Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Protein Sci ; 33(6): e5019, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38747396

RESUMEN

AF9 (MLLT3) and its paralog ENL(MLLT1) are members of the YEATS family of proteins with important role in transcriptional and epigenetic regulatory complexes. These proteins are two common MLL fusion partners in MLL-rearranged leukemias. The oncofusion proteins MLL-AF9/ENL recruit multiple binding partners, including the histone methyltransferase DOT1L, leading to aberrant transcriptional activation and enhancing the expression of a characteristic set of genes that drive leukemogenesis. The interaction between AF9 and DOT1L is mediated by an intrinsically disordered C-terminal ANC1 homology domain (AHD) in AF9, which undergoes folding upon binding of DOT1L and other partner proteins. We have recently reported peptidomimetics that disrupt the recruitment of DOT1L by AF9 and ENL, providing a proof-of-concept for targeting AHD and assessing its druggability. Intrinsically disordered proteins, such as AF9 AHD, are difficult to study and characterize experimentally on a structural level. In this study, we present a successful protein engineering strategy to facilitate structural investigation of the intrinsically disordered AF9 AHD domain in complex with peptidomimetic inhibitors by using maltose binding protein (MBP) as a crystallization chaperone connected with linkers of varying flexibility and length. The strategic incorporation of disulfide bonds provided diffraction-quality crystals of the two disulfide-bridged MBP-AF9 AHD fusion proteins in complex with the peptidomimetics. These successfully determined first series of 2.1-2.6 Å crystal complex structures provide high-resolution insights into the interactions between AHD and its inhibitors, shedding light on the role of AHD in recruiting various binding partner proteins. We show that the overall complex structures closely resemble the reported NMR structure of AF9 AHD/DOT1L with notable difference in the conformation of the ß-hairpin region, stabilized through conserved hydrogen bonds network. These first series of AF9 AHD/peptidomimetics complex structures are providing insights of the protein-inhibitor interactions and will facilitate further development of novel inhibitors targeting the AF9/ENL AHD domain.


Asunto(s)
Proteína de la Leucemia Mieloide-Linfoide , Peptidomiméticos , Humanos , Cristalografía por Rayos X , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/antagonistas & inhibidores , Modelos Moleculares , Proteína de la Leucemia Mieloide-Linfoide/antagonistas & inhibidores , Proteína de la Leucemia Mieloide-Linfoide/química , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas de Fusión Oncogénica/química , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Peptidomiméticos/química , Peptidomiméticos/metabolismo , Dominios Proteicos
2.
Pharm Res ; 40(11): 2747-2758, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37833570

RESUMEN

PURPOSE: There is growing interest in seeking pharmacological activation of neurolysin (Nln) for stroke treatment. Discovery of central nervous system drugs remains challenging due to the protection of the blood-brain barrier (BBB). The previously reported peptidomimetic Nln activators display unsatisfactory BBB penetration. Herein, we investigate the next generation of non-peptidomimetic Nln activators with high BBB permeability. METHODS: A BBB-mimicking model was used to evaluate their in vitro BBB permeability. Protein binding, metabolic stability, and efflux assays were performed to determine their unbound fraction, half-lives in plasma and brains, and dependence of BBB transporter P-glycoprotein (P-gp). The in vivo pharmacokinetic profiles were elucidated in healthy and stroke mice. RESULTS: Compounds KS52 and KS73 out of this generation exhibit improved peptidase activity and BBB permeability compared to the endogenous activator and previous peptidomimetic activators. They show reasonable plasma and brain protein binding, improved metabolic stability, and independence of P-gp-mediated efflux. In healthy animals, they rapidly distribute into brains and reach peak levels of 18.69% and 12.10% injected dose (ID)/ml at 10 min. After 4 h, their total brain concentrations remain 7.78 and 12.34 times higher than their A50(minimal concentration required for enhancing 50% peptidase activity). Moreover, the ipsilateral hemispheres of stroke animals show comparable uptake to the corresponding contralateral hemispheres and healthy brains. CONCLUSIONS: This study provides essential details about the pharmacokinetic properties of a new generation of potent non-peptidomimetic Nln activators with high BBB permeability and warrants the future development of these agents as potential neuroprotective pharmaceutics for stroke treatment.


Asunto(s)
Peptidomiméticos , Accidente Cerebrovascular , Ratones , Animales , Barrera Hematoencefálica/metabolismo , Peptidomiméticos/metabolismo , Metaloendopeptidasas/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Permeabilidad
3.
Prog Neurobiol ; 230: 102513, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37536482

RESUMEN

Angelman Syndrome (AS) is a severe cognitive disorder caused by loss of neuronal expression of the E3 ubiquitin ligase UBE3A. In an AS mouse model, we previously reported a deficit in brain-derived neurotrophic factor (BDNF) signaling, and set out to develop a therapeutic that would restore normal signaling. We demonstrate that CN2097, a peptidomimetic compound that binds postsynaptic density protein-95 (PSD-95), a TrkB associated scaffolding protein, mitigates deficits in PLC-CaMKII and PI3K/mTOR pathways to restore synaptic plasticity and learning. Administration of CN2097 facilitated long-term potentiation (LTP) and corrected paired-pulse ratio. As the BDNF-mTORC1 pathway is critical for inhibition of autophagy, we investigated whether autophagy was disrupted in AS mice. We found aberrantly high autophagic activity attributable to a concomitant decrease in mTORC1 signaling, resulting in decreased levels of synaptic proteins, including Synapsin-1 and Shank3. CN2097 increased mTORC1 activity to normalize autophagy and restore hippocampal synaptic protein levels. Importantly, treatment mitigated cognitive and motor dysfunction. These findings support the use of neurotrophic therapeutics as a valuable approach for treating AS pathology.


Asunto(s)
Síndrome de Angelman , Peptidomiméticos , Animales , Ratones , Síndrome de Angelman/tratamiento farmacológico , Síndrome de Angelman/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Peptidomiméticos/metabolismo , Factores de Transcripción/metabolismo
4.
Nat Commun ; 14(1): 4038, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37419980

RESUMEN

Antimicrobial resistance is one of the leading concerns in medical care. Here we study the mechanism of action of an antimicrobial cationic tripeptide, AMC-109, by combining high speed-atomic force microscopy, molecular dynamics, fluorescence assays, and lipidomic analysis. We show that AMC-109 activity on negatively charged membranes derived from Staphylococcus aureus consists of two crucial steps. First, AMC-109 self-assembles into stable aggregates consisting of a hydrophobic core and a cationic surface, with specificity for negatively charged membranes. Second, upon incorporation into the membrane, individual peptides insert into the outer monolayer, affecting lateral membrane organization and dissolving membrane nanodomains, without forming pores. We propose that membrane domain dissolution triggered by AMC-109 may affect crucial functions such as protein sorting and cell wall synthesis. Our results indicate that the AMC-109 mode of action resembles that of the disinfectant benzalkonium chloride (BAK), but with enhanced selectivity for bacterial membranes.


Asunto(s)
Antiinfecciosos , Peptidomiméticos , Peptidomiméticos/farmacología , Peptidomiméticos/metabolismo , Péptidos Catiónicos Antimicrobianos/química , Antiinfecciosos/química , Staphylococcus aureus , Simulación de Dinámica Molecular , Membrana Celular/metabolismo , Antibacterianos/química , Pruebas de Sensibilidad Microbiana
5.
J Med Chem ; 66(15): 10658-10680, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37505188

RESUMEN

The Plasmodium falciparum aspartic protease plasmepsin X (PMX) is essential for the egress of invasive merozoite forms of the parasite. PMX has therefore emerged as a new potential antimalarial target. Building on peptidic amino alcohols originating from a phenotypic screening hit, we have here developed a series of macrocyclic analogues as PMX inhibitors. Incorporation of an extended linker between the S1 phenyl group and S3 amide led to a lead compound that displayed a 10-fold improved PMX inhibitory potency and a 3-fold improved half-life in microsomal stability assays compared to the acyclic analogue. The lead compound was also the most potent of the new macrocyclic compounds in in vitro parasite growth inhibition. Inhibitor 7k cleared blood-stage P. falciparum in a dose-dependent manner when administered orally to infected humanized mice. Consequently, lead compound 7k represents a promising orally bioavailable molecule for further development as a PMX-targeting antimalarial drug.


Asunto(s)
Antimaláricos , Peptidomiméticos , Ratones , Animales , Antimaláricos/farmacología , Antimaláricos/metabolismo , Peptidomiméticos/farmacología , Peptidomiméticos/metabolismo , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/metabolismo , Ácido Aspártico Endopeptidasas , Plasmodium falciparum/metabolismo , Proteínas Protozoarias
6.
J Biomol Struct Dyn ; 41(7): 3076-3088, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35238272

RESUMEN

Infections caused by the Zika virus (ZIKV) have detrimental effects on human health, in particular on infants. As no potent drug or vaccine is available to date to contain this viral disease, it is necessary to design inhibitors that can target the NS2B-NS3 protease of the ZIKV, which is mainly responsible for the proliferation of the virus inside the host cells . Here, molecular dynamics (MD) simulation and molecular mechanics energies combined with the generalized Born and surface area continuum solvation model (MM/GBSA) are used to understand the binding modes and stabilities of R, KR, KKR, WKR, WKKR, YKKR, and FKKR peptide inhibitors bound to the NS3-NS2B protease. The results are compared with the corresponding results obtained for covalent (compound 1) and non-covalent (compound 4*) peptidomimetic inhibitors . It is revealed that peptide inhibitors can bind strongly with the ZIKV protease with the ΔGbind ranging from -12 kcal/mol to -73 kcal/mol. Among these peptides, YKKR is found to make the most stable complex with the protease and fully occupy the electrostatically active substrate binding site. Hence, it would inhibit the protease activities of ZIKV strongly. The residue-wise decomposition of ΔGbind indicates that Asp75, Asp129, Tyr130, Ser135, Gly151, Asn152, Glys153, and Tyr161 of NS3 and Ser81, Asp83, and Phe84 of NS2B play a prominent role in the inhibitor binding. Therefore, any future design of inhibitors should be aimed to target these residues.


Asunto(s)
Peptidomiméticos , Infección por el Virus Zika , Virus Zika , Humanos , Péptido Hidrolasas/metabolismo , Peptidomiméticos/metabolismo , Proteínas no Estructurales Virales/química , Serina Endopeptidasas/química , Unión Proteica , Péptidos/metabolismo
7.
Chem Commun (Camb) ; 59(5): 587-590, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36524690

RESUMEN

Staphylococcus aureus uses small peptides to assess its population densisty (i.e., quorum sensing) and regulate virulence at high cell number. Here, we report the design and synthesis of peptidomimetics based on these native signals that strongly block this communication pathway in all four specificity groups of S. aureus.


Asunto(s)
Peptidomiméticos , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus/fisiología , Peptidomiméticos/farmacología , Peptidomiméticos/metabolismo , Percepción de Quorum , Proteínas Bacterianas/metabolismo , Péptidos/metabolismo
8.
Cell Death Dis ; 13(11): 959, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36379916

RESUMEN

Caspase-2 (Casp2) is a promising therapeutic target in several human diseases, including nonalcoholic steatohepatitis (NASH) and Alzheimer's disease (AD). However, the design of an active-site-directed inhibitor selective to individual caspase family members is challenging because caspases have extremely similar active sites. Here we present new peptidomimetics derived from the VDVAD pentapeptide structure, harboring non-natural modifications at the P2 position and an irreversible warhead. Enzyme kinetics show that these new compounds, such as LJ2 or its specific isomers LJ2a, and LJ3a, strongly and irreversibly inhibit Casp2 with genuine selectivity. In agreement with the established role of Casp2 in cellular stress responses, LJ2 inhibits cell death induced by microtubule destabilization or hydroxamic acid-based deacetylase inhibition. The most potent peptidomimetic, LJ2a, inhibits human Casp2 with a remarkably high inactivation rate (k3/Ki ~5,500,000 M-1 s-1), and the most selective inhibitor, LJ3a, has close to a 1000 times higher inactivation rate on Casp2 as compared to Casp3. Structural analysis of LJ3a shows that the spatial configuration of Cα at the P2 position determines inhibitor efficacy. In transfected human cell lines overexpressing site-1 protease (S1P), sterol regulatory element-binding protein 2 (SREBP2) and Casp2, LJ2a and LJ3a fully inhibit Casp2-mediated S1P cleavage and thus SREBP2 activation, suggesting a potential to prevent NASH development. Furthermore, in primary hippocampal neurons treated with ß-amyloid oligomers, submicromolar concentrations of LJ2a and of LJ3a prevent synapse loss, indicating a potential for further investigations in AD treatment.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Peptidomiméticos , Humanos , Caspasa 2/metabolismo , Caspasa 3/metabolismo , Neuronas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Peptidomiméticos/farmacología , Peptidomiméticos/metabolismo
9.
J Proteome Res ; 21(10): 2247-2260, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36107737

RESUMEN

Neuropeptides are signaling molecules that regulate almost all physiological processes in animals. Around 50 different genes for neuropeptides have been described in insects. In Coleoptera, which is the largest insect order based on numbers of described species, knowledge about neuropeptides and protein hormones is still limited to a few species. Here, we analyze the neuropeptidomes of two closely related tenebrionid beetles: Tenebrio molitor and Zophobas atratus─both of which are model species in physiological and pharmacological research. We combined transcriptomic and mass spectrometry analyses of the central nervous system to identify neuropeptides and neuropeptide-like and protein hormones. Several precursors were identified in T. molitor and Z. atratus, of which 50 and 40, respectively, were confirmed by mass spectrometry. This study provides the basis for further functional studies of neuropeptides as well as for the design of environmentally friendly and species-specific peptidomimetics to be used as biopesticides. Furthermore, since T. molitor has become accepted by the European Food Safety Authority as a novel food, a deeper knowledge of the neuropeptidome of this species will prove useful for optimizing production programs at an industrial scale.


Asunto(s)
Escarabajos , Neuropéptidos , Peptidomiméticos , Tenebrio , Animales , Agentes de Control Biológico/metabolismo , Escarabajos/metabolismo , Hormonas , Larva/metabolismo , Neuropéptidos/metabolismo , Peptidomiméticos/metabolismo , Tenebrio/genética , Tenebrio/metabolismo
10.
Pharmacol Ther ; 238: 108259, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35934214

RESUMEN

MAS-related G protein-coupled receptors (GPCRs) of subfamily X, designated MRGPRX, are primate-specific orphan receptors that belong to the δ-branch of rhodopsin-like, class A GPCRs. Four distinct subtypes exist, MRGPRX1, -2, -3, and -4, MRGPRX2 having the lowest degree of similarity with the others. Due to their expression on sensory neurons and immune cells, and their roles in pain perception and transmission, itch, inflammation, immune defense, pseudo-allergic reactions, wound healing, and possibly cancer, they have recently attracted much attention as novel drug targets. In particular MRGPRX2 was identified as an important mast cell receptor, responsible for anaphylactoid drug reactions and involved in skin and mucosal diseases, e.g. urticaria, atopic dermatitis, rosacea, and allergic rhinitis. A major hurdle has been the lack of animal models for studying these primate-specific receptors. However, recently humanized mice have been created. Moreover, a mouse ortholog of MRGPRX2, MRGPRB2, was identified, both receptors having a certain degree of similarity. MRGPRX1 and -2 can be activated by various peptides and small (partly peptidomimetic) molecules. MRGPRX2 is additionally activated by a very broad range of basic molecules, positively charged at physiologic pH value of 7.4, including many drugs. MRGPRX4 is activated by small acidic molecules including bile acids. For MRGPRX3, no ligands have been reported yet. Antagonists with reasonable potency and selectivity have been described for MRGPRX1, and few antagonists also for MRGPRX2, but not for the other subtypes. The recent elucidation of cryogenic electron microscopy structures of MRGPRX2 and -4 is expected to facilitate and advance drug development for these receptors. Currently, research on MRGPRX is still in its infancy, and exciting discoveries can be awaited. These receptors have great potential as future drug targets.


Asunto(s)
Anafilaxia , Peptidomiméticos , Anafilaxia/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Humanos , Mastocitos/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Péptidos/metabolismo , Peptidomiméticos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropéptido , Rodopsina/metabolismo
11.
Chem Commun (Camb) ; 58(33): 5132-5135, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35380562

RESUMEN

Misfolding of the human protein α-synuclein results in toxic fibrils and the aggregation of Lewy bodies, which are a hallmark of Parkinson's disease in brain tissue. Here we disclose a supramolecular approach where peptidomimetics are rationally designed and pre-organised to recognize the surface of native helical α-Syn by forming complementary contacts with key patches of protein surface composed of charged and hydrophobic residues. Under lipid-catalyzed conditions the mimetics slow the rate of aggregation (thioflavin-T assay) and disrupt the misfolding pathway (electron microscopy of aggregates). This hypothesis is supported by comparison with a series of negative control compounds and with circular dichroism spectroscopy. Given the approach relies on selective recognition of both amino acid sequence and conformation (helical secondary structure) there is potential to develop these compounds as tools to unravel the currently intractable structure-function relationships of (i) missense mutation, and (ii) amyloid polymorphism with disease pathogenesis.


Asunto(s)
Enfermedad de Parkinson , Peptidomiméticos , Amiloide/química , Humanos , Cuerpos de Lewy/química , Cuerpos de Lewy/metabolismo , Cuerpos de Lewy/patología , Enfermedad de Parkinson/metabolismo , Peptidomiméticos/metabolismo , alfa-Sinucleína/química
12.
Pharm Res ; 39(7): 1587-1598, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35239135

RESUMEN

PURPOSE: Neurolysin (Nln) is a peptidase that functions to preserve the brain following ischemic stroke by hydrolyzing various neuropeptides. Nln activation has emerged as an attractive drug discovery target for treatment of ischemic stroke. Among first-in-class peptidomimetic Nln activators, we selected three lead compounds (9d, 10c, 11a) for quantitative pharmacokinetic analysis to provide valuable information for subsequent preclinical development. METHODS: Pharmacokinetic profile of these compounds was studied in healthy and ischemic stroke-induced mice after bolus intravenous administration. Brain concentration and brain uptake clearance (Kin) was calculated from single time point analysis. The inter-relationship between LogP with in-vitro and in-vivo permeability was studied to determine CNS penetration. Brain slice uptake method was used to study tissue binding, whereas P-gp-mediated transport was evaluated to understand the potential brain efflux of these compounds. RESULTS: According to calculated parameters, all three compounds showed a detectable amount in the brain after intravenous administration at 4 mg/kg; however, 11a had the highest brain concentration and brain uptake clearance. A strong correlation was documented between in-vitro and in-vivo permeability data. The efflux ratio of 10c was ~6-fold higher compared to 11a and correlated well with its lower Kin value. In experimental stroke animals, the Kin of 11a was significantly higher in ischemic vs. contralateral and intact hemispheres, though it remained below its A50 value required to activate Nln. CONCLUSIONS: Collectively, these preclinical pharmacokinetic studies reveal promising BBB permeability of 11a and indicate that it can serve as an excellent lead for developing improved drug-like Nln activators.


Asunto(s)
Accidente Cerebrovascular Isquémico , Peptidomiméticos , Accidente Cerebrovascular , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Metaloendopeptidasas , Ratones , Peptidomiméticos/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico
13.
J Med Chem ; 65(3): 2646-2655, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35014255

RESUMEN

Development of inhibitors for histone methyllysine reader proteins is an active area of research due to the importance of reader protein-methyllysine interactions in transcriptional regulation and disease. Optimized peptide-based chemical probes targeting methyllysine readers favor larger alkyllysine residues in place of methyllysine. However, the mechanism by which these larger substituents drive tighter binding is not well understood. This study describes the development of a two-pronged approach combining genetic code expansion (GCE) and structure-activity relationships (SAR) through systematic variation of both the aromatic binding pocket in the protein and the alkyllysine residues in the peptide to probe inhibitor recognition in the CBX5 chromodomain. We demonstrate a novel change in driving force for larger alkyllysines, which weaken cation-π interactions but increases dispersion forces, resulting in tighter binding. This GCE-SAR approach establishes discrete energetic contributions to binding from both ligand and protein, providing a powerful tool to gain mechanistic understanding of SAR trends.


Asunto(s)
Homólogo de la Proteína Chromobox 5/metabolismo , Lisina/análogos & derivados , Peptidomiméticos/metabolismo , Homólogo de la Proteína Chromobox 5/química , Homólogo de la Proteína Chromobox 5/genética , Código Genético , Humanos , Ligandos , Estructura Molecular , Mutagénesis Sitio-Dirigida , Peptidomiméticos/química , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Electricidad Estática , Relación Estructura-Actividad
14.
Chem Commun (Camb) ; 58(11): 1804-1807, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35040445

RESUMEN

We present the finding of a dimeric ACE2 peptide mimetic designed through side chain cross-linking and covalent dimerization. It has a binding affinity of 16 nM for the SARS-CoV-2 spike RBD, and effectively inhibits the SARS-CoV-2 pseudovirus in Huh7-hACE2 cells with an IC50 of 190 nM and neutralizes the authentic SARS-CoV-2 in Caco2 cells with an IC50 of 2.4 µM. Our study should provide a new insight for the optimization of peptide-based anti-SARS-CoV-2 inhibitors.


Asunto(s)
Antivirales/farmacología , Fragmentos de Péptidos/farmacología , Peptidomiméticos/farmacología , SARS-CoV-2/efectos de los fármacos , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2/química , Antivirales/síntesis química , Antivirales/metabolismo , Línea Celular Tumoral , Humanos , Pruebas de Sensibilidad Microbiana , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/metabolismo , Peptidomiméticos/síntesis química , Peptidomiméticos/metabolismo , Unión Proteica , Dominios Proteicos , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo
15.
J Med Chem ; 65(3): 1915-1932, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35029981

RESUMEN

The polo-box domain (PBD) of Plk1 is a promising target for cancer therapeutics. We designed and synthesized novel phosphorylated macrocyclic peptidomimetics targeting PBD based on acyclic phosphopeptide PMQSpTPL. The inhibitory activities of 16e on Plk1-PBD is >30-fold higher than those of PMQSpTPL. Both 16a and 16e possess excellent selectivity for Plk1-PBD over Plk2/3-PBD. Analysis of the cocrystal structure of Plk1-PBD in complex with 16a reveals that the 3-(trifluoromethyl)benzoyl group in 16a interacts with Arg516 through a π-stacking interaction. This π-stacking interaction, which has not been reported previously, provides insight into the design of novel and potent Plk1-PBD inhibitors. Furthermore, 16h, a PEGlyated macrocyclic phosphopeptide derivative, induces Plk1 delocalization and mitotic failure in HeLa cells. Also, the number of phospho-H3-positive cells in a zebrafish embryo increases in proportion to the amount of 16a. Collectively, the novel macrocyclic peptidomimetics should serve as valuable templates for the design of potent and novel Plk1-PBD inhibitors.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Péptidos Cíclicos/farmacología , Peptidomiméticos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/metabolismo , Peptidomiméticos/síntesis química , Peptidomiméticos/metabolismo , Unión Proteica , Dominios Proteicos , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Relación Estructura-Actividad , Pez Cebra , Quinasa Tipo Polo 1
16.
Chem Commun (Camb) ; 58(7): 945-948, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34985060

RESUMEN

Systematic incorporation of ring-constrained ß- and γ-amino acid residues into α-helix mimetics engenders stable helical secondary structures. In this paper, functional α/ß/γ-helical peptidomimetics were explored for mimicry of BH3 helical domains, Bim as a pioneering study. The Bim-based α/ß/γ-peptides in an αγααßα-hexad repeat with five helical turns inhibited the interaction between Bak and Bcl-xL with excellent resistance towards proteolytic digestion. Further optimization of the α/ß/γ-backbone strategy will considerably expand the utility of functional α/ß/γ-peptidomimetics, in particular due to its prominent stability against proteolysis.


Asunto(s)
Peptidomiméticos/química , Secuencia de Aminoácidos , Peptidomiméticos/metabolismo , Conformación Proteica en Hélice alfa , Dominios Proteicos , Proteolisis , Proteína Destructora del Antagonista Homólogo bcl-2/química , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína bcl-X/química , Proteína bcl-X/metabolismo
17.
Biochim Biophys Acta Biomembr ; 1864(4): 183842, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34954201

RESUMEN

Owing to the critical role of follicle stimulating hormone receptor (FSHR) signaling in human reproduction, FSHR has been widely explored for development of fertility regulators. Using high-throughput screening approaches, several low molecular weight (LMW) compounds that can modulate FSHR activity have been identified. However, the information about the binding sites of these molecules on FSHR is not known. In the present study, we extracted the structural and functional information of 161 experimentally validated LMW FSHR modulators available in PubMed records. The potential FSHR binding sites for these modulators were identified through molecular docking experiments. The binding sites were further mapped to the agonist or antagonist activity reported for these molecules in literature. MD simulations were performed to evaluate the effect of ligand binding on conformational changes in the receptor, specifically the transmembrane domain. A peptidomimetic library was screened using these binding sites. Six peptidomimetics that interacted with the residues of transmembrane domain and extracellular loops were evaluated for binding activity using in vitro cAMP assay. Two of the six peptidomimetics exhibited positive allosteric modulatory activity and four peptidomimetics exhibited negative allosteric modulatory activity. All six peptidomimetics interacted with Asp521 of hFSHR(TMD). Several of the experimentally known LMW FSHR modulators also participated in H-bond interactions with Asp521, suggesting its important role in FSHR modulatory activity.


Asunto(s)
Peptidomiméticos/química , Receptores de HFE/agonistas , Receptores de HFE/antagonistas & inhibidores , Regulación Alostérica , Sitios de Unión , Bases de Datos Factuales , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Biblioteca de Péptidos , Peptidomiméticos/metabolismo , Dominios Proteicos , Receptores de HFE/metabolismo
18.
Molecules ; 26(23)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34885985

RESUMEN

The 3D structure and surface characteristics of proteins and peptides are crucial for interactions with receptors or ligands and can be modified to some extent to modulate their biological roles and pharmacological activities. The introduction of halogen atoms on the side-chains of amino acids is a powerful tool for effecting this type of tuning, influencing both the physico-chemical and structural properties of the modified polypeptides, helping to first dissect and then rationally modify features that affect their mode of action. This review provides examples of the influence of different types of halogenation in amino acids that replace native residues in proteins and peptides. Examples of synthetic strategies for obtaining halogenated amino acids are also provided, focusing on some representative compounds and their biological effects. The role of halogenation in native and designed antimicrobial peptides (AMPs) and their mimetics is then discussed. These are in the spotlight for the development of new antimicrobial drugs to counter the rise of antibiotic-resistant pathogens. AMPs represent an interesting model to study the role that natural halogenation has on their mode of action and also to understand how artificially halogenated residues can be used to rationally modify and optimize AMPs for pharmaceutical purposes.


Asunto(s)
Antibacterianos/química , Péptidos Antimicrobianos/química , Halogenación , Halógenos/química , Peptidomiméticos/metabolismo , Prolina/análogos & derivados , Antibacterianos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Peptidomiméticos/química , Peptoides/química , Prolina/química , Relación Estructura-Actividad
19.
Bioorg Med Chem Lett ; 50: 128333, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34418570

RESUMEN

Specific anti-coronaviral drugs complementing available vaccines are urgently needed to fight the COVID-19 pandemic. Given its high conservation across the betacoronavirus genus and dissimilarity to human proteases, the SARS-CoV-2 main protease (Mpro) is an attractive drug target. SARS-CoV-2 Mpro inhibitors have been developed at unprecedented speed, most of them being substrate-derived peptidomimetics with cysteine-modifying warheads. In this study, Mpro has proven resistant towards the identification of high-affinity short substrate-derived peptides and peptidomimetics without warheads. 20 cyclic and linear substrate analogues bearing natural and unnatural residues, which were predicted by computational modelling to bind with high affinity and designed to establish structure-activity relationships, displayed no inhibitory activity at concentrations as high as 100 µM. Only a long linear peptide covering residues P6 to P5' displayed moderate inhibition (Ki = 57 µM). Our detailed findings will inform current and future drug discovery campaigns targeting Mpro.


Asunto(s)
COVID-19/patología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/química , SARS-CoV-2/enzimología , COVID-19/virología , Proteasas 3C de Coronavirus/metabolismo , Cisteína/química , Cisteína/metabolismo , Humanos , Lactamas/química , Lactamas/metabolismo , Leucina/química , Leucina/metabolismo , Nitrilos/química , Nitrilos/metabolismo , Péptidos/química , Péptidos/metabolismo , Peptidomiméticos/química , Peptidomiméticos/metabolismo , Prolina/química , Prolina/metabolismo , Inhibidores de Proteasas/metabolismo , SARS-CoV-2/aislamiento & purificación , Relación Estructura-Actividad , Especificidad por Sustrato
20.
ACS Chem Biol ; 16(9): 1721-1736, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34415726

RESUMEN

The interpretation of histone post-translational modifications (PTMs), specifically lysine methylation, by specific classes of "reader" proteins marks an important aspect of epigenetic control of gene expression. Methyl-lysine (Kme) readers often regulate gene expression patterns through the recognition of a specific Kme PTM while participating in or recruiting large protein complexes that contain enzymatic or chromatin remodeling activity. Understanding the composition of these Kme-reader-containing protein complexes can serve to further our understanding of the biological roles of Kme readers, while small molecule chemical tools can be valuable reagents in interrogating novel protein-protein interactions. Here, we describe our efforts to target the chromodomain of M-phase phosphoprotein 8 (MPP8), a member of the human silencing hub (HUSH) complex and a histone 3 lysine 9 trimethyl (H3K9me3) reader that is vital for heterochromatin formation and has specific roles in cancer metastasis. Utilizing a one-bead, one-compound (OBOC) combinatorial screening approach, we identified UNC5246, a peptidomimetic ligand capable of interacting with the MPP8 chromodomain in the context of the HUSH complex. Additionally, a biotinylated derivative of UNC5246 facilitated chemoproteomics studies which revealed hepatoma-derived growth factor-related protein 2 (HRP2) as a novel protein associated with MPP8. HRP2 was further shown to colocalize with MPP8 at the E-cadherin gene locus, suggesting a possible role in cancer cell plasticity.


Asunto(s)
Proteínas de Ciclo Celular/química , Peptidomiméticos/química , Fosfoproteínas/química , Proteínas de Ciclo Celular/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Histonas/química , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ligandos , Lisina/química , Espectrometría de Masas , Metilación , Modelos Moleculares , Peptidomiméticos/metabolismo , Fosfoproteínas/metabolismo , Unión Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Proteómica , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA