Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.400
Filtrar
1.
BMC Microbiol ; 24(1): 252, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982378

RESUMEN

The present study aimed to develop a system using a combination of enzymatic and microbial degradation techniques for removing phenol from contaminated water. In our prior research, the HRP enzyme extracted from horseradish roots was utilized within a core-shell microcapsule to reduce phenolic shock, serving as a monolayer column. To complete the phenol removal process, a second column containing degrading microorganisms was added to the last column in this research. Phenol-degrading bacteria were isolated from different microbial sources on a phenolic base medium. Additionally, encapsulated calcium peroxide nanoparticles were used to provide dissolved oxygen for the microbial population. Results showed that the both isolated strains, WC1 and CC1, were able to completely remove phenol from the contaminated influent water the range within 5 to 7 days, respectively. Molecular identification showed 99.8% similarity for WC1 isolate to Stenotrophomonas rizophila strain e-p10 and 99.9% similarity for CC1 isolate to Bacillus cereus strain IAM 12,605. The results also indicated that columns using activated sludge as a microbial source had the highest removal rate, with the microbial biofilm completely removing 100% of the 100 mg/L phenol concentration in contaminated influent water after 40 days. Finally, the concurrent use of core-shell microcapsules containing enzymes and capsules containing Stenotrophomonas sp. WC1 strain in two continuous column reactors was able to completely remove phenol from polluted water with a concentration of 500 mg/L for a period of 20 days. The results suggest that a combination of enzymatic and microbial degrading systems can be used as a new system to remove phenol from polluted streams with higher concentrations of phenol by eliminating the shock of phenol on the microbial population.


Asunto(s)
Biodegradación Ambiental , Fenol , Contaminantes Químicos del Agua , Fenol/metabolismo , Contaminantes Químicos del Agua/metabolismo , Peroxidasa de Rábano Silvestre/metabolismo , Peroxidasa de Rábano Silvestre/química , Purificación del Agua/métodos , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Bacterias/genética , Bacterias/clasificación , Biopelículas/crecimiento & desarrollo , Armoracia/metabolismo , Aguas del Alcantarillado/microbiología , Bacillus cereus/metabolismo , Bacillus cereus/aislamiento & purificación , Bacillus cereus/enzimología
2.
Molecules ; 29(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38998952

RESUMEN

The sensitivity of immunoassays is generally limited by the low signal reporter/recognition element ratio. Nanomaterials serving as the carriers can enhance the loading number of signal reporters, thus improving the detection sensitivity. However, the general immobilization strategies, including direct physical adsorption and covalent coupling, may cause the random orientation and conformational change in proteins, partially or completely suppressing the enzymatic activity and the molecular recognition ability. In this work, we proposed a strategy to load recognition elements of antibodies and enzyme labels using boronic acid-modified metal-organic frameworks (MOFs) as the nanocarriers for signal amplification. The conjugation strategy was proposed based on the boronate ester interactions between the carbohydrate moieties in antibodies and enzymes and the boronic acid moieties on MOFs. Both enzymes and MOFs could catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2, therefore achieving dual signal amplification. To indicate the feasibility and sensitivity of the strategy, colorimetric immunoassays of prostate specific antigen (PSA) were performed with boronic acid-modified Cu-MOFs as peroxidase mimics to catalyze TMB oxidation and nanocarriers to load antibody and enzyme (horseradish peroxidase, HRP). According to the change in the absorbance intensity of the oxidized TMB (oxTMB), PSA at the concentration range of 1~250 pg/mL could be readily determined. In addition, this work presented a site-specific and oriented conjugation strategy for the modification of nanolabels with recognition elements and signal reporters, which should be valuable for the design of novel biosensors with high sensitivity and selectivity.


Asunto(s)
Ácidos Borónicos , Colorimetría , Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Colorimetría/métodos , Ácidos Borónicos/química , Inmunoensayo/métodos , Humanos , Bencidinas/química , Oxidación-Reducción , Antígeno Prostático Específico/análisis , Peróxido de Hidrógeno/química , Anticuerpos/química , Técnicas Biosensibles/métodos , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo
3.
Mikrochim Acta ; 191(8): 454, 2024 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976069

RESUMEN

An intelligent colorimetric sensing platform integrated with in situ immunomagnetic separation function was developed for ultrasensitive detection of Escherichia coli O157: H7 (E. coli O157: H7) in food. Captured antibody modified magnetic nanoparticles (cMNPs) and detection antibody/horseradish peroxidase (HRP) co-functionalized AuNPs (dHAuNPs) were firstly synthesized for targeted enrichment and colorimetric assay of E. coli O157: H7, in which remarkable signal amplification was realized by loading large amounts of HRP on the surface of AuNPs. Coupling with the optical collimation attachments and embedded magnetic separation module, a highly integrated optical device was constructed, by which in situ magnetic separation and high-quality imaging of 96-well microplates containing E. coli O157: H7 was achieved with a smartphone. The concentration of E. coli O157: H7 could be achieved in one-step by performing digital image colorimetric analysis of the obtained image with a custom-designed app. This biosensor possesses high sensitivity (1.63 CFU/mL), short detecting time (3 h), and good anti-interference performance even in real-sample testing. Overall, the developed method is expected to be a novel field detection platform for foodborne pathogens in water and food as well as for the diagnosis of infections due to its portability, ease of operation, and high feasibility.


Asunto(s)
Técnicas Biosensibles , Colorimetría , Escherichia coli O157 , Microbiología de Alimentos , Oro , Peroxidasa de Rábano Silvestre , Separación Inmunomagnética , Nanopartículas del Metal , Escherichia coli O157/aislamiento & purificación , Colorimetría/métodos , Oro/química , Peroxidasa de Rábano Silvestre/química , Separación Inmunomagnética/métodos , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Contaminación de Alimentos/análisis , Límite de Detección , Teléfono Inteligente , Anticuerpos Inmovilizados/inmunología , Anticuerpos Inmovilizados/química , Nanopartículas de Magnetita/química
4.
Anal Chem ; 96(26): 10630-10638, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38912708

RESUMEN

Paper-based lateral flow immunoassays (LFIAs) are cost-effective, portable, and simple methods for detection of diverse analytes, which however only provide qualitative or semiquantitative results and lack sufficient sensitivity. A combination of LFIA and electrochemical detection, namely, electrochemical lateral flow immunoassay (eLFIA), enables quantitative detection of analytes with high sensitivity, but the integration of external electrodes makes the system relatively expensive and unstable. Herein, the working, counter, and reference electrodes were prepared directly on the nitrocellulose membrane using screen printing, which remarkably simplified the structure of eLFIA and decreased the cost. Moreover, a horseradish peroxidase (HRP)-based electrochemical signal amplification strategy was used for further increasing the analytical sensitivity. HRP captured on the working electrode can catalyze the oxidation of tetramethylbenzidine (TMB) to form the TMB-TMBox precipitate on the electrode surface, which as an electrochemically active product can output an amplified current for quantification. We demonstrated that the eLFIA could detect low-abundant inflammatory biomarkers in human plasma samples with limits of detection of 0.17 and 0.54 pg mL-1 for interleukin-6 and C-reactive protein, respectively. Finally, a fully portable system was fabricated by integrating eLFIA with a flexible and wireless electrochemical workstation, realizing the point-of-care detection of interleukin-6.


Asunto(s)
Biomarcadores , Proteína C-Reactiva , Técnicas Electroquímicas , Electrodos , Interleucina-6 , Humanos , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Técnicas Electroquímicas/instrumentación , Biomarcadores/sangre , Biomarcadores/análisis , Interleucina-6/sangre , Interleucina-6/análisis , Proteína C-Reactiva/análisis , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Límite de Detección , Inflamación/sangre , Inflamación/diagnóstico , Bencidinas
5.
Biosensors (Basel) ; 14(6)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38920582

RESUMEN

Glucosamine-chitosan synthesized by the Maillard reaction was combined with montmorillonite to obtain a nanohybrid composite to immobilize horseradish peroxidase. The material combines the advantageous properties of clay with those of the chitosan derivative; has improved water solubility and reduced molecular weight and viscosity; involves an eco-friendly synthesis; and exhibits ion exchange capacity, good adhesiveness, and a large specific surface area for enzyme adsorption. The physicochemical characteristics of the composite were analyzed by infrared spectroscopy and X-ray diffraction to determine clay-polycation interactions. The electrochemical response of the different polyphenols to glassy carbon electrodes modified with the composite was evaluated by cyclic voltammetry. The sensitivity and detection limit values obtained with the biosensor toward hydroquinone, chlorogenic acid, catechol, and resorcinol are (1.6 ± 0.2) × 102 µA mM-1 and (74 ± 8) nM; (1.2 ± 0.1) × 102 µA mM-1 and (26 ± 3) nM; (16 ± 2) µA mM-1 and (0.74 ± 0.09) µM; and (3.7± 0.3) µA mM-1 and (3.3 ± 0.2) µM, respectively. The biosensor was applied to quantify polyphenols in pennyroyal and lemon verbena extracts.


Asunto(s)
Bentonita , Técnicas Biosensibles , Quitosano , Técnicas Electroquímicas , Enzimas Inmovilizadas , Glucosamina , Peroxidasa de Rábano Silvestre , Polifenoles , Bentonita/química , Polifenoles/análisis , Quitosano/química , Peroxidasa de Rábano Silvestre/química , Enzimas Inmovilizadas/química , Glucosamina/análisis , Electrodos
6.
J Mater Chem B ; 12(26): 6342-6350, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38856318

RESUMEN

The enzyme-linked immunosorbent assay (ELISA) remains the prevailing method for quantifying protein biomarkers. Enzymatic signal generation and amplification are key mechanisms that govern its analytical performance. This study reports the synthesis and application of microscale metal-organic framework (MOF)/enzyme composite particles as a novel detection probe to substantially enhance the sensitivity of ELISA. An optimal one-pot approach was established to incorporate a substantial amount of streptavidin-horseradish peroxidase (SA-HRP) either within or on the surface of the metal-azolate framework (MAF-7) microparticles. This approach enables the labeling of a single sandwich antibody-antigen complex with numerous enzymes, which markedly amplifies the enzymatic colorimetric signal generation. Moreover, MAF-7 caging was found to enhance the reactivity of the caged HRP enzyme, further promoting the overall detection sensitivity of ELISA. Compared to other developments that are often associated with more complicated detection modalities, our method is compatible with standard immunoassays and commonly used photometrical signal detection. The implementation of this strategy in the detection of CD147 results in a remarkably low limit of detection of 2.8 fg mL-1, representing a 105-fold improvement compared to that obtained with the standard ELISA. Moreover, the heightened sensitivity of this technique renders it particularly suitable for diagnosing breast cancer, thus presenting a promising tool for the early detection of the disease in clinical settings.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática , Vesículas Extracelulares , Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Humanos , Vesículas Extracelulares/química , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Tamaño de la Partícula , Propiedades de Superficie , Biomarcadores de Tumor/análisis , Biomarcadores/análisis , Límite de Detección
7.
ACS Appl Mater Interfaces ; 16(26): 33235-33245, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38885355

RESUMEN

Enhancing the stability of multienzyme cascade reactions in metal-organic frameworks (MOFs) is a challenging task in the fields of biotechnology and chemistry. However, addressing this challenge could yield far-reaching benefits across the application range in the biomedical, food, and environmental sectors. In this study, multienzyme partitioning immobilization that sequentially immobilizes cascade enzymes with hierarchical MOFs is proposed to reduce substrate diffusion resistance. Conversion results of ginsenosides indicate that this strategy improves the cascade efficiency up to 1.26 times. The substrate diffusion model is used to investigate the dual-interenzyme mass transfer behavior of substrates in the restricted domain space and evaluate the substrate channeling effect under partitioning immobilization. Molecular docking and kinetic simulations reveal that the MOFs effectively limit the conformational changes of cascade enzymes at high temperatures and in organic solvents while maintaining a large pocket of active centers. This phenomenon increased efficient substrate docking to the enzyme molecules, further optimizing cascade efficiency. The results of the immobilization of GOX and horseradish peroxidase as model enzymes indicate that the partitioned MOF immobilization strategy could be used for universal adaptation of cascade enzymes.


Asunto(s)
Enzimas Inmovilizadas , Peroxidasa de Rábano Silvestre , Estructuras Metalorgánicas , Simulación del Acoplamiento Molecular , Estructuras Metalorgánicas/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Cinética , Ginsenósidos/química , Ginsenósidos/metabolismo , Estabilidad de Enzimas
8.
Mikrochim Acta ; 191(7): 364, 2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831034

RESUMEN

CdIn2S4 and zinc tetrakis(4-carboxyphenyl)porphyrin (ZnTCPP) were synthesized by hydrothermal method, and an organic dye-sensitized inorganic semiconductor ZnTCPP/CdIn2S4 type II heterojunction was constructed on a fluorine-doped tin oxide (FTO) substrate electrode. A sandwich immunostructure for signal-attenuation photoelectrochemical (PEC) detection of cardiac troponin I (cTnI) was constructed using the ZnTCPP/CdIn2S4/FTO photoanode and a horseradish peroxidase (HRP)-ZnFe2O4-Ab2-bovine serum albumin (BSA) immunolabeling complex. The bioenzyme HRP and the HRP-like nanozyme ZnFe2O4 can co-catalyze the oxidation of 4-chloro-1-naphthol (4-CN) by H2O2 to produce an insoluble precipitate on the photoanode, thus notably reducing the anodic photocurrent for quantitative determination of cTnI. Under the optimal conditions, the photocurrent at 0 V vs. SCE in 0.1 M phosphate buffer solution (pH 7.40) containing 0.1 M ascorbic acid was linear with the logarithm of cTnI concentration from 500 fg mL-1 to 50.0 ng mL-1, and the limit of detection (LOD, S/N = 3) is 0.15 pg mL-1. Spiked recoveries were 95.1% ~ 104% for assay of cTnI in human serum samples.


Asunto(s)
Técnicas Electroquímicas , Límite de Detección , Compuestos de Estaño , Troponina I , Troponina I/sangre , Humanos , Técnicas Electroquímicas/métodos , Inmunoensayo/métodos , Compuestos de Estaño/química , Catálisis , Peroxidasa de Rábano Silvestre/química , Naftoles/química , Metaloporfirinas/química , Electrodos , Peróxido de Hidrógeno/química , Albúmina Sérica Bovina/química , Procesos Fotoquímicos , Animales , Técnicas Biosensibles/métodos , Semiconductores , Bovinos , Sulfuros/química , Porfirinas/química
9.
Langmuir ; 40(27): 13957-13967, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38919992

RESUMEN

The specificity and efficiency of enzyme-mediated reactions have the potential to positively impact many biotechnologies; however, many enzymes are easily degraded. Immobilization on a solid support has recently been explored to improve enzyme stability. This study aims to gain insights and facilitate enzyme adsorption onto gold nanoparticles (AuNPs) to form a stable bioconjugate through the installation of thiol functional groups that alter the protein chemistry. In specific, the model enzyme, horseradish peroxidase (HRP), is thiolated via Traut's reagent to increase the robustness and enzymatic activity of the bioconjugate. This study compares HRP and its thiolated analog (THRP) to deduce the impact of thiolation and AuNP-immobilization on the enzyme activity and stability. HRP, THRP, and their corresponding bioconjugates, HRP-AuNP and THRP-AuNP, were analyzed via UV-vis spectrophotometry, circular dichroism, zeta potential, and enzyme-substrate kinetics assays. Our data show a 5-fold greater adsorption for THRP on the AuNP, in comparison to HRP, that translated to a 5-fold increase in the THRP-AuNP bioconjugate activity. The thiolated and immobilized HRP exhibited a substantial improvement in stability at elevated temperatures (50 °C) and storage times (1 month) relative to the native enzyme in solution. Moreover, HRP, THRP, and their bioconjugates were incubated with trypsin to assess the susceptibility to proteolytic digestion. Our results demonstrate that THRP-AuNP bioconjugates maintain full enzymatic activity after 18 h of incubation with trypsin, whereas free HRP, free THRP, and HRP-AuNP conjugates are rendered inactive by trypsin treatment. These results highlight the potential for protein modification and immobilization to substantially extend enzyme shelf life, resist protease digestion, and enhance biological function to realize enzyme-enabled biotechnologies.


Asunto(s)
Estabilidad de Enzimas , Enzimas Inmovilizadas , Oro , Peroxidasa de Rábano Silvestre , Nanopartículas del Metal , Compuestos de Sulfhidrilo , Oro/química , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Compuestos de Sulfhidrilo/química , Nanopartículas del Metal/química , Proteolisis , Adsorción , Cinética
10.
Langmuir ; 40(27): 14086-14098, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38934738

RESUMEN

Compared to lipids, block copolymer vesicles are potentially robust nanocontainers for enzymes owing to their enhanced chemical stability, particularly in challenging environments. Herein we report that cis-diol-functional diblock copolymer vesicles can be chemically adsorbed onto a hydrophilic aldehyde-functional polymer brush via acetal bond formation under mild conditions (pH 5.5, 20 °C). Quartz crystal microbalance studies indicated an adsorbed amount, Γ, of 158 mg m-2 for vesicle adsorption onto such brushes, whereas negligible adsorption (Γ = 0.1 mg m-2) was observed for a control experiment conducted using a cis-diol-functionalized brush. Scanning electron microscopy and ellipsometry studies indicated a mean surface coverage of around 30% at the brush surface, which suggests reasonably efficient chemical adsorption. Importantly, such vesicles can be conveniently loaded with a model enzyme (horseradish peroxidase, HRP) using an aqueous polymerization-induced self-assembly formulation. Moreover, the immobilized vesicles remained permeable toward small molecules while retaining their enzyme payload. The enzymatic activity of such HRP-loaded vesicles was demonstrated using a well-established colorimetric assay. In principle, this efficient vesicle-on-brush strategy can be applied to a wide range of enzymes and functional proteins for the design of next-generation immobilized nanoreactors for enzyme-mediated catalysis.


Asunto(s)
Aldehídos , Peroxidasa de Rábano Silvestre , Interacciones Hidrofóbicas e Hidrofílicas , Polímeros , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Aldehídos/química , Polímeros/química , Adsorción , Propiedades de Superficie , Enzimas Inmovilizadas/química
11.
Int J Biol Macromol ; 273(Pt 2): 133180, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38880453

RESUMEN

Surface chemistry of carriers plays a key role in enzyme loading capacity, structure rigidity, and thus catalyze activity of immobilized enzymes. In this work, the two model enzymes of horseradish peroxidase (HRP) and glucose oxidase (GOx) are co-immobilized on the lysozyme functionalized magnetic core-shell nanocomposites (LYZ@MCSNCs) to enhance their stability and activity. Briefly, the HRP and GOx aggregates are firstly formed under the crosslinker of trimesic acid, in which the loading amount and the rigidity of the enzyme can be further increased. Additionally, LYZ easily forms a robust anti-biofouling nanofilm on the surface of SiO2@Fe3O4 magnetic nanoparticles with abundant functional groups, which facilitate chemical crosslinking of HRP and GOx aggregates with minimized inactivation. The immobilized enzyme of HRP-GOx@LYZ@MCSNCs exhibited excellent recovery activity (95.6 %) higher than that of the free enzyme (HRP&GOx). Specifically, 85 % of relative activity was retained after seven cycles, while 73.5 % of initial activity was also remained after storage for 33 days at 4 °C. The thermal stability and pH adaptability of HRP-GOx@LYZ@MCSNCs were better than those of free enzyme of HRP&GOx. This study provides a mild and ecofriendly strategy for multienzyme co-immobilization based on LYZ functionalized magnetic nanoparticles using HRP and GOx as model enzymes.


Asunto(s)
Estabilidad de Enzimas , Enzimas Inmovilizadas , Glucosa Oxidasa , Peroxidasa de Rábano Silvestre , Nanopartículas de Magnetita , Muramidasa , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Muramidasa/química , Muramidasa/metabolismo , Nanopartículas de Magnetita/química , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Concentración de Iones de Hidrógeno , Temperatura , Reactivos de Enlaces Cruzados/química , Agregado de Proteínas , Dióxido de Silicio/química
12.
Mikrochim Acta ; 191(7): 369, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834823

RESUMEN

A trendsetting direct competitive-based biosensing tool has been developed and implemented for the determination of the polyunsaturated fatty acid arachidonic acid (ARA), a highly significant biological regulator with decisive roles in viral infections. The designed methodology involves a competitive reaction between the target endogenous ARA and a biotin-ARA competitor for the recognition sites of anti-ARA antibodies covalently attached to the surface of carboxylic acid-coated magnetic microbeads (HOOC-MµBs), followed by the enzymatic label of the biotin-ARA residues with streptavidin-horseradish peroxidase (Strep-HRP) conjugate. The resulting bioconjugates were magnetically trapped onto the sensing surface of disposable screen-printed carbon transducers (SPCEs) to monitor the extent of the biorecognition reaction through amperometry. The operational functioning of the exhaustively optimized and characterized immunosensing bioplatform was highly convenient for the quantitative determination of ARA in serum samples from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2-) and respiratory syncytial virus (RSV)-infected individuals in a rapid, affordable, trustful, and sensitive manner.


Asunto(s)
Ácido Araquidónico , Técnicas Biosensibles , COVID-19 , SARS-CoV-2 , Humanos , Ácido Araquidónico/sangre , COVID-19/sangre , COVID-19/diagnóstico , COVID-19/inmunología , Técnicas Biosensibles/métodos , SARS-CoV-2/inmunología , Peroxidasa de Rábano Silvestre/química , Virus Sincitiales Respiratorios/inmunología , Inmunoensayo/métodos , Estreptavidina/química , Biotina/química , Límite de Detección
13.
J Colloid Interface Sci ; 672: 97-106, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38833738

RESUMEN

Formate is an important environmental pollutant, and meanwhile its concentration change is associated with a variety of diseases. Thus, rapid and sensitive detection of formate is critical for the biochemical analysis of complex samples and clinical diagnosis of multiple diseases. Herein, a colorimetric biosensor was constructed based on the cascade catalysis of formate oxidase (FOx) and horseradish peroxidase (HRP). These two enzymes were co-immobilized in Cu3(PO4)2-based hybrid nanoflower with spatial localization, in which FOx and HRP were located in the shell and core of nanoflower, respectively (FOx@HRP). In this system, FOx could catalyze the oxidation of formate to generate H2O2, which was then utilized by HRP to oxidize 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid to yield blue product. Ideal linear correlation could be obtained between the absorbance at 420 nm and formate concentration. Meanwhile, FOx@HRP exhibited excellent detection performance with low limit of detection (6 µM), wide linear detection range (10-900 µM), and favorable specificity, stability and reusability. Moreover, it could be applied in the detection of formate in environmental, food and biological samples with high accuracy. Collectively, FOx@HRP provides a useful strategy for the simple and sensitive detection of formate and is potentially to be used in biochemical analysis and clinical diagnosis.


Asunto(s)
Colorimetría , Enzimas Inmovilizadas , Formiatos , Peroxidasa de Rábano Silvestre , Colorimetría/métodos , Formiatos/química , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Técnicas Biosensibles/métodos , Límite de Detección , Nanoestructuras/química , Tamaño de la Partícula , Propiedades de Superficie
14.
Anal Methods ; 16(27): 4619-4625, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38920338

RESUMEN

The degree of the carbohydrate antigen 125 (CA-125) level in serum is positively correlated with the severity of ovarian cancer. In this study, a facile photoelectrochemical (PEC) immunoassay was devised for sensitive detection of CA-125 employing enzyme-catalyzed precipitation to weaken the photocurrent of hollow porous In2O3 nanotubes incorporating CdS nanoparticles. Upon the addition of the target analyte, horseradish peroxidase (HRP) enriches as a result of the formation of the sandwich immunocomplex, which can catalyze the conversion of 4-chloro1-naphthol (4-CN) to benzo-4-chlorohexadienone (4-CD) employing H2O2 as a cofactor. The as-produced insoluble precipitate acts as an obstacle to hinder the absorption of visible light by photoactive materials, thereby resulting in a decrease in photocurrent. Moreover, the weakened signal can be easily read out by a digital multimeter (DMM), advancing the convenience of the detection system. The preliminary analysis data indicate that the PEC immunoassay shows an efficient response to CA-125 levels ranging from 0.1 to 100 U mL-1 with a limit of detection (LOD) as low as 0.046 U mL-1 (S/N = 3). Most importantly, the proposed portable method has shown satisfactory performance in terms of selectivity, reproducibility, stability, and analysis in complex biological matrices.


Asunto(s)
Antígeno Ca-125 , Técnicas Electroquímicas , Antígeno Ca-125/sangre , Humanos , Inmunoensayo/métodos , Técnicas Electroquímicas/métodos , Límite de Detección , Peroxidasa de Rábano Silvestre/química , Compuestos de Cadmio/química , Femenino , Sulfuros/química , Nanotubos/química , Peróxido de Hidrógeno/química , Naftoles/química , Neoplasias Ováricas/sangre , Procesos Fotoquímicos
15.
Anal Chem ; 96(24): 10064-10073, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38842443

RESUMEN

The global spread of monkeypox has become a worldwide public healthcare issue. Therefore, there is an urgent need for accurate and sensitive detection methods to effectively control its spreading. Herein, we screened by phage display two peptides M4 (sequence: DPCGERICSIAL) and M6 (sequence: SCSSFLCSLKVG) with good affinity and specificity to monkeypox virus (MPXV) B21R protein. To simulate the state of the peptide in the phage and to avoid spatial obstacles of the peptide, GGGSK was added at the C terminus of M4 and named as M4a. Molecular docking shows that peptide M4a and peptide M6 are bound to different epitopes of B21R by hydrogen bonds and salt-bridge interactions, respectively. Then, peptide M4a was selected as the capture probe, phage M6 as the detection probe, and carbonized polymer dots (CPDs) as the fluorescent probe, and a colorimetric and fluorescent double-signal capture peptide/antigen/signal peptide-displayed phage sandwich ELISA triggered by horseradish peroxidase (HRP) through a simple internal filtration effect (IFE) was constructed. HRP catalyzes H2O2 to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to generate blue oxidized TMB, which can further quench the fluorescence of CPDs through IFE, enabling to detect MPXV B21R in colorimetric and fluorescent modes. The proposed simple immunoassay platform shows good sensitivity and reliability in MPXV B21R detection. The limit of detection for colorimetric and fluorescent modes was 27.8 and 9.14 pg/mL MPXV B21R, respectively. Thus, the established double-peptide sandwich-based dual-signal immunoassay provides guidance for the development of reliable and sensitive antigen detection capable of mutual confirmation, which also has great potential for exploring various analytical strategies for other respiratory virus surveillance.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática , Péptidos , Ensayo de Inmunoadsorción Enzimática/métodos , Péptidos/química , Antígenos Virales/inmunología , Antígenos Virales/análisis , Antígenos Virales/química , Simulación del Acoplamiento Molecular , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Límite de Detección , Colorantes Fluorescentes/química , Biblioteca de Péptidos , Bencidinas/química , Colorimetría/métodos
16.
Biosens Bioelectron ; 260: 116434, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38810414

RESUMEN

Aptamer-based electrochemical sensors are frequently used as independent, surface-functionalized, passive electrodes. However, their sensitivity and detection limits become limited, particularly when the electrode area is reduced to facilitate miniaturization. A mobile phone-based microfluidic electrochemical aptamer sensing platform for 3,3',4,4'-tetrachlorobiphenyl (PCB77) detection was developed in this work. This aptamer sensor utilized Exonuclease I (Exo I) and DNA/AuNPs/horseradish peroxidase (DNA/AuNPs/HRP) nanoprobes as a merged signal amplification method, which resulted in an increase in the electrochemical sensing performance. Sensitive detection of PCB77 was accomplished by functionalizing the hierarchically structured Au@MoS2/CNTs/GO modified working/sensing electrode with the specific aptamer. The aptamer sensor was tested with different concentrations of PCB77 within the microfluidic platform. Afterward, the differential pulse voltammograms were recorded using a wireless integrated circuit device. Subsequently, the collected data was transmitted to a smartphone using Bluetooth communication. A detection limit of 0.0085 ng/L was obtained for PCB77 detection, with a detection range from 0.1 to 1000 ng/L. In addition, the detection of PCB77 in spiked water samples validated the possibility of using this aptamer sensor in a real environment, and the aptamer sensor demonstrated high selectivity in distinguishing PCB77 from other potential interfering species. The merging of electrochemical aptamer sensors with purposefully engineered microfluidic and integrated devices in this study is a novel and promising method that provides a dependable platform for on-site applications.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Electroquímicas , Oro , Límite de Detección , Nanopartículas del Metal , Bifenilos Policlorados , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/instrumentación , Bifenilos Policlorados/análisis , Oro/química , Nanopartículas del Metal/química , Exodesoxirribonucleasas/química , Peroxidasa de Rábano Silvestre/química , Nanotubos de Carbono/química , Molibdeno/química , Diseño de Equipo , Contaminantes Químicos del Agua/análisis , ADN/química , Teléfono Inteligente
17.
ACS Appl Bio Mater ; 7(5): 3506-3514, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38696441

RESUMEN

Horseradish peroxidase (HRP)-mediated hydrogelation, caused by the cross-linking of phenolic groups in polymers in the presence of hydrogen peroxide (H2O2), is an effective route for bioink solidification in 3D bioprinting. Sugar beet pectin (SBP) naturally has cross-linkable phenols through the enzymatic reaction. Therefore, chemical modifications are not required, unlike the various polymers that have been used in the enzymatic cross-linking system. In this study, we report the application of SBP in extrusion-based bioprinting including HRP-mediated bioink solidification. In this system, H2O2 necessary for the solidification of inks is supplied in the gas phase. Cell-laden liver lobule-like constructs could be fabricated using bioinks consisting of 10 U/mL HRP, 4.0 and 6.0 w/v% SBP, and 6.0 × 106 cells/mL human hepatoblastoma (HepG2) cells exposed to air containing 16 ppm of H2O2 concurrently during printing and 10 min postprinting. The HepG2 cells enclosed in the printed constructs maintained their viability, metabolic activity, and hepatic functions from day 1 to day 7 of the culture, which indicates the cytocompatibility of this system. Taken together, this result demonstrates the potential of SBP and HRP cross-linking systems for 3D bioprinting, which can be applied in tissue engineering applications.


Asunto(s)
Beta vulgaris , Materiales Biocompatibles , Bioimpresión , Peroxidasa de Rábano Silvestre , Ensayo de Materiales , Pectinas , Impresión Tridimensional , Peroxidasa de Rábano Silvestre/metabolismo , Peroxidasa de Rábano Silvestre/química , Beta vulgaris/química , Humanos , Pectinas/química , Células Hep G2 , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/síntesis química , Peróxido de Hidrógeno/química , Tamaño de la Partícula , Supervivencia Celular/efectos de los fármacos , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/síntesis química , Ingeniería de Tejidos
18.
Biomacromolecules ; 25(6): 3620-3627, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38806062

RESUMEN

Lignin is an aromatic polymer that constitutes plant cell walls. The polymerization of lignin proceeds by radical coupling, and this process requires radicalization of the phenolic end of lignin by enzymes. However, due to the steric hindrance between enzymes, lignin, and polysaccharides, the direct oxidation of the phenolic end of lignin by the enzyme would be difficult, and the details of the growth of lignin are still unknown. In this study, enzymatic dehydrogenative polymerization experiments were conducted using coniferyl alcohol (CA) and the deuterium-labeled lignin model compound (D-LM) under a noncontact condition in which horseradish peroxidase cannot directly oxidize D-LM due to separation by a dialysis membrane. Analysis of deuterium-labeled degraded compounds obtained by a combination of methylation and thioacidolysis revealed the formation of the bond between the phenolic end of D-LM and CA, suggesting that membrane-permeable, low-molecular-weight lignols functioned as a redox shuttle mediator.


Asunto(s)
Lignina , Oxidación-Reducción , Polimerizacion , Lignina/química , Lignina/metabolismo , Fenoles/química , Fenoles/metabolismo , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Peso Molecular , Fenilpropionatos/química , Fenilpropionatos/metabolismo
19.
J Am Chem Soc ; 146(19): 13247-13257, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38701006

RESUMEN

Horseradish peroxidase (HRP) is an enzyme that oxidizes pollutants from wastewater. A previous report indicated that peroxidases can have an enhancement in initial enzymatic activity in an aqueous solution of 0.26 M 1-ethyl-3-methylimidazolium ethyl sulfate ([EMIm][EtSO4]) at neutral pH. However, the atomistic details remain elusive. In the enzymatic landscape of HRP, compound II (Cpd II) plays a key role and involves a histidine (H42) residue. Cpd II exists as oxoferryl (2a) or hydroxoferryl (2b(FeIV)) forms, where 2a is the predominantly observed form in experimental studies. Intriguingly, the ferric 2b(FeIII) form seen in synthetic complexes has not been observed in HRP. Here, we have investigated the structure and dynamics of HRP in pure water and aqueous [EMIm][EtSO4] (0.26 M), as well as the reaction mechanism of 2a to 2b conversion using polarizable molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations. When HRP is solvated in aq [EMIm][EtSO4], the catalytic water displaces, and H42 directly orients over the ferryl moiety, allowing a direct proton transfer (PT) with a significant energy barrier reduction. Conversely, in neat water, the reaction of 2a to 2b follows the previously reported mechanism. We further investigated the deprotonated form of H42. Analysis of the electric fields at the active site indicates that the aq [EMIm][EtSO4] medium facilitates the reaction by providing a more favorable environment compared with the system solvated in neat water. Overall, the atomic level supports the previous experimental observations and underscores the importance of favorable electric fields in the active site to promote catalysis.


Asunto(s)
Peroxidasa de Rábano Silvestre , Líquidos Iónicos , Simulación de Dinámica Molecular , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Líquidos Iónicos/química , Imidazoles/química , Teoría Cuántica , Soluciones , Agua/química
20.
Food Chem ; 453: 139623, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38761730

RESUMEN

Ochratoxin A (OTA) in food poses a serious challenge to public health. Herein, using the nanobody-driven controllable aggregation of gold nanoparticles (AuNPs) in a glucose oxidase-tyramine-horseradish peroxidase (GOx-TYR-HRP) system, we propose a direct competitive plasmonic enzyme immunoassay (dc-PEIA) for OTA detection. The OTA-GOx conjugate catalyzes glucose to produce hydrogen peroxide (H2O2), and then HRP catalyzes H2O2 to generate hydroxyl radical which induces the crosslink of TYR. Crosslinked TYR leads to aggregation of AuNPs through strong electrostatic interactions, which is tunable based on the competition of OTA-GOx and free OTA for binding the immobilized nanobody. The optimized dc-PEIA achieves an instrumental limit of detection (LOD) of 0.275 ng/mL and a visual LOD of 1.56 ng/mL. It exhibits good selectivity for OTA and accuracy in the analysis of pepper samples, with the confirmation of high-performance liquid chromatography. Overall, the dc-PEIA is demonstrated as a useful tool for detecting OTA in food.


Asunto(s)
Capsicum , Contaminación de Alimentos , Oro , Nanopartículas del Metal , Ocratoxinas , Ocratoxinas/análisis , Oro/química , Nanopartículas del Metal/química , Capsicum/química , Capsicum/inmunología , Contaminación de Alimentos/análisis , Técnicas para Inmunoenzimas/métodos , Límite de Detección , Glucosa Oxidasa/química , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/inmunología , Peroxidasa de Rábano Silvestre/química , Técnicas Biosensibles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA