Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.340
Filtrar
1.
BMC Genom Data ; 25(1): 45, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714942

RESUMEN

OBJECTIVES: Cellular deconvolution is a valuable computational process that can infer the cellular composition of heterogeneous tissue samples from bulk RNA-sequencing data. Benchmark testing is a crucial step in the development and evaluation of new cellular deconvolution algorithms, and also plays a key role in the process of building and optimizing deconvolution pipelines for specific experimental applications. However, few in vivo benchmarking datasets exist, particularly for whole blood, which is the single most profiled human tissue. Here, we describe a unique dataset containing whole blood gene expression profiles and matched circulating leukocyte counts from a large cohort of human donors with utility for benchmarking cellular deconvolution pipelines. DATA DESCRIPTION: To produce this dataset, venous whole blood was sampled from 138 total donors recruited at an academic medical center. Genome-wide expression profiling was subsequently performed via next-generation RNA sequencing, and white blood cell differentials were collected in parallel using flow cytometry. The resultant final dataset contains donor-level expression data for over 45,000 protein coding and non-protein coding genes, as well as matched neutrophil, lymphocyte, monocyte, and eosinophil counts.


Asunto(s)
Benchmarking , Humanos , Recuento de Leucocitos , Perfilación de la Expresión Génica/métodos , Transcriptoma , Análisis de Secuencia de ARN/métodos , Leucocitos/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Algoritmos
2.
BMC Plant Biol ; 24(1): 373, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38714965

RESUMEN

BACKGROUND: As one of the world's most important beverage crops, tea plants (Camellia sinensis) are renowned for their unique flavors and numerous beneficial secondary metabolites, attracting researchers to investigate the formation of tea quality. With the increasing availability of transcriptome data on tea plants in public databases, conducting large-scale co-expression analyses has become feasible to meet the demand for functional characterization of tea plant genes. However, as the multidimensional noise increases, larger-scale co-expression analyses are not always effective. Analyzing a subset of samples generated by effectively downsampling and reorganizing the global sample set often leads to more accurate results in co-expression analysis. Meanwhile, global-based co-expression analyses are more likely to overlook condition-specific gene interactions, which may be more important and worthy of exploration and research. RESULTS: Here, we employed the k-means clustering method to organize and classify the global samples of tea plants, resulting in clustered samples. Metadata annotations were then performed on these clustered samples to determine the "conditions" represented by each cluster. Subsequently, we conducted gene co-expression network analysis (WGCNA) separately on the global samples and the clustered samples, resulting in global modules and cluster-specific modules. Comparative analyses of global modules and cluster-specific modules have demonstrated that cluster-specific modules exhibit higher accuracy in co-expression analysis. To measure the degree of condition specificity of genes within condition-specific clusters, we introduced the correlation difference value (CDV). By incorporating the CDV into co-expression analyses, we can assess the condition specificity of genes. This approach proved instrumental in identifying a series of high CDV transcription factor encoding genes upregulated during sustained cold treatment in Camellia sinensis leaves and buds, and pinpointing a pair of genes that participate in the antioxidant defense system of tea plants under sustained cold stress. CONCLUSIONS: To summarize, downsampling and reorganizing the sample set improved the accuracy of co-expression analysis. Cluster-specific modules were more accurate in capturing condition-specific gene interactions. The introduction of CDV allowed for the assessment of condition specificity in gene co-expression analyses. Using this approach, we identified a series of high CDV transcription factor encoding genes related to sustained cold stress in Camellia sinensis. This study highlights the importance of considering condition specificity in co-expression analysis and provides insights into the regulation of the cold stress in Camellia sinensis.


Asunto(s)
Camellia sinensis , Camellia sinensis/genética , Camellia sinensis/metabolismo , Análisis por Conglomerados , Genes de Plantas , Perfilación de la Expresión Génica/métodos , Minería de Datos/métodos , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes
3.
Clin Respir J ; 18(5): e13757, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38715380

RESUMEN

OBJECTIVE: This research was aimed to comprehensively investigate the expression levels, diagnostic and prognostic implications, and the relationship with immune infiltration of G2 and S phase-expressed-1 (GTSE1) across 33 tumor types, including lung adenocarcinoma (LUAD), through gene expression profiling. METHODS: GTSE1 mRNA expression data together with clinical information were acquired from Xena database of The Cancer Genome Atlas (TCGA), ArrayExpress, and Gene Expression Omnibus (GEO) database for this study. The Wilcoxon rank-sum test was used to detect differences in GTSE1 expression between groups. The ability of GTSE1 to accurately predict cancer status was evaluated by calculating the area under the curve (AUC) value for the receiver operating characteristic curve. Additionally, we investigated the predictive value of GTSE1 in individuals diagnosed with neoplasms using univariate Cox regression analysis as well as Kaplan-Meier curves. Furthermore, the correlation between GTSE1 expression and levels of immune infiltration was assessed by utilizing the Tumor Immune Estimate Resource (TIMER) database to calculate the Spearman rank correlation coefficient. Finally, the pan-cancer analysis findings were validated by examining the association between GTSE1 expression and prognosis among patients with LUAD. RESULTS: GTSE1 exhibited significantly increased expression levels in a wide range of tumor tissues in contrast with normal tissues (p < 0.05). The expression of GTSE1 in various tumors was associated with clinical features, overall survival, and disease-specific survival (p < 0.05). In immune infiltration analyses, a strong correlation of the level of immune infiltration with the expression of GTSE1 was observed. Furthermore, GTSE1 demonstrated good discriminative and diagnostic value for most tumors. Additional experiments confirmed the relationship between elevated GTSE1 expression and unfavorable prognosis in individuals diagnosed with LUAD. These findings indicated the crucial role of GTSE1 expression level in influencing the development and immune infiltration of different types of tumors. CONCLUSIONS: GTSE1 might be a potential biomarker for the prognosis of pan-cancer. Meanwhile, it represented a promising target for immunotherapy.


Asunto(s)
Adenocarcinoma del Pulmón , Biomarcadores de Tumor , Neoplasias Pulmonares , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/mortalidad , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/diagnóstico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/diagnóstico , Pronóstico
4.
PLoS Comput Biol ; 20(5): e1012024, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38717988

RESUMEN

The activation levels of biologically significant gene sets are emerging tumor molecular markers and play an irreplaceable role in the tumor research field; however, web-based tools for prognostic analyses using it as a tumor molecular marker remain scarce. We developed a web-based tool PESSA for survival analysis using gene set activation levels. All data analyses were implemented via R. Activation levels of The Molecular Signatures Database (MSigDB) gene sets were assessed using the single sample gene set enrichment analysis (ssGSEA) method based on data from the Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), The European Genome-phenome Archive (EGA) and supplementary tables of articles. PESSA was used to perform median and optimal cut-off dichotomous grouping of ssGSEA scores for each dataset, relying on the survival and survminer packages for survival analysis and visualisation. PESSA is an open-access web tool for visualizing the results of tumor prognostic analyses using gene set activation levels. A total of 238 datasets from the GEO, TCGA, EGA, and supplementary tables of articles; covering 51 cancer types and 13 survival outcome types; and 13,434 tumor-related gene sets are obtained from MSigDB for pre-grouping. Users can obtain the results, including Kaplan-Meier analyses based on the median and optimal cut-off values and accompanying visualization plots and the Cox regression analyses of dichotomous and continuous variables, by selecting the gene set markers of interest. PESSA (https://smuonco.shinyapps.io/PESSA/ OR http://robinl-lab.com/PESSA) is a large-scale web-based tumor survival analysis tool covering a large amount of data that creatively uses predefined gene set activation levels as molecular markers of tumors.


Asunto(s)
Biomarcadores de Tumor , Biología Computacional , Bases de Datos Genéticas , Internet , Neoplasias , Programas Informáticos , Humanos , Neoplasias/genética , Neoplasias/mortalidad , Análisis de Supervivencia , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Biología Computacional/métodos , Pronóstico , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética
5.
Methods Mol Biol ; 2808: 121-127, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743366

RESUMEN

During the infection of a host cell by an infectious agent, a series of gene expression changes occurs as a consequence of host-pathogen interactions. Unraveling this complex interplay is the key for understanding of microbial virulence and host response pathways, thus providing the basis for new molecular insights into the mechanisms of pathogenesis and the corresponding immune response. Dual RNA sequencing (dual RNA-seq) has been developed to simultaneously determine pathogen and host transcriptomes enabling both differential and coexpression analyses between the two partners as well as genome characterization in the case of RNA viruses. Here, we provide a detailed laboratory protocol and bioinformatics analysis guidelines for dual RNA-seq experiments focusing on - but not restricted to - measles virus (MeV) as a pathogen of interest. The application of dual RNA-seq technologies in MeV-infected patients can potentially provide valuable information on the structure of the viral RNA genome and on cellular innate immune responses and drive the discovery of new targets for antiviral therapy.


Asunto(s)
Genoma Viral , Interacciones Huésped-Patógeno , Virus del Sarampión , Sarampión , ARN Viral , Humanos , Sarampión/virología , Sarampión/inmunología , Sarampión/genética , Virus del Sarampión/genética , Virus del Sarampión/patogenicidad , ARN Viral/genética , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Biología Computacional/métodos , Análisis de Secuencia de ARN/métodos , RNA-Seq/métodos , Transcriptoma , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
6.
Cancer Cell ; 42(5): 759-779.e12, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38744245

RESUMEN

The lack of comprehensive diagnostics and consensus analytical models for evaluating the status of a patient's immune system has hindered a wider adoption of immunoprofiling for treatment monitoring and response prediction in cancer patients. To address this unmet need, we developed an immunoprofiling platform that uses multiparameter flow cytometry to characterize immune cell heterogeneity in the peripheral blood of healthy donors and patients with advanced cancers. Using unsupervised clustering, we identified five immunotypes with unique distributions of different cell types and gene expression profiles. An independent analysis of 17,800 open-source transcriptomes with the same approach corroborated these findings. Continuous immunotype-based signature scores were developed to correlate systemic immunity with patient responses to different cancer treatments, including immunotherapy, prognostically and predictively. Our approach and findings illustrate the potential utility of a simple blood test as a flexible tool for stratifying cancer patients into therapy response groups based on systemic immunoprofiling.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/sangre , Inmunoterapia/métodos , Citometría de Flujo/métodos , Transcriptoma , Pronóstico , Perfilación de la Expresión Génica/métodos , Femenino , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/inmunología
7.
Mol Biol Rep ; 51(1): 625, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717527

RESUMEN

BACKGROUND: The currently known homing pigeon is a result of a sharp one-sided selection for flight characteristics focused on speed, endurance, and spatial orientation. This has led to extremely well-adapted athletic phenotypes in racing birds. METHODS: Here, we identify genes and pathways contributing to exercise adaptation in sport pigeons by applying next-generation transcriptome sequencing of m.pectoralis muscle samples, collected before and after a 300 km competition flight. RESULTS: The analysis of differentially expressed genes pictured the central role of pathways involved in fuel selection and muscle maintenance during flight, with a set of genes, in which variations may therefore be exploited for genetic improvement of the racing pigeon population towards specific categories of competition flights. CONCLUSIONS: The presented results are a background to understanding the genetic processes in the muscles of birds during flight and also are the starting point of further selection of genetic markers associated with racing performance in carrier pigeons.


Asunto(s)
Columbidae , Vuelo Animal , Transcriptoma , Animales , Columbidae/genética , Columbidae/fisiología , Vuelo Animal/fisiología , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos , Músculos Pectorales/metabolismo , Músculos Pectorales/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología
8.
BMC Genomics ; 25(1): 455, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720252

RESUMEN

BACKGROUND: Standard ChIP-seq and RNA-seq processing pipelines typically disregard sequencing reads whose origin is ambiguous ("multimappers"). This usual practice has potentially important consequences for the functional interpretation of the data: genomic elements belonging to clusters composed of highly similar members are left unexplored. RESULTS: In particular, disregarding multimappers leads to the underrepresentation in epigenetic studies of recently active transposable elements, such as AluYa5, L1HS and SVAs. Furthermore, this common strategy also has implications for transcriptomic analysis: members of repetitive gene families, such the ones including major histocompatibility complex (MHC) class I and II genes, are under-quantified. CONCLUSION: Revealing inherent biases that permeate routine tasks such as functional enrichment analysis, our results underscore the urgency of broadly adopting multimapper-aware bioinformatic pipelines -currently restricted to specific contexts or communities- to ensure the reliability of genomic and transcriptomic studies.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Elementos Transponibles de ADN/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Análisis de Secuencia de ARN/métodos
9.
BMC Bioinformatics ; 25(1): 181, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720247

RESUMEN

BACKGROUND: RNA sequencing combined with machine learning techniques has provided a modern approach to the molecular classification of cancer. Class predictors, reflecting the disease class, can be constructed for known tissue types using the gene expression measurements extracted from cancer patients. One challenge of current cancer predictors is that they often have suboptimal performance estimates when integrating molecular datasets generated from different labs. Often, the quality of the data is variable, procured differently, and contains unwanted noise hampering the ability of a predictive model to extract useful information. Data preprocessing methods can be applied in attempts to reduce these systematic variations and harmonize the datasets before they are used to build a machine learning model for resolving tissue of origins. RESULTS: We aimed to investigate the impact of data preprocessing steps-focusing on normalization, batch effect correction, and data scaling-through trial and comparison. Our goal was to improve the cross-study predictions of tissue of origin for common cancers on large-scale RNA-Seq datasets derived from thousands of patients and over a dozen tumor types. The results showed that the choice of data preprocessing operations affected the performance of the associated classifier models constructed for tissue of origin predictions in cancer. CONCLUSION: By using TCGA as a training set and applying data preprocessing methods, we demonstrated that batch effect correction improved performance measured by weighted F1-score in resolving tissue of origin against an independent GTEx test dataset. On the other hand, the use of data preprocessing operations worsened classification performance when the independent test dataset was aggregated from separate studies in ICGC and GEO. Therefore, based on our findings with these publicly available large-scale RNA-Seq datasets, the application of data preprocessing techniques to a machine learning pipeline is not always appropriate.


Asunto(s)
Aprendizaje Automático , Neoplasias , RNA-Seq , Humanos , RNA-Seq/métodos , Neoplasias/genética , Transcriptoma/genética , Análisis de Secuencia de ARN/métodos , Perfilación de la Expresión Génica/métodos , Biología Computacional/métodos
10.
Medicine (Baltimore) ; 103(19): e38144, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728457

RESUMEN

Papillary thyroid carcinoma (PTC) prognosis may be deteriorated due to the metastases, and anoikis palys an essential role in the tumor metastasis. However, the potential effect of anoikis-related genes on the prognosis of PTC was unclear. The mRNA and clinical information were obtained from the cancer genome atlas database. Hub genes were identified and risk model was constructed using Cox regression analysis. Kaplan-Meier (K-M) curve was applied for the survival analysis. Immune infiltration and immune therapy response were calculated using CIBERSORT and TIDE. The identification of cell types and cell interaction was performed by Seurat, SingleR and CellChat packages. GO, KEGG, and GSVA were applied for the enrichment analysis. Protein-protein interaction network was constructed in STRING and Cytoscape. Drug sensitivity was assessed in GSCA. Based on bulk RNA data, we identified 4 anoikis-related risk signatures, which were oncogenes, and constructed a risk model. The enrichment analysis found high risk group was enriched in some immune-related pathways. High risk group had higher infiltration of Tregs, higher TIDE score and lower levels of monocytes and CD8 T cells. Based on scRNA data, we found that 4 hub genes were mainly expressed in monocytes and macrophages, and they interacted with T cells. Hub genes were significantly related to immune escape-related genes. Drug sensitivity analysis suggested that cyclin dependent kinase inhibitor 2A may be a better chemotherapy target. We constructed a risk model which could effectively and steadily predict the prognosis of PTC. We inferred that the immune escape may be involved in the development of PTC.


Asunto(s)
Anoicis , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Humanos , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/patología , Anoicis/genética , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Pronóstico , Análisis de la Célula Individual/métodos , Análisis de Secuencia de ARN , Mapas de Interacción de Proteínas/genética , Femenino , Masculino , Estimación de Kaplan-Meier , Regulación Neoplásica de la Expresión Génica , Perfilación de la Expresión Génica/métodos
11.
Medicine (Baltimore) ; 103(19): e38134, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728466

RESUMEN

Abdominal aortic aneurysm (AAA) is a dangerous cardiovascular disease, which often brings great psychological burden and economic pressure to patients. If AAA rupture occurs, it is a serious threat to patients' lives. Therefore, it is of clinical value to actively explore the pathogenesis of ruptured AAA and prevent its occurrence. Ferroptosis is a new type of cell death dependent on lipid peroxidation, which plays an important role in many cardiovascular diseases. In this study, we used online data and analysis of ferroptosis-related genes to uncover the formation of ruptured AAA and potential therapeutic targets. We obtained ferroptosis-related differentially expressed genes (Fe-DEGs) from GSE98278 dataset and 259 known ferroptosis-related genes from FerrDb website. Enrichment analysis of differentially expressed genes (DEGs) was performed by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG). Receiver Operating characteristic (ROC) curve was employed to evaluate the diagnostic abilities of Fe-DEGs. Transcription factors and miRNAs of Fe-DEGs were identified through PASTAA and miRDB, miRWalk, TargetScan respectively. Single-sample gene set enrichment analysis (ssGSEA) was used to observe immune infiltration between the stable group and the rupture group. DGIdb database was performed to find potential targeted drugs of DEGs. GO and KEGG enrichment analysis found that DEGs mainly enriched in "cellular divalent inorganic cation homeostasis," "cellular zinc ion homeostasis," "divalent inorganic cation homeostasis," "Mineral absorption," "Cytokine - cytokine receptor interaction," "Coronavirus disease - COVID-19." Two up-regulated Fe-DEGs MT1G and DDIT4 were found to further analysis. Both single and combined applications of MT1G and DDIT4 showed good diagnostic efficacy (AUC = 0.8254, 0.8548, 0.8577, respectively). Transcription factors STAT1 and PU1 of MT1G and ARNT and MAX of DDIT4 were identified. Meanwhile, has_miR-548p-MT1G pairs, has_miR-53-3p/has_miR-181b-5p/ has_miR-664a-3p-DDIT4 pairs were found. B cells, NK cells, Th2 cells were high expression in the rupture group compared with the stable group, while DCs, Th1 cells were low expression in the rupture group. Targeted drugs against immunity, GEMCITABINE and INDOMETHACIN were discovered. We preliminarily explored the clinical significance of Fe-DEGs MT1G and DDIT4 in the diagnosis of ruptured AAA, and proposed possible upstream regulatory transcription factors and miRNAs. In addition, we also analyzed the immune infiltration of stable and rupture groups, and found possible targeted drugs for immunotherapy.


Asunto(s)
Aneurisma de la Aorta Abdominal , Rotura de la Aorta , Ferroptosis , Ferroptosis/genética , Humanos , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/diagnóstico , Rotura de la Aorta/genética , MicroARNs/genética , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Curva ROC
12.
Medicine (Baltimore) ; 103(19): e38092, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728468

RESUMEN

Ultrasound therapy is a method of applying ultrasonic energy to the stimulation produced by human body to change the function and tissue state of the body in order to achieve the purpose of treating diseases. Chronic venous ulcer is a common chronic skin ulcer. GSE222503 for ultrasound therapy of chronic venous ulcers was downloaded from gene expression omnibus database, which were used to identify differentially expressed genes. Weighted gene co-expression network analysis, functional enrichment analysis, gene set enrichment analysis, immune infiltration analysis and construction and analysis of protein-protein interaction network were performed. Draw gene expression heatmaps. Comparative toxicogenomics database analysis was performed. Two hundred thirty-five differentially expressed genes were obtained. According to gene ontology analysis, in biological process analysis, they were mainly enriched in positive regulation of cellular biosynthetic process, reproductive cell development, vasculogenesis, vascular morphogenesis, and inflammatory response. In cellular component analysis, they were mainly enriched in leading edge of growing cell, extracellular matrix binding organelle, F-actin capping protein complex. In molecular function analysis, they were mainly concentrated in receptor ligand activity, cytokine receptor binding. In Kyoto encyclopedia of genes and genomes analysis, they were mainly enriched in cytokine-cytokine receptor interaction, PI3K-Akt signaling pathway, HIF-1 signaling pathway, heme biosynthesis. In weighted gene co-expression network analysis, the soft threshold power was set to 9. Thirty modules were generated. PF4, NR1I2, TTC16, H3C12, KLRB1, CYP21A2 identified by 4 algorithms (MCC, EPC, closeness, stress). Heatmap of core gene expression showed that H3C12, KLRB1, PF4, NR1I2 were all underexpressed in samples of ultrasound-treated chronic venous ulcers and overexpressed in samples of untreated chronic venous ulcers. Comparative toxicogenomics database analysis showed that H3C12, KLRB1, PF4, NR1I2 are associated with thrombophlebitis, phlebitis, vascular malformations, metabolic syndrome, ulcers, and inflammation. In samples of chronic venous ulcer tissue treated with ultrasound, NR1I2 shows low expression, while in samples of chronic venous ulcer tissue without ultrasound treatment, it shows high expression. This finding suggests a potential role of NR1I2 in the process of ultrasound therapy for chronic venous ulcers, which may be related to the therapeutic effect of ultrasound therapy on chronic venous ulcers.


Asunto(s)
Terapia por Ultrasonido , Úlcera Varicosa , Humanos , Terapia por Ultrasonido/métodos , Úlcera Varicosa/terapia , Úlcera Varicosa/genética , Úlcera Varicosa/metabolismo , Enfermedad Crónica , Mapas de Interacción de Proteínas , Ontología de Genes , Perfilación de la Expresión Génica/métodos
13.
Medicine (Baltimore) ; 103(19): e38042, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728482

RESUMEN

Postmenopausal osteoporosis (PMOP) is a common metabolic inflammatory disease. In conditions of estrogen deficiency, chronic activation of the immune system leads to a hypo-inflammatory phenotype and alterations in its cytokine and immune cell profile, although immune cells play an important role in the pathology of osteoporosis, studies on this have been rare. Therefore, it is important to investigate the role of immune cell-related genes in PMOP. PMOP-related datasets were downloaded from the Gene Expression Omnibus database. Immune cells scores between high bone mineral density (BMD) and low BMD samples were assessed based on the single sample gene set enrichment analysis method. Subsequently, weighted gene co-expression network analysis was performed to identify modules highly associated with immune cells and obtain module genes. Differential analysis between high BMD and low BMD was also performed to obtain differentially expressed genes. Module genes are intersected with differentially expressed genes to obtain candidate genes, and functional enrichment analysis was performed. Machine learning methods were used to filter out the signature genes. The receiver operating characteristic (ROC) curves of the signature genes and the nomogram were plotted to determine whether the signature genes can be used as a molecular marker. Gene set enrichment analysis was also performed to explore the potential mechanism of the signature genes. Finally, RNA expression of signature genes was validated in blood samples from PMOP patients and normal control by real-time quantitative polymerase chain reaction. Our study of PMOP patients identified differences in immune cells (activated dendritic cell, CD56 bright natural killer cell, Central memory CD4 T cell, Effector memory CD4 T cell, Mast cell, Natural killer T cell, T follicular helper cell, Type 1 T-helper cell, and Type 17 T-helper cell) between high and low BMD patients. We obtained a total of 73 candidate genes based on modular genes and differential genes, and obtained 5 signature genes by least absolute shrinkage and selection operator and random forest model screening. ROC, principal component analysis, and t-distributed stochastic neighbor embedding down scaling analysis revealed that the 5 signature genes had good discriminatory ability between high and low BMD samples. A logistic regression model was constructed based on 5 signature genes, and both ROC and column line plots indicated that the model accuracy and applicability were good. Five signature genes were found to be associated with proteasome, mitochondria, and lysosome by gene set enrichment analysis. The real-time quantitative polymerase chain reaction results showed that the expression of the signature genes was significantly different between the 2 groups. HIST1H2AG, PYGM, NCKAP1, POMP, and LYPLA1 might play key roles in PMOP and be served as the biomarkers of PMOP.


Asunto(s)
Biomarcadores , Densidad Ósea , Osteoporosis Posmenopáusica , Humanos , Femenino , Osteoporosis Posmenopáusica/genética , Osteoporosis Posmenopáusica/sangre , Osteoporosis Posmenopáusica/inmunología , Densidad Ósea/genética , Biomarcadores/sangre , Persona de Mediana Edad , Perfilación de la Expresión Génica/métodos , Curva ROC , Anciano , Aprendizaje Automático
14.
BMC Biol ; 22(1): 110, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38735918

RESUMEN

BACKGROUND: Plants differ more than threefold in seed oil contents (SOCs). Soybean (Glycine max), cotton (Gossypium hirsutum), rapeseed (Brassica napus), and sesame (Sesamum indicum) are four important oil crops with markedly different SOCs and fatty acid compositions. RESULTS: Compared to grain crops like maize and rice, expanded acyl-lipid metabolism genes and relatively higher expression levels of genes involved in seed oil synthesis (SOS) in the oil crops contributed to the oil accumulation in seeds. Here, we conducted comparative transcriptomics on oil crops with two different SOC materials. In common, DIHYDROLIPOAMIDE DEHYDROGENASE, STEAROYL-ACYL CARRIER PROTEIN DESATURASE, PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE, and oil-body protein genes were both differentially expressed between the high- and low-oil materials of each crop. By comparing functional components of SOS networks, we found that the strong correlations between genes in "glycolysis/gluconeogenesis" and "fatty acid synthesis" were conserved in both grain and oil crops, with PYRUVATE KINASE being the common factor affecting starch and lipid accumulation. Network alignment also found a conserved clique among oil crops affecting seed oil accumulation, which has been validated in Arabidopsis. Differently, secondary and protein metabolism affected oil synthesis to different degrees in different crops, and high SOC was due to less competition of the same precursors. The comparison of Arabidopsis mutants and wild type showed that CINNAMYL ALCOHOL DEHYDROGENASE 9, the conserved regulator we identified, was a factor resulting in different relative contents of lignins to oil in seeds. The interconnection of lipids and proteins was common but in different ways among crops, which partly led to differential oil production. CONCLUSIONS: This study goes beyond the observations made in studies of individual species to provide new insights into which genes and networks may be fundamental to seed oil accumulation from a multispecies perspective.


Asunto(s)
Productos Agrícolas , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Aceites de Plantas , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Aceites de Plantas/metabolismo , Perfilación de la Expresión Génica/métodos , Transcriptoma , Semillas/genética , Semillas/metabolismo , Regulación de la Expresión Génica de las Plantas
15.
NPJ Syst Biol Appl ; 10(1): 52, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760476

RESUMEN

Neuroblastoma (NB) is one of the leading causes of cancer-associated death in children. MYCN amplification is a prominent genetic marker for NB, and its targeting to halt NB progression is difficult to achieve. Therefore, an in-depth understanding of the molecular interactome of NB is needed to improve treatment outcomes. Analysis of NB multi-omics unravels valuable insight into the interplay between MYCN transcriptional and miRNA post-transcriptional modulation. Moreover, it aids in the identification of various miRNAs that participate in NB development and progression. This study proposes an integrated computational framework with three levels of high-throughput NB data (mRNA-seq, miRNA-seq, and methylation array). Similarity Network Fusion (SNF) and ranked SNF methods were utilized to identify essential genes and miRNAs. The specified genes included both miRNA-target genes and transcription factors (TFs). The interactions between TFs and miRNAs and between miRNAs and their target genes were retrieved where a regulatory network was developed. Finally, an interaction network-based analysis was performed to identify candidate biomarkers. The candidate biomarkers were further analyzed for their potential use in prognosis and diagnosis. The candidate biomarkers included three TFs and seven miRNAs. Four biomarkers have been previously studied and tested in NB, while the remaining identified biomarkers have known roles in other types of cancer. Although the specific molecular role is yet to be addressed, most identified biomarkers possess evidence of involvement in NB tumorigenesis. Analyzing cellular interactome to identify potential biomarkers is a promising approach that can contribute to optimizing efficient therapeutic regimens to target NB vulnerabilities.


Asunto(s)
Biomarcadores de Tumor , Biología Computacional , Redes Reguladoras de Genes , MicroARNs , Neuroblastoma , Neuroblastoma/genética , Humanos , MicroARNs/genética , Biomarcadores de Tumor/genética , Redes Reguladoras de Genes/genética , Biología Computacional/métodos , Regulación Neoplásica de la Expresión Génica/genética , Factores de Transcripción/genética , Perfilación de la Expresión Génica/métodos , ARN Mensajero/genética , Multiómica
16.
J Vis Exp ; (207)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38767376

RESUMEN

Understanding the relationship between the cells and their location within each tissue is critical to uncover the biological processes associated with normal development and disease pathology. Spatial transcriptomics is a powerful method that enables the analysis of the whole transcriptome within tissue samples, thus providing information about the cellular gene expression and the histological context in which the cells reside. While this method has been extensively utilized for many soft tissues, its application for the analyses of hard tissues such as bone has been challenging. The major challenge resides in the inability to preserve good quality RNA and tissue morphology while processing the hard tissue samples for sectioning. Therefore, a method is described here to process freshly obtained bone tissue samples to effectively generate spatial transcriptomics data. The method allows for the decalcification of the samples, granting successful tissue sections with preserved morphological details while avoiding RNA degradation. In addition, detailed guidelines are provided for samples that were previously paraffin-embedded, without demineralization, such as samples collected from tissue banks. Using these guidelines, high-quality spatial transcriptomics data generated from tissue bank samples of primary tumor and lung metastasis of bone osteosarcoma are shown.


Asunto(s)
Neoplasias Óseas , Huesos , Transcriptoma , Humanos , Transcriptoma/genética , Huesos/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Osteosarcoma/genética , Osteosarcoma/patología , Osteosarcoma/metabolismo , Perfilación de la Expresión Génica/métodos , Adhesión en Parafina/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo
17.
PLoS One ; 19(5): e0303171, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38768113

RESUMEN

Tumor microenvironment (TME) is a complex dynamic system with many tumor-interacting components including tumor-infiltrating leukocytes (TILs), cancer associated fibroblasts, blood vessels, and other stromal constituents. It intrinsically affects tumor development and pharmacology of oncology therapeutics, particularly immune-oncology (IO) treatments. Accurate measurement of TME is therefore of great importance for understanding the tumor immunity, identifying IO treatment mechanisms, developing predictive biomarkers, and ultimately, improving the treatment of cancer. Here, we introduce a mouse-IO NGS-based (NGSmIO) assay for accurately detecting and quantifying the mRNA expression of 1080 TME related genes in mouse tumor models. The NGSmIO panel was shown to be superior to the commonly used microarray approach by hosting 300 more relevant genes to better characterize various lineage of immune cells, exhibits improved mRNA and protein expression correlation to flow cytometry, shows stronger correlation with mRNA expression than RNAseq with 10x higher sequencing depth, and demonstrates higher sensitivity in measuring low-expressed genes. We describe two studies; firstly, detecting the pharmacodynamic change of interferon-γ expression levels upon anti-PD-1: anti-CD4 combination treatment in MC38 and Hepa 1-6 tumors; and secondly, benchmarking baseline TILs in 14 syngeneic tumors using transcript level expression of lineage specific genes, which demonstrate effective and robust applications of the NGSmIO panel.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Microambiente Tumoral , Animales , Ratones , Microambiente Tumoral/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Interferón gamma/genética , Interferón gamma/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , ARN Mensajero/genética , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Neoplasias/genética , Neoplasias/inmunología , Femenino , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Perfilación de la Expresión Génica/métodos
18.
Cell Biol Toxicol ; 40(1): 34, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38769159

RESUMEN

Anorectal malformation (ARM) is a prevalent early pregnancy digestive tract anomaly. The intricate anatomy of the embryonic cloaca region makes it challenging for traditional high-throughput sequencing methods to capture location-specific information. Spatial transcriptomics was used to sequence libraries of frozen sections from embryonic rats at gestational days (GD) 14 to 16, covering both normal and ARM cases. Bioinformatics analyses and predictions were performed using methods such as WGCNA, GSEA, and PROGENy. Immunofluorescence staining was used to verify gene expression levels. Gene expression data was obtained with anatomical annotations of clusters, focusing on the cloaca region's location-specific traits. WGCNA revealed gene modules linked to normal and ARM cloacal anatomy development, with cooperation between modules on GD14 and GD15. Differential gene expression profiles and functional enrichment were presented. Notably, protein levels of Pcsk9, Hmgb2, and Sod1 were found to be downregulated in the GD15 ARM hindgut. The PROGENy algorithm predicted the activity and interplay of common signaling pathways in embryonic sections, highlighting their synergistic and complementary effects. A competing endogenous RNA (ceRNA) regulatory network was constructed from whole transcriptome data. Spatial transcriptomics provided location-specific cloaca region gene expression. Diverse bioinformatics analyses deepened our understanding of ARM's molecular interactions, guiding future research and providing insights into gene regulation in ARM development.


Asunto(s)
Malformaciones Anorrectales , Redes Reguladoras de Genes , Transducción de Señal , Transcriptoma , Animales , Malformaciones Anorrectales/genética , Malformaciones Anorrectales/metabolismo , Malformaciones Anorrectales/embriología , Transducción de Señal/genética , Transcriptoma/genética , Ratas , Femenino , Regulación del Desarrollo de la Expresión Génica , Embarazo , Embrión de Mamíferos/metabolismo , Perfilación de la Expresión Génica/métodos , Biología Computacional/métodos , Ratas Sprague-Dawley , Cloaca/embriología , Cloaca/metabolismo
19.
BMC Cancer ; 24(1): 607, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769480

RESUMEN

BACKGROUND: Cancerous cells' identity is determined via a mixture of multiple factors such as genomic variations, epigenetics, and the regulatory variations that are involved in transcription. The differences in transcriptome expression as well as abnormal structures in peptides determine phenotypical differences. Thus, bulk RNA-seq and more recent single-cell RNA-seq data (scRNA-seq) are important to identify pathogenic differences. In this case, we rely on k-mer decomposition of sequences to identify pathogenic variations in detail which does not need a reference, so it outperforms more traditional Next-Generation Sequencing (NGS) analysis techniques depending on the alignment of the sequences to a reference. RESULTS: Via our alignment-free analysis, over esophageal and glioblastoma cancer patients, high-frequency variations over multiple different locations (repeats, intergenic regions, exons, introns) as well as multiple different forms (fusion, polyadenylation, splicing, etc.) could be discovered. Additionally, we have analyzed the importance of less-focused events systematically in a classic transcriptome analysis pipeline where these events are considered as indicators for tumor prognosis, tumor prediction, tumor neoantigen inference, as well as their connection with respect to the immune microenvironment. CONCLUSIONS: Our results suggest that esophageal cancer (ESCA) and glioblastoma processes can be explained via pathogenic microbial RNA, repeated sequences, novel splicing variants, and long intergenic non-coding RNAs (lincRNAs). We expect our application of reference-free process and analysis to be helpful in tumor and normal samples differential scRNA-seq analysis, which in turn offers a more comprehensive scheme for major cancer-associated events.


Asunto(s)
Glioblastoma , Análisis de la Célula Individual , Transcriptoma , Humanos , Análisis de la Célula Individual/métodos , Glioblastoma/genética , Glioblastoma/patología , Perfilación de la Expresión Génica/métodos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Secuenciación de Nucleótidos de Alto Rendimiento , RNA-Seq/métodos , Análisis de Secuencia de ARN/métodos , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Neoplasias/patología
20.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38770717

RESUMEN

Drug therapy is vital in cancer treatment. Accurate analysis of drug sensitivity for specific cancers can guide healthcare professionals in prescribing drugs, leading to improved patient survival and quality of life. However, there is a lack of web-based tools that offer comprehensive visualization and analysis of pancancer drug sensitivity. We gathered cancer drug sensitivity data from publicly available databases (GEO, TCGA and GDSC) and developed a web tool called Comprehensive Pancancer Analysis of Drug Sensitivity (CPADS) using Shiny. CPADS currently includes transcriptomic data from over 29 000 samples, encompassing 44 types of cancer, 288 drugs and more than 9000 gene perturbations. It allows easy execution of various analyses related to cancer drug sensitivity. With its large sample size and diverse drug range, CPADS offers a range of analysis methods, such as differential gene expression, gene correlation, pathway analysis, drug analysis and gene perturbation analysis. Additionally, it provides several visualization approaches. CPADS significantly aids physicians and researchers in exploring primary and secondary drug resistance at both gene and pathway levels. The integration of drug resistance and gene perturbation data also presents novel perspectives for identifying pivotal genes influencing drug resistance. Access CPADS at https://smuonco.shinyapps.io/CPADS/ or https://robinl-lab.com/CPADS.


Asunto(s)
Resistencia a Antineoplásicos , Internet , Neoplasias , Programas Informáticos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Resistencia a Antineoplásicos/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biología Computacional/métodos , Bases de Datos Genéticas , Transcriptoma , Perfilación de la Expresión Génica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA