Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 566
Filtrar
1.
Front Immunol ; 15: 1423764, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091502

RESUMEN

Background: Sputum immunoglobulin G (Sp-IgG) has been discovered to induce cytolytic extracellular trap cell death in eosinophils, suggesting a potential autoimmune mechanism contributing to asthma. This study aimed to explore the potential origin of Sp-IgG and identify clinically relevant subtypes of Sp-IgG that may indicate autoimmune events in asthma. Methods: This study included 165 asthmatic patients and 38 healthy volunteers. We measured Sp-IgG and its five subtypes against eosinophil inflammatory proteins (Sp-IgGEPs), including eosinophil peroxidase, eosinophil major basic protein, eosinophil-derived neurotoxin, eosinophil cationic protein, and Charcot-Leyden Crystal protein in varying asthma severity. Clinical and Mendelian randomization (MR) analyses were conducted. A positive Sp-IgGEPs signature (Sp-IgGEPs+) was defined when any of the five Sp-IgGEPs values exceeded the predefined cutoff thresholds, calculated as the mean values of healthy controls plus twice the standard deviation. Results: The levels of Sp-IgG and Sp-IgGEPs were significantly elevated in moderate/severe asthma than those in mild asthma/healthy groups (all p < 0.05). Sp-IgG levels were positively correlated with airway eosinophil and Sp-IgGEPs. MR analysis showed causality between eosinophil and IgG (OR = 1.02, 95%CI = 1.00-1.04, p = 0.020), and elevated IgG was a risk factor for asthma (OR = 2.05, 95%CI = 1.00-4.17, p = 0.049). Subjects with Sp-IgGEPs+ exhibited worse disease severity and served as an independent risk factor contributing to severe asthma (adjusted-OR = 5.818, adjusted-95% CI = 2.193-15.431, adjusted-p < 0.001). Receiver operating characteristic curve analysis demonstrated that the combination of Sp-IgGEPs+ with non-allergic status, an ACT score < 15, and age ≥ 45 years, effectively predicted severe asthma (AUC = 0.84, sensitivity = 86.20%, specificity = 67.80%). Conclusion: This study identifies a significant association between airway eosinophilic inflammation, Sp-IgG, and asthma severity. The Sp-IgGEPs panel potentially serves as the specific biomarker reflecting airway autoimmune events in asthma.


Asunto(s)
Asma , Eosinófilos , Inmunoglobulina G , Esputo , Humanos , Asma/inmunología , Asma/diagnóstico , Femenino , Masculino , Inmunoglobulina G/inmunología , Persona de Mediana Edad , Esputo/inmunología , Adulto , Eosinófilos/inmunología , Biomarcadores , Índice de Severidad de la Enfermedad , Peroxidasa del Eosinófilo/metabolismo , Peroxidasa del Eosinófilo/inmunología , Estudios de Casos y Controles
3.
Viruses ; 16(6)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38932247

RESUMEN

Influenza A virus (IAV) infections in swine are usually subclinical, but they can reach high morbidity rates. The mortality rate is normally low. In this study, six vaccinated, spontaneously deceased sows revealed IAV infection and enhanced neutrophilic bronchopneumonia with unexpectedly large numbers of infiltrating eosinophils. The purpose of this study was to characterize these lung lesions with special emphasis on the phenotypes of inflammatory cells, the presence of eosinophilic peroxidase (EPO), and neutrophil extracellular traps (NETs). The number of Sirius red-stained eosinophils was significantly higher in the lungs of IAV-infected sows compared to healthy pigs, indicating a migration of eosinophils from blood vessels into the lung tissue stimulated by IAV infection. The detection of intra- and extracellular EPO in the lungs suggests its contribution to pulmonary damage. The presence of CD3+ T lymphocytes, CD20+ B lymphocytes, and Iba-1+ macrophages indicates the involvement of cell-mediated immune responses in disease progression. Furthermore, high numbers of myeloperoxidase-positive cells were detected. However, DNA-histone-1 complexes were reduced in IAV-infected sows, leading to the hypothesis that NETs are not formed in the IAV-infected sows. In conclusion, our findings in the lungs of IAV-infected vaccinated sows suggest the presence of so far unreported field cases of vaccine-associated enhanced respiratory disease.


Asunto(s)
Virus de la Influenza A , Vacunas contra la Influenza , Pulmón , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Animales , Porcinos , Pulmón/patología , Pulmón/virología , Pulmón/inmunología , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/veterinaria , Femenino , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Virus de la Influenza A/inmunología , Brotes de Enfermedades/veterinaria , Eosinófilos/inmunología , Trampas Extracelulares/inmunología , Vacunación/veterinaria , Peroxidasa del Eosinófilo/metabolismo
4.
J Leukoc Biol ; 116(2): 247-259, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38736141

RESUMEN

The origins and evolution of the eosinophilic leukocyte have received only scattered attention since Paul Ehrlich first named this granulocyte. Studies suggest that myeloperoxidase, expressed by granulocytes, and eosinophil peroxidase diverged some 60 to 70 million years ago, but invertebrate to vertebrate evolution of the eosinophil lineage is unknown. Vertebrate eosinophils have been characterized extensively in representative species at light microscopic, ultrastructural, genetic, and biochemical levels. Understanding of eosinophil function continues to expand and includes to date regulation of "Local Immunity And/Or Remodeling/Repair" (the so-called LIAR hypothesis), modulation of innate and adaptive immune responses, maintenance of tissue and metabolic homeostasis, and, under pathologic conditions, inducers of tissue damage, repair, remodeling, and fibrosis. This contrasts with their classically considered primary roles in host defense against parasites and other pathogens, as well as involvement in T-helper 2 inflammatory and immune responses. The eosinophils' early appearance during evolution and continued retention within the innate immune system across taxa illustrate their importance during evolutionary biology. However, successful pregnancies in eosinophil-depleted humans/primates treated with biologics, host immune responses to parasites in eosinophil-deficient mice, and the absence of significant developmental or functional abnormalities in eosinophil-deficient mouse strains under laboratory conditions raise questions of the continuing selective advantages of the eosinophil lineage in mammals and humans. The objectives of this review are to provide an overview on evolutionary origins of eosinophils across the animal kingdom, discuss some of their main functions in the context of potential evolutionary relevance, and highlight the need for further research on eosinophil functions and functional evolution.


Asunto(s)
Evolución Biológica , Eosinófilos , Eosinófilos/inmunología , Animales , Humanos , Inmunidad Innata , Peroxidasa del Eosinófilo/metabolismo
5.
Cell Immunol ; 401-402: 104829, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38754338

RESUMEN

Eosinophils account for a significant portion of immune cells in the body. It is well known that eosinophils play a role in the pathogenesis of many diseases. In which the interaction between eosinophils and other immune cells is incompletely understood. The aim of this study is to characterize the immune suppressive functions of eosinophils. In this study, an irway allergy mouse model was established. Eosinophils were isolated from the airway tissues using flow cytometry cell sorting. The RAW264.7 cell line was used to test the immune suppressive functions of eosinophils. We observed that eosinophils had immune suppressive functions manifesting inhibiting immune cell proliferation and cytokine release from other immune cells. The eosinophil's immune suppressive functions were mediated by eosinophil-derived molecules, such as eosinophil peroxidase (EPX) and major basic protein (MBP). The expression of Ras-like protein in the brain 27a (Rab27a) was detected in eosinophils, which controlled the release of MBP and EPX by eosinophils. Eosinophil mediators had two contrast effects on inducing inflammatory responses or rendering immune suppressive effects, depending on the released amounts. Administration of an inhibitor of Rab27a at proper dosage could alleviate experimental airway allergy. To sum up, eosinophils have immune suppressive functions and are also inflammation inducers. Rab27a governs the release of EPX and MBP from eosinophils, which leads to immune suppression or inflammation. Modulation of Rab27a can alleviate airway allergy responses by modulating eosinophil's immune suppressive functions, which has the translational potential for the management of eosinophil-related diseases.


Asunto(s)
Peroxidasa del Eosinófilo , Eosinófilos , Animales , Eosinófilos/inmunología , Eosinófilos/metabolismo , Ratones , Células RAW 264.7 , Peroxidasa del Eosinófilo/metabolismo , Ratones Endogámicos BALB C , Citocinas/metabolismo , Citocinas/inmunología , Modelos Animales de Enfermedad , Proteína Mayor Básica del Eosinófilo/metabolismo , Proteína Mayor Básica del Eosinófilo/inmunología , Femenino , Hipersensibilidad/inmunología , Proliferación Celular , Inflamación/inmunología
6.
Clin Immunol ; 263: 110228, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663494

RESUMEN

Asthma is a heterogeneous disease characterized by chronic airway inflammation, reversible airflow limitation, and airway remodeling. Eosinophil peroxidase (EPX) is the most abundant secondary granule protein unique to activated eosinophils. In this study, we aimed to illustrate the effect of EPX on the epithelial-mesenchymal transition (EMT) in BEAS-2B cells. Our research found that both EPX and ADAM33 were negatively correlated with FEV1/FVC and FEV1%pred, and positively correlated with IL-5 levels. Asthma patients had relatively higher levels of ADAM33 and EPX compared to the healthy control group. The expression of TSLP, TGF-ß1 and ADAM33 in the EPX intervention group was significantly higher. Moreover, EPX could promote the proliferation, migration and EMT of BEAS-2B cells, and the effect of EPX on various factors was significantly improved by the PI3K inhibitor LY294002. The findings from this study could potentially offer a novel therapeutic target for addressing airway remodeling in bronchial asthma, particularly focusing on EMT.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Asma , Bronquios , Peroxidasa del Eosinófilo , Células Epiteliales , Transición Epitelial-Mesenquimal , Factor de Crecimiento Transformador beta1 , Humanos , Asma/metabolismo , Asma/patología , Asma/fisiopatología , Asma/inmunología , Masculino , Femenino , Células Epiteliales/metabolismo , Peroxidasa del Eosinófilo/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Persona de Mediana Edad , Adulto , Bronquios/patología , Interleucina-5/metabolismo , Cromonas/farmacología , Citocinas/metabolismo , Línea Celular , Linfopoyetina del Estroma Tímico , Proliferación Celular , Movimiento Celular , Morfolinas/farmacología , Proteínas ADAM
7.
Rev Alerg Mex ; 71(1): 57, 2024 Feb 01.
Artículo en Español | MEDLINE | ID: mdl-38683075

RESUMEN

OBJECTIVE: Identify molecular mimicry between TPO, eosinophil peroxidase (EPX), thyroglobulin and IL24 and microorganism antigens. METHODS: Through in silico analysis, we performed local alignments between human and microorganism antigens with PSI-BLAST. Proteins that did not present a 3D structure were modeled by homology through the Swiss Modeller server and epitope prediction was performed through Ellipro. Epitopes were located in the 3D models using PYMOL software. RESULTS: A total of 38 microorganism antigens (parasites, bacteria) had identities between 30% and 45%, being the highest with Anisakis simplex. The alignment between 2 candidate proteins from A. simplex and EPX presented significant values, with identities of 43 and 44%. In bacteria, Campylobacter jejuni presented the highest identity with thyroglobulin (35%). 220 linear and conformational epitopes of microorganism antigens were predicted. Peroxidasin-like proteins from Toxocara canis and Trichinella pseudospiralis presented 10 epitopes similar to TPO and EPX, as possible molecules triggering cross-reactivity. No virus presented identity with the human proteins studied. CONCLUSION: TPO and EPX antigens shared potential cross-reactive epitopes with bacterial and nematode proteins, suggesting that molecular mimicry could be a mechanism that explains the relationship between infections and urticaria/hypothyroidism. In vitro work is needed to demonstrate the results obtained in the in silico analysis.


OBJETIVO: Identificar mimetismo molecular entre TPO, eosinofil peroxidasa (EPX), tiroglobulina e IL24 y antígenos de microorganismos. MÉTODOS: A través de análisis in silico, realizamos los alineamientos locales entre los antígenos humanos y de microorganismos con PSI-BLAST. Las proteínas que no presentaban estructura 3D, fueron modeladas por homología a través del servidor Swiss Modeller y se realizó una predicción de epítopes a través de Ellipro. Los epítopes se localizaron en los modelos 3D utilizando el software PYMOL. RESULTADOS: Un total de 38 antígenos de microorganismos (parásitos y bacterias), tuvieron identidades entre 30 y 45%, siendo los más altos con Anisakis simplex. El alineamiento entre dos proteínas candidatas de A. simplex y EPX presentaron valores importantes, con identidades de 43 y 44%. En las bacterias, Campylobacter jejuni presentó la mayor identidad con tiroglobulina (35%). Se predijeron 220 epítopes lineales y conformacionales de antígenos de microorganismos. Las proteínas similares a la peroxidasina de Toxocara canis y Trichinella pseudospiralis presentaron diez epítopes similares a TPO y EPX, como posibles moléculas desencadenantes de una reactividad cruzada. Ningún virus presentó identidad con las proteínas humanas estudiadas. CONCLUSIÓN: Los antígenos TPO y EPX compartieron potenciales epítopes de reacción cruzada con proteínas bacterianas y nematodos, lo que sugiere que el mimetismo molecular podría ser un mecanismo que explique la relación entre infecciones y la urticaria/hipotiroidismo. Se necesitan trabajos in vitro que demuestren los resultados obtenidos en el análisis in silico.


Asunto(s)
Autoantígenos , Yoduro Peroxidasa , Imitación Molecular , Tiroglobulina , Imitación Molecular/inmunología , Humanos , Tiroglobulina/inmunología , Yoduro Peroxidasa/inmunología , Peroxidasa del Eosinófilo/inmunología , Animales , Antígenos Bacterianos/inmunología , Reacciones Cruzadas , Proteínas de Unión a Hierro/inmunología , Epítopos/inmunología
8.
Biochemistry (Mosc) ; 89(Suppl 1): S90-S111, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38621746

RESUMEN

Reactive halogen species (RHS) are highly reactive compounds that are normally required for regulation of immune response, inflammatory reactions, enzyme function, etc. At the same time, hyperproduction of highly reactive compounds leads to the development of various socially significant diseases - asthma, pulmonary hypertension, oncological and neurodegenerative diseases, retinopathy, and many others. The main sources of (pseudo)hypohalous acids are enzymes from the family of heme peroxidases - myeloperoxidase, lactoperoxidase, eosinophil peroxidase, and thyroid peroxidase. Main targets of these compounds are proteins and peptides, primarily methionine and cysteine residues. Due to the short lifetime, detection of RHS can be difficult. The most common approach is detection of myeloperoxidase, which is thought to reflect the amount of RHS produced, but these methods are indirect, and the results are often contradictory. The most promising approaches seem to be those that provide direct registration of highly reactive compounds themselves or products of their interaction with components of living cells, such as fluorescent dyes. However, even such methods have a number of limitations and can often be applied mainly for in vitro studies with cell culture. Detection of reactive halogen species in living organisms in real time is a particularly acute issue. The present review is devoted to RHS, their characteristics, chemical properties, peculiarities of interaction with components of living cells, and methods of their detection in living systems. Special attention is paid to the genetically encoded tools, which have been introduced recently and allow avoiding a number of difficulties when working with living systems.


Asunto(s)
Halógenos , Peroxidasas , Peroxidasas/metabolismo , Halógenos/metabolismo , Peroxidasa/metabolismo , Peroxidasa del Eosinófilo , Antioxidantes
9.
Ann Allergy Asthma Immunol ; 132(6): 713-722.e4, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38382675

RESUMEN

BACKGROUND: The pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP) with comorbid asthma remains unclear. OBJECTIVE: To assess upper and lower airway unity and identify a possible common pathogenesis in CRSwNP with asthma. METHODS: This study analyzed the expression of proteins and metabolites in nasal lavage fluid cells (NLFCs) and induced sputum cells (ISCs). Differentially expressed proteins and their function-related metabolites in the upper and lower airways of patients having CRSwNP with or without asthma were identified; relevant signaling pathways were analyzed, and key pathway-related proteins were identified. Parallel reaction monitoring was used to verify these target proteins. RESULTS: Protein or metabolite expression between NLFCs and ISCs was highly correlated and conservative on the basis of expression profiles and weighted gene coexpression network analysis. There were 17 differentially coexpressed proteins and their function-related 13 metabolites that were identified in the NLFCs and ISCs of CRSwNP, whereas 11 proteins and 11 metabolites were identified in CRSwNP with asthma. An asthma pathway was involved in the copathogenesis of upper and lower airways in whether CRSwNP or CRSwNP with asthma. The asthma pathway-related proteins proteoglycan 2 and eosinophil peroxidase, as the core of the protein-metabolism interaction networks between the upper and lower airways, were both highly coexpressed in NLFCs and ISCs in patients having either CRSwNP or CRSwNP with asthma by parallel reaction monitoring validation. CONCLUSION: Proteomics and metabolomics reveal upper and lower airway unity. Asthma pathway-related proteins proteoglycan 2 and eosinophil peroxidase from the upper airway could be used to assess the potential risk of lower airway dysfunction in CRSwNP.


Asunto(s)
Asma , Metabolómica , Pólipos Nasales , Proteómica , Rinitis , Sinusitis , Humanos , Sinusitis/metabolismo , Asma/metabolismo , Rinitis/metabolismo , Proteómica/métodos , Enfermedad Crónica , Femenino , Pólipos Nasales/metabolismo , Masculino , Adulto , Persona de Mediana Edad , Esputo/metabolismo , Líquido del Lavado Nasal/química , Peroxidasa del Eosinófilo/metabolismo , Proteoglicanos/metabolismo , Rinosinusitis
10.
Nat Commun ; 15(1): 1067, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316791

RESUMEN

Eosinophils are involved in tissue homeostasis. Herein, we unveiled eosinophils as important regulators of bone homeostasis. Eosinophils are localized in proximity to bone-resorbing osteoclasts in the bone marrow. The absence of eosinophils in ΔdblGATA mice results in lower bone mass under steady-state conditions and amplified bone loss upon sex hormone deprivation and inflammatory arthritis. Conversely, increased numbers of eosinophils in IL-5 transgenic mice enhance bone mass under steady-state conditions and protect from hormone- and inflammation- mediated bone loss. Eosinophils strongly inhibit the differentiation and demineralization activity of osteoclasts and lead to profound changes in the transcriptional profile of osteoclasts. This osteoclast-suppressive effect of eosinophils is based on the release of eosinophil peroxidase causing impaired reactive oxygen species and mitogen-activated protein kinase induction in osteoclast precursors. In humans, the number and the activity of eosinophils correlates with bone mass in healthy participants and rheumatoid arthritis patients. Taken together, experimental and human data indicate a regulatory function of eosinophils on bone.


Asunto(s)
Resorción Ósea , Peroxidasa del Eosinófilo , Osteoclastos , Animales , Humanos , Ratones , Resorción Ósea/metabolismo , Diferenciación Celular , Peroxidasa del Eosinófilo/metabolismo , Eosinófilos , Homeostasis , Ratones Transgénicos , Osteoclastos/metabolismo
11.
Laryngoscope ; 134(1): 69-78, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37255054

RESUMEN

OBJECTIVE: To evaluate eosinophil peroxidase (EPX) as a biomarker for tissue levels of eosinophilia, cytokines, and chemokines within chronic rhinosinusitis (CRS). METHODS: Twenty-eight subjects undergoing sinonasal surgery were prospectively enrolled. Ethmoid tissue was analyzed with an in-house EPX immunoassay and a 48-plex cytokine-chemokine array. Clinical severity was assessed using SNOT-22 and Lund-Mackay scores. Subjects were grouped as follows: controls, polyp status (CRS with [CRSwNP] and without nasal polyps [CRSsNP]), tissue eosinophilia (eosinophilic CRS [eCRS], non-eosinophilic CRS [neCRS]), or combinations thereof (eCRSwNP, eCRSsNP, neCRSsNP). eCRS was defined as >10 eosinophils per high power field (HPF). Subjects without CRS or asthma were enrolled as controls. RESULTS: EPX was elevated in CRSwNP compared to control (p = 0.007), in eCRS compared to neCRS (p = 0.002), and in eCRSwNP along with eCRSsNP compared to neCRSsNP (p = 0.023, p = 0.015, respectively). eCRS displayed elevated IL-5 compared to neCRS (p = 0.005). No significant differences in EPX or IL-5 were observed between eCRSwNP and eCRSsNP. IL-5 was elevated in eCRSwNP (p = 0.019) compared neCRSsNP. Area under the receiver operator characteristic curve was 0.938 (95% CI, 0.835-1.00) for EPX and tissue eosinophilia, with an optimal cut-point of 470 ng/mL being 100% specific and 81.25% sensitive for tissue eosinophilia. Linear regression revealed a strong correlation between EPX and IL-5 (R2 = 0.64, p < 0.001). Comparing EPX and IL-5, only EPX displayed significant correlation with SNOT-22 (p = 0.04) and Lund-Mackay score (p = 0.004). CONCLUSION: EPX is associated with tissue eosinophilia in CRS patients regardless of polyp status. EPX correlates with IL-5 and could be potentially considered a biomarker for anti-IL-5 therapies. LEVEL OF EVIDENCE: 3 Laryngoscope, 134:69-78, 2024.


Asunto(s)
Eosinofilia , Pólipos Nasales , Rinitis , Rinosinusitis , Sinusitis , Humanos , Biomarcadores , Enfermedad Crónica , Citocinas , Peroxidasa del Eosinófilo , Eosinofilia/complicaciones , Eosinófilos , Interleucina-5 , Pólipos Nasales/complicaciones , Pólipos Nasales/diagnóstico , Rinitis/complicaciones , Rinitis/diagnóstico , Sinusitis/complicaciones , Sinusitis/diagnóstico , Sinusitis/cirugía
12.
Cells ; 12(23)2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38067174

RESUMEN

Eosinophilic airway inflammation, complicated by bronchial asthma and eosinophilic chronic rhinosinusitis (ECRS), is difficult to treat. The disease may become refractory when eosinophilic mucin associated with eosinophil peroxidase (EPX) and autoantibodies fills in the paranasal sinus and small airway. This study investigated the functional role of an anti-EPX antibody in eosinophilic mucin of ECRS in eosinophilic airway inflammation. Eosinophilic mucin was obtained from patients with ECRS. The effects of the anti-EPX antibody on dsDNA release from eosinophils and eosinophilic mucin decomposition were evaluated. Immunofluorescence or enzyme-linked immunosorbent assays were performed to detect the anti-EPX antibody and its supernatant and serum levels in eosinophilic mucin, respectively. The serum levels of the anti-EPX antibody were positively correlated with sinus computed tomography score and fractionated exhaled nitrogen oxide. Patients with refractory ECRS had higher serum levels of the anti-EPX antibody than those without. However, dupilumab treatment decreased the serum levels of the anti-EPX antibody. Immunoglobulins (Igs) in the immunoprecipitate of mucin supernatants enhanced dsDNA release from eosinophils, whereas the neutralization of Igs against EPX stopped dsDNA release. Furthermore, EPX antibody neutralization accelerated mucin decomposition and restored corticosteroid sensitivity. Taken together, the anti-EPX antibody may be involved in the formulation of eosinophilic mucin and be used as a clinical marker and therapeutic target for intractable eosinophilic airway inflammation.


Asunto(s)
Peroxidasa del Eosinófilo , Eosinofilia , Mucinas , Sinusitis , Humanos , Anticuerpos , Peroxidasa del Eosinófilo/inmunología , Eosinofilia/tratamiento farmacológico , Eosinófilos , Inflamación , Mucinas/metabolismo , Sinusitis/tratamiento farmacológico
13.
Angew Chem Int Ed Engl ; 62(38): e202307451, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37477970

RESUMEN

The first protein-binding allosteric RNA-cleaving DNAzyme (RCD) obtained by direct in vitro selection against eosinophil peroxidase (EPX), a validated marker for airway eosinophilia, is described. The RCD has nanomolar affinity for EPX, shows high selectivity against related peroxidases and other eosinophil proteins, and is resistant to degradation by mammalian nucleases. An optimized RCD was used to develop both fluorescence and lateral flow assays, which were evaluated using 38 minimally processed patient sputum samples (23 non-eosinophilic, 15 eosinophilic), producing a clinical sensitivity of 100 % and specificity of 96 %. This RCD-based lateral flow assay should allow for rapid evaluation of airway eosinophilia as an aid for guiding asthma therapy.


Asunto(s)
ADN Catalítico , Peroxidasa del Eosinófilo , Eosinofilia , Esputo , Animales , Humanos , ADN Catalítico/metabolismo , Peroxidasa del Eosinófilo/metabolismo , Eosinofilia/diagnóstico , Eosinófilos/enzimología , Esputo/química , Esputo/citología
14.
J Allergy Clin Immunol ; 152(5): 1121-1130.e10, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37277072

RESUMEN

BACKGROUND: There is a need for new and effective oral asthma therapies. Dexpramipexole, an oral eosinophil-lowering drug, has not previously been studied in asthma. OBJECTIVE: We sought to evaluate the safety and efficacy of dexpramipexole in lowering blood and airway eosinophilia in subjects with eosinophilic asthma. METHODS: We performed a randomized, double-blind, placebo-controlled proof-of-concept trial in adults with inadequately controlled moderate to severe asthma and blood absolute eosinophil count (AEC) greater than or equal to 300/µL. Subjects were randomly assigned (1:1:1:1) to dexpramipexole 37.5, 75, or 150 mg BID (twice-daily) or placebo. The primary end point was the relative change in AEC from baseline to week 12. Prebronchodilator FEV1 week-12 change from baseline was a key secondary end point. Nasal eosinophil peroxidase was an exploratory end point. RESULTS: A total of 103 subjects were randomly assigned to dexpramipexole 37.5 mg BID (N = 22), 75 mg BID (N = 26), 150 mg BID (N = 28), or placebo (N = 27). Dexpramipexole significantly reduced placebo-corrected AEC week-12 ratio to baseline, in both the 150-mg BID (ratio, 0.23; 95% CI, 0.12-0.43; P < .0001) and the 75-mg BID (ratio, 0.34; 95% CI, 0.18-0.65; P = .0014) dose groups, corresponding to 77% and 66% reductions, respectively. Dexpramipexole reduced the exploratory end point of nasal eosinophil peroxidase week-12 ratio to baseline in the 150-mg BID (median, 0.11; P = .020) and the 75-mg BID (median, 0.17; P = .021) groups. Placebo-corrected FEV1 increases were observed starting at week 4 (nonsignificant). Dexpramipexole displayed a favorable safety profile. CONCLUSIONS: Dexpramipexole demonstrated effective eosinophil lowering and was well tolerated. Additional larger clinical trials are needed to understand the clinical efficacy of dexpramipexole in asthma.


Asunto(s)
Antiasmáticos , Asma , Eosinofilia Pulmonar , Adulto , Humanos , Pramipexol/farmacología , Pramipexol/uso terapéutico , Peroxidasa del Eosinófilo , Asma/tratamiento farmacológico , Eosinofilia Pulmonar/tratamiento farmacológico , Eosinófilos , Resultado del Tratamiento , Método Doble Ciego , Antiasmáticos/uso terapéutico
15.
J Immunol Res ; 2023: 5980287, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153639

RESUMEN

Circulating antieosinophil antibodies (AEOSA) have been associated with various autoimmune conditions affecting the liver, kidneys, lungs, and joints but are not part of routine clinical diagnostics. While analyzing human sera for antineutrophil cytoplasmic antibodies (ANCA) by indirect immunofluorescence (IIF) on granulocytes, 0.8% of analyzed samples were found to be reactive with eosinophils. Our aim was to determine the diagnostic relevance and antigenic specificity of AEOSA. AEOSA were seen either in combination with an myeloperoxidase (MPO)-positive p-ANCA (44%; AEOSA+/ANCA+) or on their own (56%; AEOSA+/ANCA-). AEOSA/ANCA positivity was seen in patients with thyroid disease (44%) or vasculitis (31%), while AEOSA+/ANCA- pattern was more common in patients with autoimmune disorders of the gastrointestinal tract and/or liver. Eosinophil peroxidase (EPX) was the main target recognized in 66% of the AEOSA+ sera by enzyme-linked immunosorbent assay (ELISA). Eosinophil cationic protein (ECP) and eosinophil-derived neurotoxin (EDN) were also identified as target antigens but less frequently and only in combination with EPX. In conclusion, we confirmed that EPX is a major target of AEOSA, illustrating the high antigenic potential of EPX. Our results also demonstrate the presence of concomitant AEOSA/ANCA positivity in a defined patient group. Further research should aim to elucidate the association of AEOSA with autoimmunity.


Asunto(s)
Enfermedades Autoinmunes , Vasculitis , Humanos , Anticuerpos Anticitoplasma de Neutrófilos , Peroxidasa , Ensayo de Inmunoadsorción Enzimática , Enfermedades Autoinmunes/diagnóstico , Peroxidasa del Eosinófilo , Técnica del Anticuerpo Fluorescente Indirecta/métodos , Eosinófilos
16.
J Allergy Clin Immunol ; 152(2): 400-407, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37148919

RESUMEN

BACKGROUND: A definitive diagnosis of eosinophilic chronic rhinosinusitis (eCRS) requires invasive surgical tissue sampling and histologic enumeration of intact eosinophils. Eosinophil peroxidase (EPX) is an accurate biomarker of sinonasal tissue eosinophilia in CRS regardless of polyp status. A less invasive and rapid method that accurately identifies tissue eosinophilia would be of great benefit to patients. OBJECTIVE: We sought to evaluate a new clinical tool that uses a nasal swab and colorimetric EPX activity assay to predict a diagnosis of eCRS. METHODS: A prospective, observational cohort study was conducted using nasal swabs and sinonasal tissue biopsies obtained from patients with CRS electing endoscopic sinus surgery. Patients were classified as non-eCRS (n = 19) and eCRS (n = 35) on the basis of pathologically determined eosinophil counts of less than 10 or greater than or equal to 10 eosinophils/HPF, respectively. Swab-deposited EPX activity was measured and compared with tissue eosinophil counts, EPX levels, and CRS-specific disease metrics. RESULTS: EPX activity was significantly increased in patients with eCRS than in patients without eCRS (P < .0001). With a relative absorbance unit cutoff value of greater than or equal to 0.80, the assay demonstrated high sensitivity (85.7%) and moderate specificity (79.0%) for confirming eCRS. Spearman correlations between EPX activity and tissue eosinophil counts (rs = 0.424), EPX levels (rs = 0.503), and Lund-Kennedy endoscopy scores (rs = 0.440) in eCRS were significant (P < .05). CONCLUSIONS: This investigation evaluates a nasal swab sampling method and EPX activity assay that accurately confirms eCRS. This method could potentially address the unmet need to identify sinonasal tissue eosinophilia at the point-of-care, as well as to longitudinally monitor eosinophil activity and treatment response.


Asunto(s)
Eosinofilia , Pólipos Nasales , Rinitis , Sinusitis , Humanos , Eosinofilia/tratamiento farmacológico , Peroxidasa del Eosinófilo , Estudios Prospectivos , Rinitis/tratamiento farmacológico , Eosinófilos/patología , Sinusitis/tratamiento farmacológico , Enfermedad Crónica , Pólipos Nasales/diagnóstico , Pólipos Nasales/patología
17.
Anal Chim Acta ; 1244: 340626, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36737144

RESUMEN

Elemental bromine is among the essential elements for human health. In living organisms, bromide (Br-) and hydrogen peroxide (H2O2) can be catalyzed by eosinophil peroxidase (EPO) to generate a reactive oxygen species (ROS), hypobromous acid (HOBr), which exhibits properties similar to those of hypochlorous acid (HOCl). Moreover, HOBr possesses strong oxidative and antibacterial properties, which are believed to play an important role in the neutrophil host defense system. However, overexpression or misexpression of HOBr can cause organismal and tissue damage, which is closely related to the development of various diseases. Therefore, an increasing number of studies has demonstrated physiological associations with the conversion of Br- to HOBr. With the development of fluorescence imaging technology, developing fluorescent probes with novel structures and high selectivity to detect changes in Br-, HOBr, and the related enzyme EPO levels in organisms has become very important. This paper summarizes Br-, HOBr, and EPO fluorescent probes reported in recent years, including the design principles, mechanisms, optical properties, and bioapplications. Finally, the application prospects and challenges are also discussed.


Asunto(s)
Bromuros , Colorantes Fluorescentes , Humanos , Peroxidasa del Eosinófilo , Colorantes Fluorescentes/química , Peróxido de Hidrógeno , Bromatos/química
18.
J Biol Chem ; 299(12): 105402, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38229400

RESUMEN

Eosinophil peroxidase (EPO) is the most abundant granule protein exocytosed by eosinophils, specialized human phagocytes. Released EPO catalyzes the formation of reactive oxidants from bromide, thiocyanate, and nitrite that kill tissue-invading parasites. However, EPO also plays a deleterious role in inflammatory diseases, making it a potential pharmacological target. A major hurdle is the high similarity to the homologous myeloperoxidase (MPO), which requires a detailed understanding of the small structural differences that can be used to increase the specificity of the inhibitors. Here, we present the first crystal structure of mature leukocyte EPO at 1.6 Å resolution together with analyses of its posttranslational modifications and biochemical properties. EPO has an exceptionally high number of positively charged surface patches but only two occupied glycosylation sites. The crystal structure further revealed the existence of a light (L) and heavy (H) chain as a result of proteolytic cleavage. Detailed comparison with the structure of human MPO allows us to identify differences that may contribute to the known divergent enzymatic properties. The crystal structure revealed fully established ester links between the prosthetic group and the protein, the comparably weak imidazolate character of the proximal histidine, and the conserved structure of the catalytic amino acids and Ca2+-binding site. Prediction of the structure of unprocessed proeosinophil peroxidase allows further structural analysis of the three protease cleavage sites and the potential pro-convertase recognition site in the propeptide. Finally, EPO biosynthesis and its biochemical and biophysical properties are discussed with respect to the available data from the well-studied MPO.


Asunto(s)
Peroxidasa del Eosinófilo , Hemo , Humanos , Peroxidasa del Eosinófilo/química , Eosinófilos/enzimología , Hemo/química , Procesamiento Proteico-Postraduccional
19.
Sci Rep ; 12(1): 22476, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36577785

RESUMEN

Eosinophils are granulocytes that play a significant role in the pathogenesis of asthma and other airway diseases. Directing patient treatment based on the level of eosinophilia has been shown to be extremely effective in reducing exacerbations and therefore has tremendous potential as a routine clinical test. Herein, we describe the in vitro selection and optimization of DNA aptamers that bind to eosinophil peroxidase (EPX), a protein biomarker unique to eosinophils. Fifteen rounds of magnetic bead aptamer selection were performed prior to high throughput DNA sequencing. The top 10 aptamer candidates were assessed for EPX binding using a mobility shift assay. This process identified a lead aptamer candidate termed EAP1-05 with low nanomolar affinity and high specificity for EPX over other common sputum proteins. This aptamer sequence was further optimized through truncation and used to develop an easy-to-use colourimetric pull-down assay that can detect EPX over a concentration range from 1 - 100 nM in processed sputum. Forty-six clinical samples were processed using a new sputum dispersal method, appropriate for a rapid assessment assay, that avoids centrifugation and lengthy processing times. The assay showed 89% sensitivity and 96% specificity to detect eosinophilia (compared to gold standard sputum cytometry), with results being produced in under an hour. This assay could allow for an easy assessment of eosinophil activity in the airway to guide anti-inflammatory therapy for several airway diseases.


Asunto(s)
Asma , Eosinofilia , Humanos , Peroxidasa del Eosinófilo/metabolismo , Esputo/metabolismo , Eosinofilia/patología , Eosinófilos/metabolismo , Asma/metabolismo
20.
Nutrients ; 14(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36145082

RESUMEN

The intestine requires a great deal of energy to maintain its health and function; thus, energy deficits in the intestinal mucosa may lead to intestinal damage. Aspartate (Asp) is an essential energy source in the intestinal mucosa and plays a vital part in gut health. In the current study, we hypothesized that dietary supplementation of Asp could alleviate DSS-induced colitis via improvement in the colonic morphology, oxidative stress, cell apoptosis, and microbiota composition in a mouse model of dextran. Asp administration decreased the disease activity index, apoptosis, myeloperoxidase, eosinophil peroxidase, and proinflammatory cytokine (IL-1ß and TNF-α) concentrations in the colonic tissue, but improved the body weight, average daily food intake, colonic morphology, and antioxidant-related gene (GPX1 and GPX4) expression in DSS-treated mice. Expression levels of RIPK1 and RIPK3 were increased in the colon following Asp administration in the DSS-induced mice, whereas the MLKL protein expression was decreased. 16S rRNA sequencing showed that Asp treatment increased the abundance of Lactobacillus and Alistipes at the gene level, and Bacteroidetes at the phylum level, but decreased the abundance of Actinobacteria and Verrucomicrobia at the phylum level. Asp may positively regulate the recovery of DSS-induced damage by improving the immunity and antioxidative capacity, regulating RIPK signaling and modulating the gut microbiota composition.


Asunto(s)
Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Animales , Antioxidantes/metabolismo , Ácido Aspártico/metabolismo , Colitis/inducido químicamente , Colitis Ulcerosa/microbiología , Colon/metabolismo , Citocinas/genética , Sulfato de Dextran , Modelos Animales de Enfermedad , Peroxidasa del Eosinófilo/metabolismo , Ratones , Ratones Endogámicos C57BL , Peroxidasa/metabolismo , ARN Ribosómico 16S/genética , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA