Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.743
Filtrar
1.
J Transl Med ; 22(1): 463, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750559

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) have garnered significant interest for their tumor-tropic property, making them potential therapeutic delivery vehicles for cancer treatment. We have previously shown the significant anti-tumour activity in mice preclinical models and companion animals with naturally occurring cancers using non-virally engineered MSCs with a therapeutic transgene encoding cytosine deaminase and uracil phosphoribosyl transferase (CDUPRT) and green fluorescent protein (GFP). Clinical studies have shown improved response rate with combinatorial treatment of 5-fluorouracil and Interferon-beta (IFNb) in peritoneal carcinomatosis (PC). However, high systemic toxicities have limited the clinical use of such a regime. METHODS: In this study, we evaluated the feasibility of intraperitoneal administration of non-virally engineered MSCs to co-deliver CDUPRT/5-Flucytosine prodrug system and IFNb to potentially enhance the cGAS-STING signalling axis. Here, MSCs were engineered to express CDUPRT or CDUPRT-IFNb. Expression of CDUPRT and IFNb was confirmed by flow cytometry and ELISA, respectively. The anti-cancer efficacy of the engineered MSCs was evaluated in both in vitro and in vivo model. ES2, HT-29 and Colo-205 were cocultured with engineered MSCs at various ratio. The cell viability with or without 5-flucytosine was measured with MTS assay. To further compare the anti-cancer efficacy of the engineered MSCs, peritoneal carcinomatosis mouse model was established by intraperitoneal injection of luciferase expressing ES2 stable cells. The tumour burden was measured through bioluminescence tracking. RESULTS: Firstly, there was no changes in phenotypes of MSCs despite high expression of the transgene encoding CDUPRT and IFNb (CDUPRT-IFNb). Transwell migration assays and in-vivo tracking suggested the co-expression of multiple transgenes did not impact migratory capability of the MSCs. The superiority of CDUPRT-IFNb over CDUPRT expressing MSCs was demonstrated in ES2, HT-29 and Colo-205 in-vitro. Similar observations were observed in an intraperitoneal ES2 ovarian cancer xenograft model. The growth of tumor mass was inhibited by ~ 90% and 46% in the mice treated with MSCs expressing CDUPRT-IFNb or CDUPRT, respectively. CONCLUSIONS: Taken together, these results established the effectiveness of MSCs co-expressing CDUPRT and IFNb in controlling and targeting PC growth. This study lay the foundation for the development of clinical trial using multigene-armed MSCs for PC.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Pentosiltransferasa , Neoplasias Peritoneales , Transgenes , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Neoplasias Peritoneales/terapia , Neoplasias Peritoneales/secundario , Neoplasias Peritoneales/genética , Neoplasias Peritoneales/patología , Humanos , Pentosiltransferasa/genética , Pentosiltransferasa/metabolismo , Línea Celular Tumoral , Interferón beta/metabolismo , Interferón beta/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Citosina Desaminasa/genética , Citosina Desaminasa/metabolismo , Ratones , Femenino
2.
J Med Chem ; 67(9): 7158-7175, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38651522

RESUMEN

Inhibition of hypoxanthine-guanine-xanthine phosphoribosyltransferase activity decreases the pool of 6-oxo and 6-amino purine nucleoside monophosphates required for DNA and RNA synthesis, resulting in a reduction in cell growth. Therefore, inhibitors of this enzyme have potential to control infections, caused by Plasmodium falciparum and Plasmodium vivax, Trypanosoma brucei, Mycobacterium tuberculosis, and Helicobacter pylori. Five compounds synthesized here that contain a purine base covalently linked by a prolinol group to one or two phosphonate groups have Ki values ranging from 3 nM to >10 µM, depending on the structure of the inhibitor and the biological origin of the enzyme. X-ray crystal structures show that, on binding, these prolinol-containing inhibitors stimulated the movement of active site loops in the enzyme. Against TBr in cell culture, a prodrug exhibited an EC50 of 10 µM. Thus, these compounds are excellent candidates for further development as drug leads against infectious diseases as well as being potential anticancer agents.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos , Pentosiltransferasa , Pentosiltransferasa/antagonistas & inhibidores , Pentosiltransferasa/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Relación Estructura-Actividad , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/enzimología , Estructura Molecular , Dominio Catalítico
3.
Plant J ; 118(3): 856-878, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38261531

RESUMEN

Members of the glycosyltransferase (GT)43 and GT47 families have been associated with heteroxylan synthesis in both dicots and monocots and are thought to assemble into central cores of putative xylan synthase complexes (XSCs). Currently, it is unknown whether protein-protein interactions within these central cores are specific, how many such complexes exist, and whether these complexes are functionally redundant. Here, we used gene association network and co-expression approaches in rice to identify four OsGT43s and four OsGT47s that assemble into different GT43/GT47 complexes. Using two independent methods, we showed that (i) these GTs assemble into at least six unique complexes through specific protein-protein interactions and (ii) the proteins interact directly in vitro. Confocal microscopy showed that, when alone, all OsGT43s were retained in the endoplasmic reticulum (ER), while all OsGT47s were localized in the Golgi. co-expression of OsGT43s and OsGT47s displayed complexes that form in the ER but accumulate in Golgi. ER-to-Golgi trafficking appears to require interactions between OsGT43s and OsGT47s. Comparison of the central cores of the three putative rice OsXSCs to wheat, asparagus, and Arabidopsis XSCs, showed great variation in GT43/GT47 combinations, which makes the identification of orthologous central cores between grasses and dicots challenging. However, the emerging picture is that all central cores from these species seem to have at least one member of the IRX10/IRX10-L clade in the GT47 family in common, suggesting greater functional importance for this family in xylan synthesis. Our findings provide a new framework for future investigation of heteroxylan biosynthesis and function in monocots.


Asunto(s)
Aparato de Golgi , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/enzimología , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Aparato de Golgi/metabolismo , Pentosiltransferasa/genética , Pentosiltransferasa/metabolismo , Retículo Endoplásmico/metabolismo , Glicosiltransferasas/metabolismo , Glicosiltransferasas/genética , Xilanos/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
J Neuromuscul Dis ; 11(2): 275-284, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38277301

RESUMEN

Dystroglycanopathies are a group of muscle degenerative diseases characterized with significant reduction in matriglycan expression critical in disease pathogenesis. Missense point mutations in the Fukutin-related protein (FKRP) gene cause variable reduction in the synthesis of matriglycan on alpha-dystroglycan (α-DG) and a wide range of disease severity. Data analyses of muscle biopsies from patients fail to show consistent correlation between the levels of matriglycan and clinical phenotypes. By reviewing clinical reports in conjunction with analysis of clinically relevant mouse models, we identify likely causes for the confusion. Nearly all missense FKRP mutations retain variable, but sufficient function for the synthesis of matriglycan during the later stage of muscle development and periods of muscle regeneration. These factors lead to a highly heterogenous pattern of matriglycan expression in diseased muscles, depending on age and stages of muscle regeneration. The limited size in clinical biopsy samples from different parts of even a single muscle tissue at different time points of disease progression may well mis-represent the residual function (base-levels) of the mutated FKRPs and phenotypes. We propose to use a simple Multi Point tool from ImageJ to more accurately measure the signal intensity of matriglycan expression on fiber membrane for assessing mutant FKRP function and therapeutic efficacy. A robust and sensitive immunohistochemical protocol would further improve reliability and comparability for the detection of matriglycan.


Asunto(s)
Distroglicanos , Pentosiltransferasa , Animales , Humanos , Ratones , Distroglicanos/genética , Distroglicanos/metabolismo , Glicosilación , Pentosiltransferasa/genética , Pentosiltransferasa/metabolismo , Fenotipo , Reproducibilidad de los Resultados
5.
Mol Ther ; 31(12): 3478-3489, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37919902

RESUMEN

Mutations in the fukutin-related protein (FKRP) gene cause dystroglycanopathy, with disease severity ranging from mild LGMD2I to severe congenital muscular dystrophy. Recently, considerable progress has been made in developing experimental therapies, with adeno-associated virus (AAV) gene therapy and ribitol treatment demonstrating significant therapeutic effect. However, each treatment has its strengths and weaknesses. AAV gene therapy can achieve normal levels of transgene expression, but it requires high doses, with toxicity concerns and variable distribution. Ribitol relies on residual FKRP function and restores limited levels of matriglycan. We hypothesized that these two treatments can work synergistically to offer an optimized therapy with efficacy and safety unmatched by each treatment alone. The most effective treatment is the combination of high-dose (5e-13 vg/kg) AAV-FKRP with ribitol, whereas low dose (1e-13 vg/kg) AAV-FKRP combined with ribitol showed a 22.6% increase in positive matriglycan fibers and the greater improvement in pathology when compared to low-dose AAV-FKRP alone. Together, our results support the potential benefits of combining ribitol with AAV gene therapy for treating FKRP-related muscular dystrophy. The fact that ribitol is a metabolite in nature and has already been tested in animal models and clinical trials in humans without severe side effects provides a safety profile for it to be trialed in combination with AAV gene therapy.


Asunto(s)
Distrofias Musculares , Pentosiltransferasa , Animales , Humanos , Pentosiltransferasa/genética , Pentosiltransferasa/metabolismo , Pentosiltransferasa/uso terapéutico , Ribitol/metabolismo , Ribitol/uso terapéutico , Dependovirus/genética , Dependovirus/metabolismo , Distroglicanos/metabolismo , Distrofias Musculares/tratamiento farmacológico , Terapia Genética/métodos , Mutación , Músculo Esquelético/metabolismo
6.
Biochemistry ; 62(14): 2182-2201, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37418678

RESUMEN

Over 70 million people are currently at risk of developing Chagas Disease (CD) infection, with more than 8 million people already infected worldwide. Current treatments are limited and innovative therapies are required. Trypanosoma cruzi, the etiological agent of CD, is a purine auxotroph that relies on phosphoribosyltransferases to salvage purine bases from their hosts for the formation of purine nucleoside monophosphates. Hypoxanthine-guanine-xanthine phosphoribosyltransferases (HGXPRTs) catalyze the salvage of 6-oxopurines and are promising targets for the treatment of CD. HGXPRTs catalyze the formation of inosine, guanosine, and xanthosine monophosphates from 5-phospho-d-ribose 1-pyrophosphate and the nucleobases hypoxanthine, guanine, and xanthine, respectively. T. cruzi possesses four HG(X)PRT isoforms. We previously reported the kinetic characterization and inhibition of two isoforms, TcHGPRTs, demonstrating their catalytic equivalence. Here, we characterize the two remaining isoforms, revealing nearly identical HGXPRT activities in vitro and identifying for the first time T. cruzi enzymes with XPRT activity, clarifying their previous annotation. TcHGXPRT follows an ordered kinetic mechanism with a postchemistry event as the rate-limiting step(s) of catalysis. Its crystallographic structures reveal implications for catalysis and substrate specificity. A set of transition-state analogue inhibitors (TSAIs) initially developed to target the malarial orthologue were re-evaluated, with the most potent compound binding to TcHGXPRT with nanomolar affinity, validating the repurposing of TSAIs to expedite the discovery of lead compounds against orthologous enzymes. We identified mechanistic and structural features that can be exploited in the optimization of inhibitors effective against TcHGPRT and TcHGXPRT concomitantly, which is an important feature when targeting essential enzymes with overlapping activities.


Asunto(s)
Trypanosoma cruzi , Humanos , Trypanosoma cruzi/metabolismo , Pentosiltransferasa/metabolismo , Purinas/farmacología , Purinas/química , Guanina/metabolismo
7.
ChemMedChem ; 18(17): e202300207, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37350546

RESUMEN

A library of queuine analogues targeting the modification of tRNA isoacceptors for Asp, Asn, His and Tyr catalysed by queuine tRNA ribosyltransferase (QTRT, also known as TGT) was evaluated in the treatment of a chronic multiple sclerosis model: murine experimental autoimmune encephalomyelitis. Several active 7-deazaguanines emerged, together with a structure-activity relationship involving the necessity for a flexible alkyl chain of fixed length.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Animales , Ratones , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , ARN de Transferencia , Relación Estructura-Actividad , Pentosiltransferasa/metabolismo
8.
Cells ; 12(8)2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37190056

RESUMEN

Pluripotent stem (PS) cells enable the scalable production of tissue-specific derivatives with therapeutic potential for various clinical applications, including muscular dystrophies. Given the similarity to human counterparts, the non-human primate (NHP) is an ideal preclinical model to evaluate several questions, including delivery, biodistribution, and immune response. While the generation of human-induced PS (iPS)-cell-derived myogenic progenitors is well established, there have been no data for NHP counterparts, probably due to the lack of an efficient system to differentiate NHP iPS cells towards the skeletal muscle lineage. Here, we report the generation of three independent Macaca fascicularis iPS cell lines and their myogenic differentiation using PAX7 conditional expression. The whole-transcriptome analysis confirmed the successful sequential induction of mesoderm, paraxial mesoderm, and myogenic lineages. NHP myogenic progenitors efficiently gave rise to myotubes under appropriate in vitro differentiation conditions and engrafted in vivo into the TA muscles of NSG and FKRP-NSG mice. Lastly, we explored the preclinical potential of these NHP myogenic progenitors in a single wild-type NHP recipient, demonstrating engraftment and characterizing the interaction with the host immune response. These studies establish an NHP model system through which iPS-cell-derived myogenic progenitors can be studied.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Animales , Ratones , Células Madre Pluripotentes Inducidas/metabolismo , Distribución Tisular , Células Madre Pluripotentes/metabolismo , Músculo Esquelético/metabolismo , Primates , Pentosiltransferasa/metabolismo
9.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047056

RESUMEN

Nucleoside analogues are important compounds for the treatment of viral infections or cancers. While (chemo-)enzymatic synthesis is a valuable alternative to traditional chemical methods, the feasibility of such processes is lowered by the high production cost of the biocatalyst. As continuous enzyme membrane reactors (EMR) allow the use of biocatalysts until their full inactivation, they offer a valuable alternative to batch enzymatic reactions with freely dissolved enzymes. In EMRs, the enzymes are retained in the reactor by a suitable membrane. Immobilization on carrier materials, and the associated losses in enzyme activity, can thus be avoided. Therefore, we validated the applicability of EMRs for the synthesis of natural and dihalogenated nucleosides, using one-pot transglycosylation reactions. Over a period of 55 days, 2'-deoxyadenosine was produced continuously, with a product yield >90%. The dihalogenated nucleoside analogues 2,6-dichloropurine-2'-deoxyribonucleoside and 6-chloro-2-fluoro-2'-deoxyribonucleoside were also produced, with high conversion, but for shorter operation times, of 14 and 5.5 days, respectively. The EMR performed with specific productivities comparable to batch reactions. However, in the EMR, 220, 40, and 9 times more product per enzymatic unit was produced, for 2'-deoxyadenosine, 2,6-dichloropurine-2'-deoxyribonucleoside, and 6-chloro-2-fluoro-2'-deoxyribonucleoside, respectively. The application of the EMR using freely dissolved enzymes, facilitates a continuous process with integrated biocatalyst separation, which reduces the overall cost of the biocatalyst and enhances the downstream processing of nucleoside production.


Asunto(s)
Nucleósidos , Pentosiltransferasa , Nucleósidos/química , Pentosiltransferasa/metabolismo , Enzimas Inmovilizadas/química , Biocatálisis , Desoxirribonucleósidos , Purina-Nucleósido Fosforilasa/metabolismo
10.
Nucleic Acids Res ; 51(8): 3836-3854, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36928176

RESUMEN

The modified nucleosides 2'-deoxy-7-cyano- and 2'-deoxy-7-amido-7-deazaguanosine (dPreQ0 and dADG, respectively) recently discovered in DNA are the products of the bacterial queuosine tRNA modification pathway and the dpd gene cluster, the latter of which encodes proteins that comprise the elaborate Dpd restriction-modification system present in diverse bacteria. Recent genetic studies implicated the dpdA, dpdB and dpdC genes as encoding proteins necessary for DNA modification, with dpdD-dpdK contributing to the restriction phenotype. Here we report the in vitro reconstitution of the Dpd modification machinery from Salmonella enterica serovar Montevideo, the elucidation of the roles of each protein and the X-ray crystal structure of DpdA supported by small-angle X-ray scattering analysis of DpdA and DpdB, the former bound to DNA. While the homology of DpdA with the tRNA-dependent tRNA-guanine transglycosylase enzymes (TGT) in the queuosine pathway suggested a similar transglycosylase activity responsible for the exchange of a guanine base in the DNA for 7-cyano-7-deazaguanine (preQ0), we demonstrate an unexpected ATPase activity in DpdB necessary for insertion of preQ0 into DNA, and identify several catalytically essential active site residues in DpdA involved in the transglycosylation reaction. Further, we identify a modification site for DpdA activity and demonstrate that DpdC functions independently of DpdA/B in converting preQ0-modified DNA to ADG-modified DNA.


Asunto(s)
ADN , Nucleósido Q , ADN/genética , Guanina/metabolismo , ARN de Transferencia/metabolismo , Pentosiltransferasa/metabolismo
11.
J Biochem ; 173(5): 333-335, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-36760122

RESUMEN

Dystroglycan (DG), a muscular transmembrane protein, plays a critical role in transducing extracellular matrix-derived signals to the cytoskeleton and provides physical strength to skeletal muscle cell membranes. The extracellular domain of DG, α-DG, displays unique glycosylation patterns. Fully functional glycosylation is required for this domain to interact with components of extracellular matrices, including laminin. One of the unique sugar compositions found in such functional glycans on DG is two ribitol phosphates that are transferred by the sequential actions of fukutin (FKTN) and fukutin-related protein (FKRP), which use CDP-ribitol as a donor substrate. These are then further primed for matriglycan biosynthesis. A recent in vitro study reported that glycerol phosphate could be similarly added to α-DG by FKTN and FKRP if they used CDP-glycerol (CDP-Gro) as a donor substrate. However, the physiological relevance of these findings remains elusive. Imae et al. addressed the knowledge gap regarding whether CDP-Gro is present in mammals and how CDP-Gro is synthesized and functions in mammals.


Asunto(s)
Distroglicanos , Pentosiltransferasa , Animales , Distroglicanos/metabolismo , Glicerol , Glicosilación , Pentosiltransferasa/metabolismo , Ribitol/metabolismo , Ribitol/farmacología
12.
Acta Myol ; 42(4): 106-112, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38406381

RESUMEN

Fukutin-related protein (FKRP) mutations cause a broad spectrum of muscular dystrophies, from a relatively mild limb-girdle muscular dystrophy type 9 (LGMDR9) to severe congenital muscular dystrophy (CMD). This study aims to report two siblings belonging to a non-consanguineous Tunisian family harboring a novel compound heterozygous FKRP variant and presenting a mild LGDMR9 phenotype. For mutation screening, massive parallel sequencing was performed, followed by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) to validate the existence of the discovered variants. The absence of alpha-dystroglycan was determined by immunohistochemistry. Brain and thigh magnetic resonance imaging (MRI) were performed to detect thigh and brain abnormalities. The two siblings had a late age at onset and clinical examination showed that the pelvic girdles had a predominantly proximal and symmetrical distribution of weakness without cardiac or respiratory involvement. They both had a modified Gardner-Medwin Walton Scale mGMWS grade of 4 and a modified Rankin Scale (mRS) score of 1. The DNA sequencing revealed a novel deletion of exons 2 and 3 in one allele and a missense mutation c.1364C > A, which has been reported to be responsible for congenital muscular dystrophy and mental retardation on the second allele. The simultaneous presence of the two variations in the two cases suggests that the variants segregate with the pathophysiology.


Asunto(s)
Distrofia Muscular de Cinturas , Distrofias Musculares , Humanos , Músculo Esquelético/patología , Distrofias Musculares/diagnóstico , Distrofias Musculares/genética , Distrofias Musculares/congénito , Distrofia Muscular de Cinturas/diagnóstico , Distrofia Muscular de Cinturas/genética , Mutación , Pentosiltransferasa/genética , Pentosiltransferasa/metabolismo , Fenotipo , Proteínas/genética , Proteínas/metabolismo
13.
Sci Rep ; 12(1): 17175, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36229494

RESUMEN

Cobamides (Cbas) are coenzymes used by cells across all domains of life, but de novo synthesis is only found in some bacteria and archaea. Five enzymes assemble the nucleotide loop in the alpha phase of the corrin ring. Condensation of the activated ring and nucleobase yields adenosyl-Cba 5'-phosphate, which upon dephosphorylation yields the biologically active coenzyme (AdoCba). Base activation is catalyzed by a phosphoribosyltransferase (PRTase). The structure of the Salmonella enterica PRTase enzyme (i.e., SeCobT) is well-characterized, but archaeal PRTases are not. To gain insights into the mechanism of base activation by the PRTase from Methanocaldococcus jannaschii (MjCobT), we solved crystal structures of the enzyme in complex with substrate and products. We determined several structures: (i) a 2.2 Å structure of MjCobT in the absence of ligand (apo), (ii) structures of MjCobT bound to nicotinate mononucleotide (NaMN) and α-ribazole 5'-phosphate (α-RP) or α-adenylyl-5'-phosphate (α-AMP) at 2.3 and 1.4 Å, respectively. In MjCobT the general base that triggers the reaction is an aspartate residue (Asp 52) rather than a glutamate residue (E317) as in SeCobT. Notably, the dimer interface in MjCobT is completely different from that observed in SeCobT. Finally, entry PDB 3L0Z does not reflect the correct structure of MjCobT.


Asunto(s)
Cianobacterias , Euryarchaeota , Adenosina Monofosfato , Archaea/metabolismo , Ácido Aspártico , Cobamidas/metabolismo , Cristalografía por Rayos X , Cianobacterias/metabolismo , Euryarchaeota/metabolismo , Glutamatos , Ligandos , Pentosiltransferasa/genética , Pentosiltransferasa/metabolismo , Fosfatos/metabolismo
14.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36233108

RESUMEN

One of the major drawbacks of the industrial implementation of enzymatic processes is the low operational stability of the enzymes under tough industrial conditions. In this respect, the use of thermostable enzymes in the industry is gaining ground during the last decades. Herein, we report a structure-guided approach for the development of novel and thermostable 2'-deoxyribosyltransferases (NDTs) based on the computational design of disulfide bonds on hot spot positions. To this end, a small library of NDT variants from Lactobacillus delbrueckii (LdNDT) with introduced cysteine pairs was created. Among them, LdNDTS104C (100% retained activity) was chosen as the most thermostable variant, displaying a six- and two-fold enhanced long-term stability when stored at 55 °C (t1/255 °C ≈ 24 h) and 60 °C (t1/260 °C ≈ 4 h), respectively. Moreover, the biochemical characterization revealed that LdNDTS104C showed >60% relative activity across a broad range of temperature (30−90 °C) and pH (5−7). Finally, to study the potential application of LdNDTS104C as an industrial catalyst, the enzymatic synthesis of nelarabine was successfully carried out under different substrate conditions (1:1 and 3:1) at different reaction times. Under these experimental conditions, the production of nelarabine was increased up to 2.8-fold (72% conversion) compared with wild-type LdNDT.


Asunto(s)
Enzimas Inmovilizadas , Pentosiltransferasa , Arabinonucleósidos , Cisteína , Disulfuros/química , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Pentosiltransferasa/metabolismo , Especificidad por Sustrato , Temperatura
15.
ACS Chem Biol ; 17(6): 1513-1523, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35670527

RESUMEN

Ribitol phosphate modifications to the core M3 O-mannosyl glycan are important for the functional maturation of α-dystroglycan. Three sequentially extended partial structures of the core M3 O-mannosyl glycan including a tandem ribitol phosphate were regio- and stereo-selectively synthesized: Rbo5P-3GalNAcß, Rbo5P-1Rbo5P-3GalNAcß, and Xylß1-4Rbo5P-1Rbo5P-3GalNAcß (Rbo5P, d-ribitol-5-phosphate; GalNAc, N-acetyl-d-galactosamine; Xyl, d-xylose). Rbo5P-3GalNAcß with p-nitrophenyl at the aglycon part served as a substrate for ribitol phosphate transferase (FKRP, fukutin-related protein), and its product was glycosylated by the actions of a series of glycosyltransferases, namely, ribitol xylosyltransferase 1 (RXYLT1), ß1,4-glucuronyltransferase 1 (B4GAT1), and like-acetyl-glucosaminyltransferase (LARGE). Rbo5P-3GalNAcß equipped with an alkyne-type aglycon was also active for FKRP. The molecular information obtained on FKRP suggests that Rbo5P-3GalNAcß derivatives are the minimal units required as the acceptor glycan for Rbo5P transfer and may serve as a precursor for the elongation of the core M3 O-mannosyl glycan.


Asunto(s)
Fosfatos , Ribitol , Distroglicanos/química , Distroglicanos/metabolismo , Glicosilación , Pentosiltransferasa/metabolismo , Polisacáridos/metabolismo , Ribitol/metabolismo
16.
Int J Mol Sci ; 23(9)2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35563435

RESUMEN

BACKGROUND: Xylosyltransferases-I and II (XT-I and XT-II) catalyze the initial and rate limiting step of the proteoglycan (PG) biosynthesis and therefore have an import impact on the homeostasis of the extracellular matrix (ECM). The reason for the occurrence of two XT-isoforms in all higher organisms remains unknown and targeted genome-editing strategies could shed light on this issue. METHODS: XT-I deficient neonatal normal human dermal fibroblasts were generated by using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated proteins (Cas) 9 system. We analyzed if a reduced XT-I activity leads to abnormalities regarding ECM-composition, myofibroblast differentiation, cellular senescence and skeletal and cartilage tissue homeostasis. RESULTS: We successfully introduced compound heterozygous deletions within exon 9 of the XYLT1 gene. Beside XYLT1, we detected altered gene-expression levels of further, inter alia ECM-related, genes. Our data further reveal a dramatically reduced XT-I protein activity. Abnormal myofibroblast-differentiation was demonstrated by elevated alpha-smooth muscle actin expression on both, mRNA- and protein level. In addition, wound-healing capability was slightly delayed. Furthermore, we observed an increased cellular-senescence of knockout cells and an altered expression of target genes knowing to be involved in skeletonization. CONCLUSION: Our data show the tremendous relevance of the XT-I isoform concerning myofibroblast-differentiation and ECM-homeostasis as well as the pathophysiology of skeletal disorders.


Asunto(s)
Sistemas CRISPR-Cas , Pentosiltransferasa , Piel , Sistemas CRISPR-Cas/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Edición Génica , Humanos , Recién Nacido , Pentosiltransferasa/genética , Pentosiltransferasa/metabolismo , Piel/metabolismo , UDP Xilosa Proteína Xilosiltransferasa
17.
Bioessays ; 44(5): e2100270, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35229908

RESUMEN

The recently uncovered role of Fukutin-related protein (FKRP) in fibronectin glycosylation has challenged our understanding of the basis of disease pathogenesis in the muscular dystrophies. FKRP is a Golgi-resident glycosyltransferase implicated in a broad spectrum of muscular dystrophy (MD) pathologies that are not fully attributable to the well-described α-Dystroglycan hypoglycosylation. By revealing a new role for FKRP in the glycosylation of fibronectin, a modification critical for the development of the muscle basement membrane (MBM) and its associated muscle linkages, new possibilities for understanding clinical phenotype arise. This modification involves an interaction between FKRP and myosin-10, a protein involved in the Golgi organization and function. These observations suggest a FKRP nexus exists that controls two critical aspects to muscle fibre integrity, both fibre stability at the MBM and its elastic properties. This review explores the new potential disease axis in the context of our current knowledge of muscular dystrophies.


Asunto(s)
Fibronectinas , Distrofias Musculares , Distroglicanos/genética , Distroglicanos/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Glicosilación , Humanos , Músculo Esquelético , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Mutación , Pentosiltransferasa/genética , Pentosiltransferasa/metabolismo
18.
J Med Chem ; 65(5): 4030-4057, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35175749

RESUMEN

Pathogens such as Plasmodium and Trypanosoma spp. are unable to synthesize purine nucleobases. They rely on the salvage of these purines and their nucleosides from the host cell to synthesize the purine nucleotides required for DNA/RNA production. The key enzymes in this pathway are purine phosphoribosyltransferases (PRTs). Here, we synthesized 16 novel acyclic nucleoside phosphonates, 12 with a chiral center at C-2', and eight bearing a second chiral center at C-6'. Of these, bisphosphonate (S,S)-48 is the most potent inhibitor of the Plasmodium falciparum and P. vivax 6-oxopurine PRTs and the most potent inhibitor of two Trypanosoma brucei (Tbr) 6-oxopurine PRTs yet discovered, with Ki values as low as 2 nM. Crystal structures of (S,S)-48 in complex with human and Tbr 6-oxopurine PRTs show that the inhibitor binds to the enzymes in different conformations, providing an explanation for its potency and selectivity (i.e., 35-fold in favor of the parasite enzymes).


Asunto(s)
Antimaláricos , Organofosfonatos , Parásitos , Pentosiltransferasa/metabolismo , Animales , Antimaláricos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Nucleósidos/química , Nucleósidos/farmacología , Organofosfonatos/química , Organofosfonatos/farmacología , Plasmodium falciparum , Purinonas
19.
J Biol Inorg Chem ; 27(2): 221-227, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35094116

RESUMEN

Orthovanadate was shown to serve as a substrate for nucleoside phosphorylases from Escherichia coli, Shewanella oneidensis, Geobacillus stearothermophilus, and Halomonas chromatireducens AGD 8-3. An exception is thymidine phosphorylase from the extremophilic haloalkaliphilic bacterium Halomonas chromatireducens AGD 8-3, which cannot catalyze the vanadolysis of nucleosides. The kinetic parameters of nucleoside vanadolysis were evaluated.


Asunto(s)
Nucleósidos , Vanadatos , Escherichia coli/metabolismo , Halomonas , Pentosiltransferasa/química , Pentosiltransferasa/metabolismo , Especificidad por Sustrato
20.
Vet Comp Oncol ; 20(2): 372-380, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34724324

RESUMEN

We tested the efficacy of a yeast cytosine deaminase::uracil phosphoribosyl transferase/5-fluorocytosine (CDU/5-FC) non-viral suicide system on eight established canine melanoma cell lines. Albeit with different degree of sensitivity 5 days after lipofection, this system was significantly efficient killing melanoma cells, being four cell lines highly, two fairly and two not very sensitive to CDU/5-FC (their respective IC50 ranging from 0.20 to 800 µM 5-FC). Considering the relatively low lipofection efficiencies, a very strong bystander effect was verified in the eight cell lines: depending on the cell line, this effect accounted for most of the induced cell death (from 70% to 95%). In our assay conditions, we did not find useful interactions either with the herpes simplex thymidine kinase/ganciclovir suicide system (in sequential or simultaneous modality) or with cisplatin and bleomycin chemotherapeutic drugs. Furthermore, only two cell lines displayed limited useful interactions of the CDU/5-FC either with interferon-ß gene transfer or the proteasome inhibitor bortezomib respectively. These results would preclude a wide use of these combinations. However, the fact that all the tested cells were significantly sensitive to the CDU/5-FC system encourages further research as a gene therapy tool for local control of canine melanoma.


Asunto(s)
Enfermedades de los Perros , Melanoma , Pentosiltransferasa , Animales , Perros , Citosina Desaminasa/genética , Citosina Desaminasa/metabolismo , Enfermedades de los Perros/tratamiento farmacológico , Flucitosina/metabolismo , Flucitosina/farmacología , Flucitosina/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/veterinaria , Pentosiltransferasa/metabolismo , Timidina Quinasa/genética , Uracilo , Muerte Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA