Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.440
Filtrar
1.
BMC Genomics ; 25(1): 689, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003448

RESUMEN

BACKGROUND: The holothurians, commonly known as sea cucumbers, are marine organisms that possess significant dietary, nutritional, and medicinal value. However, the National Center for Biotechnology Information (NCBI) currently possesses only approximately 70 complete mitochondrial genome datasets of Holothurioidea, which poses limitations on conducting comprehensive research on their genetic resources and evolutionary patterns. In this study, a novel species of sea cucumber belonging to the genus Benthodytes, was discovered in the western Pacific Ocean. The genomic DNA of the novel sea cucumber was extracted, sequenced, assembled and subjected to thorough analysis. RESULTS: The mtDNA of Benthodytes sp. Gxx-2023 (GenBank No. OR992091) exhibits a circular structure spanning 17,386 bp, comprising of 13 protein-coding genes (PCGs), 24 non-coding RNAs (2 rRNA genes and 22 tRNA genes), along with two putative control regions measuring 882 bp and 1153 bp, respectively. It exhibits a high AT% content and negative AT-skew, which distinguishing it from the majority of sea cucumbers in terms of environmental adaptability evolution. The mitochondrial gene homology between Gxx-2023 and other sea cucumbers is significantly low, with less than 91% similarity to Benthodytes marianensis, which exhibits the highest level of homology. Additionally, its homology with other sea cucumbers is below 80%. The mitogenome of this species exhibits a unique pattern in terms of start and stop codons, featuring only two types of start codons (ATG and ATT) and three types of stop codons including the incomplete T. Notably, the abundance of AT in the Second position of the codons surpasses that of the First and Third position. The gene arrangement of PCGs exhibits a relatively conserved pattern, while there exists substantial variability in tRNA. Evolutionary analysis revealed that it formed a distinct cluster with B. marianensis and exhibited relatively distant phylogenetic relationships with other sea cucumbers. CONCLUSIONS: These findings contribute to the taxonomic diversity of sea cucumbers in the Elasipodida order, thereby holding significant implications for the conservation of biological genetic resources, evolutionary advancements, and the exploration of novel sea cucumber resources.


Asunto(s)
Evolución Molecular , Genoma Mitocondrial , Filogenia , Pepinos de Mar , Animales , Pepinos de Mar/genética , ARN de Transferencia/genética , Composición de Base
2.
Mar Drugs ; 22(6)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38921576

RESUMEN

Three polysaccharides (SnNG, SnFS and SnFG) were purified from the body wall of Stichopus naso. The physicochemical properties, including monosaccharide composition, molecular weight, sulfate content, and optical rotation, were analyzed, confirming that SnFS and SnFG are sulfated polysaccharides commonly found in sea cucumbers. The highly regular structure {3)-L-Fuc2S-(α1,}n of SnFS was determined via a detailed NMR analysis of its oxidative degradation product. By employing ß-elimination depolymerization of SnFG, tri-, penta-, octa-, hendeca-, tetradeca-, and heptadeca-saccharides were obtained from the low-molecular-weight product. Their well-defined structures confirmed that SnFG possessed the backbone of {D-GalNAc4S6S-ß(1,4)-D-GlcA}, and each GlcA residue was branched with Fuc2S4S. SnFS and SnFG are both structurally the simplest version of natural fucan sulfate and fucosylated glycosaminoglycan, facilitating the application of low-value sea cucumbers S. naso. Bioactivity assays showed that SnFG and its derived oligosaccharides exhibited potent anticoagulation and intrinsic factor Xase (iXase) inhibition. Moreover, a comparative analysis with the series of oligosaccharides solely branched with Fuc3S4S showed that in oligosaccharides with lower degrees of polymerization, such as octasaccharides, Fuc2S4S led to a greater increase in APTT prolongation and iXase inhibition. As the degree of polymerization increases, the influence from the sulfation pattern diminishes, until it is overshadowed by the effects of molecular weight.


Asunto(s)
Anticoagulantes , Peso Molecular , Oligosacáridos , Polisacáridos , Animales , Anticoagulantes/farmacología , Anticoagulantes/química , Anticoagulantes/aislamiento & purificación , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Oligosacáridos/farmacología , Oligosacáridos/química , Oligosacáridos/aislamiento & purificación , Stichopus/química , Pepinos de Mar/química , Sulfatos/química , Espectroscopía de Resonancia Magnética , Coagulación Sanguínea/efectos de los fármacos
3.
Carbohydr Polym ; 341: 122345, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38876715

RESUMEN

Sulfated fucan from sea cucumber is mainly consists of L-fucose and sulfate groups. Recent studies have confirmed that the structure of sulfated fucan mainly consists of repeating units, typically tetrasaccharides. However, there is growing evidence indicating the presence of irregular domains with heterogeneous units that have not been extensively explored. Moreover, as a key contributor to the nutritional benefits of sea cucumbers, sulfated fucan demonstrates a range of biological activities, such as anti-inflammatory, anticancer, hypolipidemic, anti-hyperglycemic, antioxidant, and anticoagulant properties. These biological activities are profoundly influenced by the structural features of sulfated fucan including molecular weight and distribution patterns of sulfate groups. The latest research indicates that sulfated fucan is dispersed in the extracellular matrix of the body wall of sea cucumbers. This article aimed to review the research progress on the in-situ distribution, structures, structural elucidation strategies, functions, and structure-activity relationships of sulfated fucan, especially in the last decade. It also provided insights into the major challenges and potential solutions in the research and development of sulfated fucan. Moreover, the fucanase and carbohydrate binding modules are anticipated to play pivotal roles in advancing this field.


Asunto(s)
Polisacáridos , Pepinos de Mar , Pepinos de Mar/química , Animales , Polisacáridos/química , Polisacáridos/farmacología , Relación Estructura-Actividad , Sulfatos/química , Anticoagulantes/química , Anticoagulantes/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/farmacología
4.
J Food Sci ; 89(7): 3995-4018, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38847764

RESUMEN

Sea cucumbers, members of the echinoderm class Holothuroidea, are marine invertebrates with ecological significance and substantial commercial value. With approximately 1700 species, these organisms contribute to marine ecosystems through nutrient cycling and face various threats, including overfishing and habitat loss. Despite their importance, they are extensively exploited for diverse applications, from seafood to pharmaceuticals. This study investigates sea cucumbers' nutritional profile and bioactive elements, emphasizing their role as sources of essential compounds with potential health benefits. The demand for sea cucumbers, especially in dried form, is significant, prompting exploration into various drying techniques. Examining the global trade in sea cucumbers highlights their economic importance and the conservation challenges they face. Conservation efforts, such as awareness campaigns and international collaboration, are evaluated as essential steps in combating illicit trade and promoting the sustainable stewardship of sea cucumber populations. PRACTICAL APPLICATION: Around 1700 species of sea cucumbers were identified as vital ecological scavengers in the Holothuroidea class. High commercial value due to their health benefits, particularly their demonstrated inhibitory effect against various types of cancer. "Beche-de-mer" holds a 90% market share and is regarded as a luxury food item in Southeast Asian countries. Due to overexploitation, the species is classified as Schedule I under the Wildlife Protection Act (WPA) in India, prompting the implementation of a blanket ban on their harvesting to ensure its conservation.


Asunto(s)
Desecación , Pepinos de Mar , Alimentos Marinos , Pepinos de Mar/química , Animales , India , Desecación/métodos , Alimentos Marinos/análisis , Valor Nutritivo , Manipulación de Alimentos/métodos
5.
Food Res Int ; 190: 114603, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945572

RESUMEN

More than 40 volatile compounds were detected in sea cucumber powder during the processing (through freeze-dried, desalination, supercritical fluid extraction and ultra-micro grinding) by multiple methods including e-nose, GC-IMS and GC-MS. It has been determined that aldehydes are the predominant volatile substances in the original freeze-dried sample, accounting for about 30 % of the total volatile substances. In addition, we established a supercritical fluid extraction strategy that could efficiently remove the aldehydes from the sea cucumber powder. GC-IMS and GC-MS showed that the relative content of aldehydes significantly decreased by 14 % and 28 %, respectively. Quantification of aldehydes using GC-MS showed a significant decrease in octanal from 927 µg/kg to 159 µg/kg. Further investigation combined with OAV analysis showed that 17 volatile substances in the freeze-dried sea cucumber powder were considered to be the predominant volatile compounds (OAV > 1).The primary fishy compounds found in sea cucumber powder were identified as hexanal, octanal, and an unidentified compound using GC-O, which can be effectively removed (OAV can't been estimated) by the supercritical fluid extraction strategy we established.


Asunto(s)
Cromatografía con Fluido Supercrítico , Manipulación de Alimentos , Cromatografía de Gases y Espectrometría de Masas , Polvos , Pepinos de Mar , Compuestos Orgánicos Volátiles , Cromatografía con Fluido Supercrítico/métodos , Pepinos de Mar/química , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/aislamiento & purificación , Animales , Manipulación de Alimentos/métodos , Liofilización , Aldehídos/análisis , Aldehídos/aislamiento & purificación , Nariz Electrónica , Alimentos Marinos/análisis
6.
Genes (Basel) ; 15(5)2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38790170

RESUMEN

Caspase (CASP) is a protease family that plays a vital role in apoptosis, development, and immune response. Herein, we reported the identification and characterization of two CASPs, AjCASPX1 and AjCASPX2, from the sea cucumber Apostichopus japonicus, an important aquaculture species. AjCASPX1/2 share similar domain organizations with the vertebrate initiator caspases CASP2/9, including the CARD domain and the p20/p10 subunits with conserved functional motifs. However, compared with human CASP2/9, AjCASPX1/2 possess unique structural features in the linker region between p20 and p10. AjCASPX1, but not AjCASPX2, induced marked apoptosis of human cells by activating CASP3/7. The recombinant proteins of AjCASPX2 and the CARD domain of AjCASPX2 were able to bind to a wide range of bacteria, as well as bacterial cell wall components, and inhibit bacterial growth. AjCASPX1, when expressed in Escherichia coli, was able to kill the host bacteria. Under normal conditions, AjCASPX1 and AjCASPX2 expressions were most abundant in sea cucumber muscle and coelomocytes, respectively. After bacterial infection, both AjCASPX1 and AjCASPX2 expressions were significantly upregulated in sea cucumber tissues and cells. Together, these results indicated that AjCASPX1 and AjCASPX2 were initiator caspases with antimicrobial activity and likely functioned in apoptosis and immune defense against pathogen infection.


Asunto(s)
Apoptosis , Stichopus , Animales , Stichopus/genética , Stichopus/microbiología , Stichopus/inmunología , Humanos , Caspasas Iniciadoras/genética , Caspasas Iniciadoras/metabolismo , Pepinos de Mar/genética , Filogenia
7.
PLoS One ; 19(5): e0303480, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38820441

RESUMEN

Due to the dramatic reduction of sea cucumber Isostichopus badionotus populations in the Yucatan Peninsula by overfishing and poaching, aquaculture has been encouraged as an alternative to commercial catching and restoring wild populations. However, the scarcity of broodstock, the emergence of a new disease in the auricularia larvae stage, and the development of skin ulceration syndrome (SUS) in the culture have limited aquaculture development. This study presents the changes in the intestine and skin microbiota observed in early and advanced stages of SUS disease in cultured juvenile I. badionotus obtained during an outbreak in experimental culture through 16S rRNA gene sequencing and histological evidence. Our results showed inflammation in the intestines of juveniles at both stages of SUS. However, more severe tissue damage and the presence of bacterial clusters were detected only in the advanced stages of SUS. Differences in the composition and structure of the intestinal and skin bacterial community from early and advanced stages of SUS were detected, with more evident changes in the intestinal microbial communities. These findings suggest that SUS was not induced by a single pathogenic bacterium. Nevertheless, a decrease in the abundance of Vibrio and an increase in Halarcobacter (syn. Arcobacter) was observed, suggesting that these two bacterial groups could be keystone genera involved in SUS disease.


Asunto(s)
Microbiota , Pepinos de Mar , Piel , Animales , Piel/microbiología , Piel/patología , Pepinos de Mar/microbiología , Acuicultura , ARN Ribosómico 16S/genética , Úlcera Cutánea/microbiología , Úlcera Cutánea/epidemiología , Úlcera Cutánea/patología , Brotes de Enfermedades , Microbioma Gastrointestinal
8.
Int J Biol Macromol ; 269(Pt 2): 131952, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692541

RESUMEN

Thromboembolic diseases pose a serious risk to human health worldwide. Fucosylated chondroitin sulfate (FCS) is reported to have good anticoagulant activity with a low bleeding risk. Molecular weight plays a significant role in the anticoagulant activity of FCS, and FCS smaller than octasaccharide in size has no anticoagulant activity. Therefore, identifying the best candidate for developing novel anticoagulant FCS drugs is crucial. Herein, native FCS was isolated from sea cucumber Cucumaria frondosa (FCScf) and depolymerized into a series of lower molecular weights (FCScfs). A comprehensive assessment of the in vitro anticoagulant activity and in vivo bleeding risk of FCScfs with different molecule weights demonstrated that 10 kDa FCScf (FCScf-10 K) had a greater intrinsic anticoagulant activity than low molecular weight heparin (LMWH) without any bleeding risk. Using molecular modeling combined with experimental validation, we revealed that FCScf-10 K can specifically inhibit the formation of the Xase complex by binding the negatively charged sulfate group of FCScf-10 K to the positively charged side chain of arginine residues on the specific surface of factor IXa. Thus, these data demonstrate that the intermediate molecular weight FCScf-10 K is a promising candidate for the development of novel anticoagulant drugs.


Asunto(s)
Anticoagulantes , Sulfatos de Condroitina , Factor IXa , Peso Molecular , Animales , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacología , Sulfatos de Condroitina/aislamiento & purificación , Anticoagulantes/farmacología , Anticoagulantes/química , Anticoagulantes/aislamiento & purificación , Factor IXa/metabolismo , Factor IXa/antagonistas & inhibidores , Factor IXa/química , Cucumaria/química , Pepinos de Mar/química , Coagulación Sanguínea/efectos de los fármacos , Humanos , Modelos Moleculares
9.
Food Funct ; 15(11): 5972-5986, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38739010

RESUMEN

Since oxidative stress is often associated with neurodegenerative diseases, antioxidants are likely to confer protection against neurodegeneration. Despite an increasing number of food-derived peptides being identified as antioxidants, their antineurodegenerative potentials remain largely unexplored. Here, a sea cucumber peptide preparation - the peptide-rich fraction of <3 kDa (UF<3K) obtained by ultrafiltration from Apostichopus japonicus protein hydrolyzate - was found to protect PC12 cells and Caenorhabditis elegans from neurodegeneration by reducing oxidative stress and apoptosis, demonstrating its in vitro and in vivo neuroprotective effects. As many food-originated peptides are cryptides (cryptic peptides - short amino acid sequences encrypted in parent proteins) released in quantities by protein hydrolysis, UF<3K was subjected to sequencing analysis. As expected, a large repertoire of peptides were identified in UF<3K, establishing a sea cucumber cryptome (1238 peptides in total). Then 134 peptides were randomly selected from the cryptome (>10%) and analyzed for their antioxidant activities using a number of in silico bioinformatic programs as well as in vivo experimental assays in C. elegans. From these results, a novel antioxidant peptide - HoloPep#362 (FETLMPLWGNK) - was shown to not only inhibit aggregation of neurodegeneration-associated polygluatmine proteins but also ameliorate behavioral deficits in proteotoxicity nematodes. Proteomic analysis revealed an increased expression of several lysosomal proteases by HoloPep#362, suggesting proteostasis maintenance as a mechanism for its antineurodegenerative action. These findings provide an insight into the health-promoting potential of sea cucumber peptides as neuroprotective nutraceuticals and also into the importance of training in silico peptide bioactivity prediction programs with in vivo experimental data.


Asunto(s)
Antioxidantes , Caenorhabditis elegans , Fármacos Neuroprotectores , Estrés Oxidativo , Péptidos , Pepinos de Mar , Animales , Caenorhabditis elegans/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Péptidos/farmacología , Péptidos/química , Pepinos de Mar/química , Estrés Oxidativo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Células PC12 , Ratas , Enfermedades Neurodegenerativas/tratamiento farmacológico , Simulación por Computador
10.
ACS Nano ; 18(22): 14427-14440, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38776414

RESUMEN

Muscle atrophy resulting from peripheral nerve injury (PNI) poses a threat to a patient's mobility and sensitivity. However, an effective method to inhibit muscle atrophy following PNI remains elusive. Drawing inspiration from the sea cucumber, we have integrated microneedles (MNs) and microchannel technology into nerve guidance conduits (NGCs) to develop bionic microneedle NGCs (MNGCs) that emulate the structure and piezoelectric function of sea cucumbers. Morphologically, MNGCs feature an outer surface with outward-pointing needle tips capable of applying electrical stimulation to denervated muscles. Simultaneously, the interior contains microchannels designed to guide the migration of Schwann cells (SCs). Physiologically, the incorporation of conductive reduced graphene oxide and piezoelectric zinc oxide nanoparticles into the polycaprolactone scaffold enhances conductivity and piezoelectric properties, facilitating SCs' migration, myelin regeneration, axon growth, and the restoration of neuromuscular function. These combined effects ultimately lead to the inhibition of muscle atrophy and the restoration of nerve function. Consequently, the concept of the synergistic effect of inhibiting muscle atrophy and promoting nerve regeneration has the capacity to transform the traditional approach to PNI repair and find broad applications in PNI repair.


Asunto(s)
Atrofia Muscular , Agujas , Regeneración Nerviosa , Pepinos de Mar , Animales , Regeneración Nerviosa/efectos de los fármacos , Atrofia Muscular/prevención & control , Atrofia Muscular/patología , Pepinos de Mar/química , Células de Schwann , Traumatismos de los Nervios Periféricos/patología , Traumatismos de los Nervios Periféricos/terapia , Grafito/química , Ratas , Poliésteres/química , Ratas Sprague-Dawley , Ratones
11.
Sci Total Environ ; 928: 172208, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38583632

RESUMEN

The ocean is facing a multitude of abiotic stresses due to factors such as climate change and pollution. Understanding how organisms in the ocean respond to these global changes is vital to better predicting consequences. Sea cucumbers are popular echinoderms with multiple ecological, nutritional, and pharmaceutical benefits. Here, we reviewed the effects of environmental change on an ecologically important echinoderm of the ocean, aiming to understand their response better, which could facilitate healthy culture programs under environmental changes and draw attention to knowledge gaps. After screening articles from the databases, 142 studies were included on the influence of emergent contaminants and climate variation on the early developmental stages and adults of sea cucumbers. We outlined the potential mechanism underlying the physiological response of sea cucumbers to emerging contaminants and climate change. It can be concluded that the physiological response of sea cucumbers to emergent contaminants differs from their response to climate change. Sea cucumbers could accumulate pollutants in their organs but are aestivated when exposed to extreme climate change. Research showed that the physiological response of sea cucumbers to pollutants indicates that these pollutants impair critical physiological processes, particularly during the more susceptible early phases of development compared to adults, and the accumulation of these pollutants in adults is often observed. For climate change, sea cucumbers showed gradual adaptation to the slight variation. However, sea cucumbers undergo aestivation under extreme conditions. Based on this review, critical suggestions for future research are presented, and we call for more efforts focusing on the co-occurrence of different stressors to extend the knowledge regarding the effects of environmental changes on these economically and ecologically important species.


Asunto(s)
Cambio Climático , Pepinos de Mar , Estrés Fisiológico , Animales , Pepinos de Mar/fisiología , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
12.
Food Res Int ; 184: 114253, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609231

RESUMEN

Sea cucumbers are a rich source of bioactive compounds and are gaining popularity as nutrient-rich seafood. They are consumed as a whole organism in Pacific regions. However, limited data are available on the comparison of their lipid composition and nutritional value. In this study, untargeted liquid chromatography/mass spectrometry was applied to comprehensively profile lipids in the skin, meat, and intestinal contents of three color-distinct edible sea cucumbers. Multivariate principal component analysis revealed that the lipid composition of the intestinal contents of red, black, and blue sea cucumbers differs from that of skin, and meats. Polyunsaturated fatty acids (PUFAs) are abundant in the intestinal contents, followed by meats of sea cucumber. Lipid nutritional quality assessments based on fatty acid composition revealed a high P:S ratio, low index of atherogenicity, and high health promotion indices for the intestinal contents of red sea cucumber, suggesting its potential health benefits. In addition, hierarchical cluster analysis revealed that the intestinal contents of sea cucumbers were relatively high in PUFA-enriched phospholipids and lysophospholipids. Ceramides are abundant in black skin, blue meat, and red intestinal content samples. Overall, this study provides the first insights into a comprehensive regio-specific profile of the lipid content of sea cucumbers and their potential use as a source of lipid nutrients in food and nutraceuticals.


Asunto(s)
Pepinos de Mar , Animales , Ceramidas , Análisis por Conglomerados , Suplementos Dietéticos , Ácidos Grasos
13.
Sci Total Environ ; 927: 172050, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38565356

RESUMEN

In China, aquatic supply chain network design does not include the green concept or the coordination of environmental and economic performance. Sea cucumber (Apostichopus japonicus) is an aquatic product of high economic value; however, studies on sea cucumber supply chain network optimization are lacking. This study is the first to design the sea cucumber supply chain and construct an optimization model. Considering the characteristics of the sea cucumber industry, LCA for Experts software and the CML-IA-Aug. 2016-world method were used to assess each aquaculture model's global warming potential (GWP), as the environmental performance indicator. In addition, multi-objective genetic algorithm (MOGA) coupled with Modified Technique for Order of Preference by Similarity to Ideal Solution (M-TOPSIS) integrates yield production, economic benefits, and environmental performance. The results demonstrated that cage seed rearing (CSR) combined bottom sowing aquaculture (BSA) represents the best production strategy upstream of the sea cucumber supply chain. In the downstream, the best proportion of sales channels in supermarkets, boutique stores and online shops accounted for 14.79 %, 58.02 % and 27.19 % of the production, respectively. The proposed optimization scenario 4 (S4) can increase product profit by 27.88 % and reduce GWP by 56.89 %. The following improvement measures are proposed: using sea cucumber aquaculture industry standards (cleaner production and green supplier selection) to regulate the behavior of enterprises, adopting an ecological and green production strategy, eliminating high-energy consumption and high emission production practices, and promoting widespread adoption of green consumption concepts. Finally, these measures may improve the sea cucumber supply chain, achieve coordinated environmental and economic performance development in the sea cucumber industry, and provide guidance for green optimization of other aquatic product supply chains in China.


Asunto(s)
Acuicultura , Pepinos de Mar , Animales , Acuicultura/métodos , China , Pepinos de Mar/crecimiento & desarrollo , Calentamiento Global , Stichopus/crecimiento & desarrollo
14.
Mar Drugs ; 22(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38667801

RESUMEN

Fucosylated chondroitin sulfate is a unique glycosaminoglycan isolated from sea cucumbers, with excellent anticoagulant activity. The fucosyl branch in FCS is generally located at the 3-OH of D-glucuronic acid but, recently, a novel structure with α-L-fucose linked to the 6-OH of N-acetyl-galactosamine has been found. Here, using functionalized monosaccharide building blocks, we prepared novel FCS tetrasaccharides with fucosyl branches both at the 6-OH of GalNAc and 3-OH of GlcA. In the synthesis, the protective group strategy of selective O-sulfation, as well as stereoselective glycosylation, was established, which enabled the efficient synthesis of the specific tetrasaccharide compounds. This research enriches knowledge on the structural types of FCS oligosaccharides and facilitates the exploration of the structure-activity relationship in the future.


Asunto(s)
Sulfatos de Condroitina , Oligosacáridos , Pepinos de Mar , Sulfatos de Condroitina/química , Sulfatos de Condroitina/síntesis química , Sulfatos de Condroitina/farmacología , Animales , Oligosacáridos/síntesis química , Oligosacáridos/química , Pepinos de Mar/química , Glicosilación , Fucosa/química , Anticoagulantes/farmacología , Anticoagulantes/química , Anticoagulantes/síntesis química , Relación Estructura-Actividad , Acetilgalactosamina/química , Acetilgalactosamina/análogos & derivados
15.
Molecules ; 29(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38611791

RESUMEN

Acute lung injury (ALI) represents a life-threatening condition with high morbidity and mortality despite modern mechanical ventilators and multiple pharmacological strategies. Therefore, there is a need to develop efficacious interventions with minimal side effects. The anti-inflammatory activities of sea cucumber (Cucumaria frondosa) and wild blueberry (Vaccinium angustifolium) extracts have been reported recently. However, their anti-inflammatory activities and the mechanism of action against ALI are not fully elucidated. Thus, the present study aims to understand the mechanism of the anti-inflammatory activity of sea cucumber and wild blueberry extracts in the context of ALI. Experimental ALI was induced via intranasal lipopolysaccharide (LPS) instillation in C57BL/6 mice and the anti-inflammatory properties were determined by cytokine analysis, histological examination, western blot, and qRT-PCR. The results showed that oral supplementation of sea cucumber extracts repressed nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, thereby downregulating the expression of interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF) in the lung tissue and in the plasma. Wild blueberry extracts also suppressed the expression of IL-4. Furthermore, the combination of sea cucumber and wild blueberry extracts restrained MAPK signaling pathways by prominent attenuation of phosphorylation of NF-κB, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) while the levels of pro-inflammatory cytokines were significantly suppressed. Moreover, there was a significant and synergistic reduction in varying degrees of ALI lesions such as distorted parenchyma, increased alveoli thickness, lymphocyte and neutrophil infiltrations, fibrin deposition, pulmonary emphysema, pneumonia, intra-alveolar hemorrhage, and edema. The anti-inflammatory effect of the combination of sea cucumber and wild blueberry extracts is associated with suppressing MAPK and NF-κB signaling pathways, thereby significantly reducing cytokine storm in LPS-induced experimental ALI.


Asunto(s)
Lesión Pulmonar Aguda , Arándanos Azules (Planta) , Extractos Vegetales , Pepinos de Mar , Ratones , Animales , Ratones Endogámicos C57BL , FN-kappa B , Sistema de Señalización de MAP Quinasas , Lipopolisacáridos/toxicidad , Inflamación/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Citocinas , Quinasas MAP Reguladas por Señal Extracelular , Interleucina-1beta , Antiinflamatorios/farmacología
16.
Food Chem ; 449: 139302, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608610

RESUMEN

In this study, the effects of the thermal ultrasonic enzyme inactivation process on flavor enhancement in sea cucumber hydrolysates (SCHs) and its impact on the inactivation of neutral proteases (NPs) were investigated. The body wall of the sea cucumber was enzymatically hydrolyzed with NPs. On the one hand, the structure of NPs subjected to different enzyme inactivation methods was analyzed using ζ-potential, particle size, and Fourier transform infrared (FT-IR) spectroscopy. On the other hand, the microstructure and flavor changes of SCHs were examined through scanning electron microscopy, E-nose, and gas chromatography-ion mobility spectrometry (GC-IMS). The results indicated that thermal ultrasound treatment at 60 °C could greatly affect the structure of NPs, thereby achieving enzyme inactivation. Furthermore, this treatment generated more pleasant flavor compounds, such as pentanal and (E)-2-nonenal. Hence, thermal ultrasound treatment could serve as an alternative process to traditional heat inactivation of enzymes for improving the flavor of SCHs.


Asunto(s)
Calor , Pepinos de Mar , Animales , Pepinos de Mar/química , Aromatizantes/química , Aromatizantes/metabolismo , Hidrolisados de Proteína/química , Gusto , Hidrólisis , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Ondas Ultrasónicas
17.
J Agric Food Chem ; 72(17): 9842-9855, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38630981

RESUMEN

The sea cucumber plasmalogen PlsEtn has been shown to be associated with various chronic diseases related to lipid metabolism. However, the mechanism is unclear. Therefore, the present study used the sea cucumber plasmanylcholine PakCho as a structural contrast to PlsEtn and assessed its effect in 8 week high-fat diet (HFD)-fed mice. The lipidomic approach based on high-resolution mass spectrometry combined with molecular biology techniques was used to evaluate the mechanism of PlsEtn. The results showed that both PlsEtn and PakCho significantly inhibited an increase in mouse body weight and liver total triglyceride and total cholesterol levels caused by HFD. In addition, oil red O staining demonstrated that lipid droplets stored in the liver were degraded. Meanwhile, untargeted lipidomic experiments revealed that total lipids (increased by 42.8 mmol/mg prot; p < 0.05), triglycerides (increased by 38.9 mmol/mg prot; p < 0.01), sphingolipids (increased by 1.5 mmol/mg prot; p < 0.0001), and phospholipids (increased by 2.5 mmol/mg prot; p < 0.05) were all significantly elevated under HFD. PlsEtn resolved lipid metabolism disorders by alleviating the abnormal expression of lipid subclasses. In addition, five lipid molecular species, PE (18:1/20:4), PE (18:1/20:3), PE (18:1/18:3), TG (16:0/16:0/17:0), and TG (15:0/16:0/18:1), were identified as the biomarkers of HFD-induced lipid metabolism disorders. Finally, lipophagy-associated protein expression analysis showed that HFD abnormally activated lipophagy via ULK1 phosphorylation and PlsEtn alleviated lipophagy disorder through lysosomal function promotion. In addition, PlsEtn performed better than PakCho. Taken together, the current study results unraveled the mechanism of PlsEtn in alleviating lipid metabolism disorder and offered a new theoretical foundation for the high-value development of sea cucumber.


Asunto(s)
Dieta Alta en Grasa , Metabolismo de los Lípidos , Hígado , Ratones Endogámicos C57BL , Plasmalógenos , Pepinos de Mar , Triglicéridos , Animales , Dieta Alta en Grasa/efectos adversos , Ratones , Pepinos de Mar/química , Pepinos de Mar/metabolismo , Hígado/metabolismo , Masculino , Plasmalógenos/metabolismo , Triglicéridos/metabolismo , Humanos , Lípidos/sangre
18.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(5): 159495, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38609006

RESUMEN

Sea cucumber phospholipids, including the plasmalogen (PlsEtn) and plasmanylcholine (PakCho), have been shown to play a regulatory role in lipid metabolism disorders, but their mechanism of action remains unclear. Therefore, high-fat diet (HFD) and palmitic acid were used to establish lipid accumulation models in mice and HepG2 cells, respectively. Results showed that PlsEtn can reduce lipid deposition both in vivo and in vitro. HFD stimulation abnormally activated lipophagy through the phosphorylation of the AMPK/ULK1 pathway. The lipophagy flux monitor revealed abnormalities in the fusion stage of lipophagy. Of note, only PlsEtn stimulated the dynamic remodeling of the autophagosome membrane, which was indicated by the significantly decreased LC3 II/I ratio and p62 level. In all experiments, the effect of PlsEtn was significantly higher than that of PakCho. These findings elucidated the mechanism of PlsEtn in alleviating lipid accumulation, showed that it might be a lipophagy enhancer, and provided new insights into the high-value utilization of sea cucumber as an agricultural resource.


Asunto(s)
Dieta Alta en Grasa , Metabolismo de los Lípidos , Plasmalógenos , Pepinos de Mar , Animales , Dieta Alta en Grasa/efectos adversos , Plasmalógenos/metabolismo , Pepinos de Mar/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Humanos , Células Hep G2 , Masculino , Ratones Endogámicos C57BL , Autofagia/efectos de los fármacos
19.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38674158

RESUMEN

With the continuous rise of the sea cucumber aquaculture industry in China, the tropical sea cucumber aquaculture industry is also improving. However, research on the gut microorganisms of tropical sea cucumbers in captivity is scarce. In this study, high-throughput sequencing methods were used to analyze the gut microbial composition of Stichopus monotuberculatus and Holothuria scabra in the dry season and wet season of artificial environments. The results showed that 66 phyla were obtained in all samples, of which 59 phyla were obtained in the dry season, and 45 phyla were obtained in the wet season. The Tax4Fun analysis showed that certain gut bacterial communities affect the daily metabolism of two sea cucumber species and are involved in maintaining gut microecological balance in the gut of two sea cucumber species. In addition, compared with differences between species, PCoA and UPGMA clustering analysis showed the gut prokaryotes of the same sea cucumber species varied more in different seasons, indicating that the influence of environment was higher than the feeding choices of sea cucumbers under relatively closed conditions. These results revealed the gut bacterial community composition of S. monotuberculatus and H. scabra and the differences in gut bacterial structure between two sea cucumber species in different seasons were compared, which would provide the foundation for tropical sea cucumber aquaculture in the future.


Asunto(s)
Bacterias , Microbioma Gastrointestinal , Pepinos de Mar , Estaciones del Año , Animales , Microbioma Gastrointestinal/genética , Bacterias/clasificación , Bacterias/genética , Pepinos de Mar/microbiología , Pepinos de Mar/genética , Acuicultura , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Holothuria/microbiología , Holothuria/genética , Stichopus/microbiología , Stichopus/genética , ARN Ribosómico 16S/genética
20.
Chem Biodivers ; 21(6): e202400335, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38456571

RESUMEN

Sea cucumbers release chemical repellents from their guts when they are in danger from predators or a hostile environment. To investigate the chemical structure of the repellent, we collected and chemically analyzed the viscera of stressed sea cucumbers (Apostichopus japonicus) in the Yellow Sea of China. Two undescribed triterpene glycosides (1 and 2), together with a known cladoloside A (3), were identified and elucidated as 3ß-O-{2-O-[ß-d-quinovopyranosyl]-4-O-[3-O-methyl-ß-d-glucopyranosyl-(1→3)-ß-d-glucopyranosyl]-ß-d-xylopyranosyl}-holosta-9(11),25(26)-dien-16-one (1), 3ß-O-{2-O-[ß-d-glucopyranosyl]-4-O-[3-O-methyl-ß-d-glucopyranosyl-(1→3)-ß-d-glucopyranosyl]-ß-d-xylopyranosyl}-holosta-9(11),25(26)-dien-16-one (2), 3ß-O-{2-O-[3-O-methyl-ß-d-glucopyranosyl-(1→3)-ß-d-xylopyranosyl-(1→4)-ß-d-quinovopyranosyl]-ß-d-xylopyranosyl}-holosta-9(11),25(26)-dien-16-one (3) by spectroscopic analysis, including HR-ESI-MS and NMR spectra. Compounds 1, 2, and 3 display embryonic toxicity, as indicated by their 96-hour post-fertilization lethal concentration (96 hpf-LC50) values of 0.289, 0.536, and 0.091 µM, respectively. Our study discovered a class of triterpene glycoside compounds consisting of an oligosaccharide with four sugar units and a holostane aglycone. These compounds possess embryotoxicity and may serve as chemical defense molecules in marine benthic ecosystems.


Asunto(s)
Glicósidos , Triterpenos , Animales , Glicósidos/química , Glicósidos/aislamiento & purificación , Glicósidos/toxicidad , Triterpenos/química , Triterpenos/aislamiento & purificación , Triterpenos/farmacología , Stichopus/química , Vísceras/química , Pepinos de Mar/química , Embrión no Mamífero/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA