlation between them enables us to predict the charge transfer pathway. Moreover, we integrate gold nanorods (Au NRs) into the PEC-SERS system by using magnetic separation and DNA biometrics to construct a biosensor for patulin detection. This biosensor demonstrates the voltage-driven ON/OFF switching of PEC and SERS signals, a phenomenon attributed to the plasmon resonance effect of Au NRs at different voltages, thereby influencing charge transfer. The detection of patulin in apples verified the applicability of the biosensor. The study offers an efficient approach to understanding semiconductor-metal interfaces and presents a new avenue for designing high-performance biosensors.


Asunto(s)
Compuestos de Cadmio , Técnicas Electroquímicas , Oro , Patulina , Puntos Cuánticos , Semiconductores , Espectrometría Raman , Telurio , Espectrometría Raman/métodos , Telurio/química , Compuestos de Cadmio/química , Técnicas Electroquímicas/métodos , Puntos Cuánticos/química , Patulina/análisis , Oro/química , Estructuras Metalorgánicas/química , Técnicas Biosensibles/métodos , Nanotubos/química , Iterbio/química , Malus/química , Nanocompuestos/química
19.
Toxicon ; 244: 107768, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38768831

RESUMEN

Patulin (PAT) is the most common mycotoxin found in moldy fruits and their derived products, and is reported to cause diverse toxic effects, including hepatotoxicity, nephrotoxicity, cardiotoxicity, neurotoxicity, immunotoxicity, gastrointestinal toxicity and dermal toxicity. The cell death induction by PAT is suggested to be a key cellular mechanism involved in PAT-induced toxicities. Accumulating evidence indicates that the multiple forms of cell death are induced in response to PAT exposure, including apoptosis, autophagic cell death, pyroptosis and ferroptosis. Mechanistically, the cell death induction by PAT is associated the oxidative stress induction via reducing the antioxidant capacity or inducing pro-oxidant NADPH oxidase, the activation of mitochondrial pathway via regulating BCL-2 family proteins, the disruption of iron metabolism through ferritinophagy-mediated ferritin degradation, and the induction of the NOD-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome/caspase-1/gasdermin D (GSDMD) pathway. In this review article, we summarize the present understanding of the cell death induction by PAT, discuss the potential signaling pathways underlying PAT-induced cell death, and propose the issues that need to be addressed to promote the development of cell death-based approach to counteract PAT-induced toxicities.


Asunto(s)
Muerte Celular , Patulina , Patulina/toxicidad , Humanos , Muerte Celular/efectos de los fármacos , Animales , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Inflamasomas/metabolismo
20.
Food Chem ; 454: 139619, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38811285

RESUMEN

In this study, we developed a hydrogel from cross-linked keratin and chitosan (KC) to remove patulin (PAT) from apple juice. We explored the potential of incorporating Lactobacillus rhamnoses into the KC hydrogel (KC-LR) and tested its effectiveness in removing PAT from simulated juice solutions and real apple juice. The KC hydrogel was developed through a dynamic disulfide cross-linking reaction. This cross-linked hydrogel network provided excellent stability for the probiotic cells, achieving 99.9 % immobilization efficiency. In simulated juice with 25 mg/L PAT, the KC and KC-LR hydrogels showed removal efficiencies of 85.2 % and 97.68 %, respectively, using 15 mg mL-1 of the prepared hydrogel at a temperature of 25 °C for 6 h. The KC and KC-LR hydrogels achieved 76.3 % and 83.6 % removal efficiencies in real apple juice systems, respectively. Notably, the encapsulated probiotics did not negatively impact the juice quality and demonstrated reusability for up to five cycles of the PAT removal process.


Asunto(s)
Quitosano , Jugos de Frutas y Vegetales , Hidrogeles , Queratinas , Lacticaseibacillus rhamnosus , Malus , Patulina , Quitosano/química , Malus/química , Jugos de Frutas y Vegetales/análisis , Lacticaseibacillus rhamnosus/química , Hidrogeles/química , Patulina/química , Patulina/aislamiento & purificación , Queratinas/química , Queratinas/aislamiento & purificación , Probióticos/química , Contaminación de Alimentos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA