Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
1.
Anat Histol Embryol ; 53(5): e13103, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39155839

RESUMEN

Dromedary camels can survive and reproduce in desert areas. The unique anatomical structure of the kidney enables the camel to prevent water loss. The present study aimed to investigate the ultrastructure of the peroxisomes in the normal kidney of the adult dromedary camel. Tissue samples were taken from the cortex and outer medulla of the kidney of eight camels. The samples were then processed for histological and ultrastructural investigations. The epithelial cells of the proximal tubules displayed peroxisomes with varying sizes and shapes. The peroxisomes were observed in either dispersed or clustered arrangement. Each peroxisome exhibited a homogenous matrix enveloped by a single membrane. Several peroxisomes exhibited one or more dark marginal plates that were always strongly associated with the smooth endoplasmic reticulum. The intensity of the peroxisomal matrix differed significantly, either within the same cell or across different cells. The intensity was light or dark, with a few peroxisomes presenting a similar intensity to that of the mitochondria. Some peroxisomes contained nucleoids within their matrix. The peroxisomes in the first and second sections of proximal convoluted tubules were scattered and primarily located in the region between the microvilli and the underlying mitochondria. The peroxisomes in the third region were abundant and frequently aggregated in clusters throughout the cytoplasm. In the fourth region, the number of peroxisomes was low. The proximal straight tubule had a limited quantity of peroxisomes. In conclusion, peroxisomes in the proximal tubule in kidney of normal dromedary camel were similar in shape and size to other mammals; however, heterogeneity exists as a result of differences in species-specific peroxisomal proteins. Peroxisomes are suggested to be a major source of metabolic energy and act as hydrogen peroxide (H2O2) scavengers, resulting in the release of water and oxygen.


Asunto(s)
Camelus , Riñón , Peroxisomas , Animales , Camelus/anatomía & histología , Camelus/fisiología , Peroxisomas/ultraestructura , Peroxisomas/metabolismo , Riñón/ultraestructura , Riñón/anatomía & histología , Microscopía Electrónica de Transmisión/veterinaria , Masculino , Túbulos Renales Proximales/ultraestructura , Túbulos Renales Proximales/anatomía & histología
2.
Microscopy (Oxf) ; 73(4): 343-348, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38217102

RESUMEN

Intracellular organelles alter their morphology in response to ambient conditions such as temperature to optimize physiological activities in cells. Observing organelle dynamics at various temperatures deepens our understanding of cellular responses to the environment. Confocal laser microscopy is a powerful tool for live-cell imaging of fluorescently labeled organelles. However, the large contact area between the specimen and the ambient air on the microscope stage makes it difficult to maintain accurate cellular temperatures. Here, we present a method for precisely controlling cellular temperatures using a custom-made adaptor that can be installed on a commercially available temperature-controlled microscope stage. Using this adaptor, we observed temperature-dependent organelle dynamics in living plant cells; morphological changes in chloroplasts and peroxisomes were temperature dependent. This newly developed adaptor can be easily placed on a temperature-controlled stage to capture intracellular responses to temperature at unprecedentedly high resolution.


Asunto(s)
Cloroplastos , Microscopía Confocal , Orgánulos , Temperatura , Microscopía Confocal/métodos , Orgánulos/ultraestructura , Cloroplastos/ultraestructura , Peroxisomas/ultraestructura , Células Vegetales/fisiología , Arabidopsis
3.
Cell Biochem Biophys ; 81(1): 39-47, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36462131

RESUMEN

Pex30 is a peroxisomal protein whose role in peroxisome biogenesis via the endoplasmic reticulum has been established. It is a 58 KDa multi-domain protein that facilitates contact site formation between various organelles. The present study aimed to investigate the role of various domains of the protein in its sub-cellular localization and regulation of peroxisome number. For this, we created six truncations of the protein (1-87, 1-250, 1-352, 88-523, 251-523 and 353-523) and tagged GFP at the C-terminus. Biochemical methods and fluorescence microscopy were used to characterize the effect of truncation on expression and localization of the protein. Quantitative analysis was performed to determine the effect of truncation on peroxisome number in these cells. Expression of the truncated variants in cells lacking PEX30 did not cause any effect on cell growth. Interestingly, variable expression and localization of the truncated variants in both peroxisome-inducing and non-inducing medium was observed. Truncated variants depicted different distribution patterns such as punctate, reticulate and cytosolic fluorescence. Interestingly, lack of the complete dysferlin domain or C-Dysf resulted in increased peroxisome number similar to as reported for cells lacking Pex30. No contribution of this domain in the reticulate distribution of the proteins was also observed. Our results show an interesting role for the various domains of Pex30 in localization and regulation of peroxisome number.


Asunto(s)
Proteínas de la Membrana , Proteínas de Saccharomyces cerevisiae , Proteínas de la Membrana/genética , Proteínas de la Membrana/análisis , Proteínas de la Membrana/metabolismo , Peroxisomas/química , Peroxisomas/metabolismo , Peroxisomas/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/metabolismo
4.
Nature ; 607(7918): 374-380, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35768507

RESUMEN

Peroxisomes are ubiquitous organelles that house various metabolic reactions and are essential for human health1-4. Luminal peroxisomal proteins are imported from the cytosol by mobile receptors, which then recycle back to the cytosol by a poorly understood process1-4. Recycling requires receptor modification by a membrane-embedded ubiquitin ligase complex comprising three RING finger domain-containing proteins (Pex2, Pex10 and Pex12)5,6. Here we report a cryo-electron microscopy structure of the ligase complex, which together with biochemical and in vivo experiments reveals its function as a retrotranslocation channel for peroxisomal import receptors. Each subunit of the complex contributes five transmembrane segments that co-assemble into an open channel. The three ring finger domains form a cytosolic tower, with ring finger 2 (RF2) positioned above the channel pore. We propose that the N terminus of a recycling receptor is inserted from the peroxisomal lumen into the pore and monoubiquitylated by RF2 to enable extraction into the cytosol. If recycling is compromised, receptors are polyubiquitylated by the concerted action of RF10 and RF12 and degraded. This polyubiquitylation pathway also maintains the homeostasis of other peroxisomal import factors. Our results clarify a crucial step during peroxisomal protein import and reveal why mutations in the ligase complex cause human disease.


Asunto(s)
Microscopía por Crioelectrón , Peroxisomas , Complejos de Ubiquitina-Proteína Ligasa , Citosol/metabolismo , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Peroxinas/química , Peroxinas/metabolismo , Peroxinas/ultraestructura , Factor 2 de la Biogénesis del Peroxisoma/química , Factor 2 de la Biogénesis del Peroxisoma/metabolismo , Factor 2 de la Biogénesis del Peroxisoma/ultraestructura , Peroxisomas/enzimología , Peroxisomas/ultraestructura , Poliubiquitina , Transporte de Proteínas , Dominios RING Finger , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/ultraestructura , Complejos de Ubiquitina-Proteína Ligasa/química , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/ultraestructura
5.
J Cell Biol ; 221(3)2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35019937

RESUMEN

Peroxisomes and the endoplasmic reticulum (ER) cooperate in cellular lipid metabolism. They form membrane contacts through interaction of the peroxisomal membrane protein ACBD5 (acyl-coenzyme A-binding domain protein 5) and the ER-resident protein VAPB (vesicle-associated membrane protein-associated protein B). ACBD5 binds to the major sperm protein domain of VAPB via its FFAT-like (two phenylalanines [FF] in an acidic tract) motif. However, molecular mechanisms, which regulate formation of these membrane contact sites, are unknown. Here, we reveal that peroxisome-ER associations via the ACBD5-VAPB tether are regulated by phosphorylation. We show that ACBD5-VAPB binding is phosphatase-sensitive and identify phosphorylation sites in the flanking regions and core of the FFAT-like motif, which alter interaction with VAPB-and thus peroxisome-ER contact sites-differently. Moreover, we demonstrate that GSK3ß (glycogen synthase kinase-3 ß) regulates this interaction. Our findings reveal for the first time a molecular mechanism for the regulation of peroxisome-ER contacts in mammalian cells and expand the current model of FFAT motifs and VAP interaction.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Retículo Endoplásmico/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Peroxisomas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencias de Aminoácidos , Animales , Línea Celular , Retículo Endoplásmico/ultraestructura , Humanos , Proteínas de la Membrana/genética , Ratones , Mutación/genética , Peroxisomas/ultraestructura , Fosforilación , Fosfoserina/metabolismo , Unión Proteica
6.
J Mol Cell Biol ; 13(9): 636-645, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34048584

RESUMEN

The endoplasmic reticulum (ER) is a contiguous and complicated membrane network in eukaryotic cells, and membrane contact sites (MCSs) between the ER and other organelles perform vital cellular functions, including lipid homeostasis, metabolite exchange, calcium level regulation, and organelle division. Here, we establish a whole pipeline to reconstruct all ER, mitochondria, lipid droplets, lysosomes, peroxisomes, and nuclei by automated tape-collecting ultramicrotome scanning electron microscopy and deep learning techniques, which generates an unprecedented 3D model for mapping liver samples. Furthermore, the morphology of various organelles and the MCSs between the ER and other organelles are systematically analyzed. We found that the ER presents with predominantly flat cisternae and is knitted tightly all throughout the intracellular space and around other organelles. In addition, the ER has a smaller volume-to-membrane surface area ratio than other organelles, which suggests that the ER could be more suited for functions that require a large membrane surface area. Our data also indicate that ER‒mitochondria contacts are particularly abundant, especially for branched mitochondria. Our study provides 3D reconstructions of various organelles in liver samples together with important fundamental information for biochemical and functional studies in the liver.


Asunto(s)
Retículo Endoplásmico/ultraestructura , Hígado/citología , Animales , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Aprendizaje Profundo , Retículo Endoplásmico/metabolismo , Imagenología Tridimensional , Gotas Lipídicas/metabolismo , Gotas Lipídicas/ultraestructura , Hígado/ultraestructura , Lisosomas/metabolismo , Lisosomas/ultraestructura , Masculino , Ratones , Microscopía Electrónica de Rastreo , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Peroxisomas/metabolismo , Peroxisomas/ultraestructura
7.
FEBS J ; 288(19): 5768-5780, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33843134

RESUMEN

Mycophenolic acid (MPA) is a fungal natural product and first-line immunosuppressive drug for organ transplantations and autoimmune diseases. In the compartmentalized biosynthesis of MPA, the acyl-coenzyme A (CoA) hydrolase MpaH' located in peroxisomes catalyzes the highly specific hydrolysis of MPA-CoA to produce the final product MPA. The strict substrate specificity of MpaH' not only averts undesired hydrolysis of various cellular acyl-CoAs, but also prevents MPA-CoA from further peroxisomal ß-oxidation catabolism. To elucidate the structural basis for this important property, in this study, we solve the crystal structures of the substrate-free form of MpaH' and the MpaH'S139A mutant in complex with the product MPA. The MpaH' structure reveals a canonical α/ß-hydrolase fold with an unusually large cap domain and a rare location of the acidic residue D163 of catalytic triad after strand ß6. MpaH' also forms an atypical dimer with the unique C-terminal helices α13 and α14 arming the cap domain of the other protomer and indirectly participating in the substrate binding. With these characteristics, we propose that MpaH' and its homologs form a new subfamily of α/ß hydrolase fold protein. The crystal structure of MpaH'S139A /MPA complex and the modeled structure of MpaH'/MPA-CoA, together with the structure-guided mutagenesis analysis and isothermal titration calorimetry (ITC) measurements, provide important mechanistic insights into the high substrate specificity of MpaH'.


Asunto(s)
Acilcoenzima A/química , Hidrolasas/ultraestructura , Ácido Micofenólico/metabolismo , Peroxisomas/ultraestructura , Secuencia de Aminoácidos/genética , Dominio Catalítico/genética , Hidrolasas/química , Hidrolasas/genética , Ácido Micofenólico/química , Penicillium/genética , Penicillium/ultraestructura , Peroxisomas/enzimología , Estructura Secundaria de Proteína/genética , Especificidad por Sustrato/genética
8.
Chembiochem ; 22(4): 686-693, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33049107

RESUMEN

Expansion microscopy (ExM) has been successfully used to improve the spatial resolution when imaging tissues by optical microscopy. In ExM, proteins of a fixed sample are crosslinked to a swellable acrylamide gel, which expands when incubated in water. Therefore, ExM allows enlarged subcellular structures to be resolved that would otherwise be hidden to standard confocal microscopy. Herein, we aim to validate ExM for the study of peroxisomes, mitochondria, nuclei and the plasma membrane. Upon comparison of the expansion factors of these cellular compartments in HEK293 cells within the same gel, we found significant differences, of a factor of above 2, in expansion factors. For peroxisomes, the expansion factor differed even between peroxisomal membrane and matrix marker; this underlines the need for a thorough validation of expansion factors of this powerful technique. We further give an overview of possible quantification methods for the determination of expansion factors of intracellular organelles, and we highlight some potentials and challenges.


Asunto(s)
Membrana Celular/ultraestructura , Núcleo Celular/ultraestructura , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Mitocondrias/ultraestructura , Imagen Molecular/métodos , Peroxisomas/ultraestructura , Células HEK293 , Humanos
9.
Plant Sci ; 301: 110662, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33218631

RESUMEN

High quality transmission electron micrographs have played a major role in shaping our views on organelles in plant cells. However, these snapshots of dead, fixed and sectioned tissue do not automatically convey an appreciation of the dynamic nature of organelles in living cells. Advances in the imaging of subcellular structures in living cells using multicoloured, targeted fluorescent proteins reveal considerable changes in organelle pleomorphy that might be limited to small regions of the cell. The fresh data and insights also challenge several existing ideas on organelle behaviour and interactivity. Here, using succinct examples from plastids, mitochondria, peroxisomes, and the endoplasmic reticulum I present an evolving view of subcellular dynamics in the plant cell.


Asunto(s)
Forma de los Orgánulos/genética , Orgánulos/fisiología , Células Vegetales/fisiología , Retículo Endoplásmico/genética , Retículo Endoplásmico/fisiología , Retículo Endoplásmico/ultraestructura , Mitocondrias/genética , Mitocondrias/fisiología , Mitocondrias/ultraestructura , Orgánulos/genética , Orgánulos/ultraestructura , Peroxisomas/genética , Peroxisomas/fisiología , Peroxisomas/ultraestructura , Células Vegetales/ultraestructura , Plastidios/genética , Plastidios/fisiología , Plastidios/ultraestructura
10.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33228190

RESUMEN

Low temperature stress has a severe impact on the distribution, physiology, and survival of plants in their natural habitats. While numerous studies have focused on the physiological and molecular adjustments to low temperatures, this study provides evidence that cold induced physiological responses coincide with distinct ultrastructural alterations. Three plants from different evolutionary levels and habitats were investigated: The freshwater alga Micrasterias denticulata, the aquatic plant Lemna sp., and the nival plant Ranunculus glacialis. Ultrastructural alterations during low temperature stress were determined by the employment of 2-D transmission electron microscopy and 3-D reconstructions from focused ion beam-scanning electron microscopic series. With decreasing temperatures, increasing numbers of organelle contacts and particularly the fusion of mitochondria to 3-dimensional networks were observed. We assume that the increase or at least maintenance of respiration during low temperature stress is likely to be based on these mitochondrial interconnections. Moreover, it is shown that autophagy and degeneration processes accompany freezing stress in Lemna and R. glacialis. This might be an essential mechanism to recycle damaged cytoplasmic constituents to maintain the cellular metabolism during freezing stress.


Asunto(s)
Araceae/fisiología , Autofagia/fisiología , Cloroplastos/fisiología , Micrasterias/fisiología , Mitocondrias/fisiología , Ranunculus/fisiología , Organismos Acuáticos , Araceae/ultraestructura , Respiración de la Célula/fisiología , Cloroplastos/ultraestructura , Frío , Respuesta al Choque por Frío , Retículo Endoplásmico/fisiología , Retículo Endoplásmico/ultraestructura , Micrasterias/ultraestructura , Microscopía Electrónica de Transmisión , Mitocondrias/ultraestructura , Peroxisomas/fisiología , Peroxisomas/ultraestructura , Fotosíntesis/fisiología , Células Vegetales/fisiología , Células Vegetales/ultraestructura , Ranunculus/ultraestructura
11.
Genome Biol Evol ; 12(10): 1734-1750, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32602891

RESUMEN

Peroxisomes perform various metabolic processes that are primarily related to the elimination of reactive oxygen species and oxidative lipid metabolism. These organelles are present in all major eukaryotic lineages, nevertheless, information regarding the presence of peroxisomes in opportunistic parasitic protozoa is scarce and in many cases it is still unknown whether these organisms have peroxisomes at all. Here, we performed ultrastructural, cytochemical, and bioinformatic studies to investigate the presence of peroxisomes in three genera of free-living amoebae from two different taxonomic groups that are known to cause fatal infections in humans. By transmission electron microscopy, round structures with a granular content limited by a single membrane were observed in Acanthamoeba castellanii, Acanthamoeba griffini, Acanthamoeba polyphaga, Acanthamoeba royreba, Balamuthia mandrillaris (Amoebozoa), and Naegleria fowleri (Heterolobosea). Further confirmation for the presence of peroxisomes was obtained by treating trophozoites in situ with diaminobenzidine and hydrogen peroxide, which showed positive reaction products for the presence of catalase. We then performed comparative genomic analyses to identify predicted peroxin homologues in these organisms. Our results demonstrate that a complete set of peroxins-which are essential for peroxisome biogenesis, proliferation, and protein import-are present in all of these amoebae. Likewise, our in silico analyses allowed us to identify a complete set of peroxins in Naegleria lovaniensis and three novel peroxin homologues in Naegleria gruberi. Thus, our results indicate that peroxisomes are present in these three genera of free-living amoebae and that they have a similar peroxin complement despite belonging to different evolutionary lineages.


Asunto(s)
Acanthamoeba castellanii/ultraestructura , Balamuthia mandrillaris/ultraestructura , Peroxinas/genética , Peroxisomas/ultraestructura , Acanthamoeba castellanii/enzimología , Acanthamoeba castellanii/genética , Balamuthia mandrillaris/enzimología , Balamuthia mandrillaris/genética , Catalasa/metabolismo , Microscopía Electrónica de Transmisión , Peroxinas/metabolismo , Peroxisomas/enzimología , Peroxisomas/genética , Filogenia
12.
Plant Cell Environ ; 43(10): 2492-2507, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32692422

RESUMEN

Nitric oxide (NO) and nitrosylated derivatives are produced in peroxisomes, but the impact of NO metabolism on organelle functions remains largely uncharacterised. Double and triple NO-related mutants expressing cyan florescent protein (CFP)-SKL (nox1 × px-ck and nia1 nia2 × px-ck) were generated to determine whether NO regulates peroxisomal dynamics in response to cadmium (Cd) stress using confocal microscopy. Peroxule production was compromised in the nia1 nia2 mutants, which had lower NO levels than the wild-type plants. These findings show that NO is produced early in the response to Cd stress and was involved in peroxule production. Cd-induced peroxisomal proliferation was analysed using electron microscopy and by the accumulation of the peroxisomal marker PEX14. Peroxisomal proliferation was inhibited in the nia1 nia2 mutants. However, the phenotype was recovered by exogenous NO treatment. The number of peroxisomes and oxidative metabolism were changed in the NO-related mutant cells. Furthermore, the pattern of oxidative modification and S-nitrosylation of the catalase (CAT) protein was changed in the NO-related mutants in both the absence and presence of Cd stress. Peroxisome-dependent signalling was also affected in the NO-related mutants. Taken together, these results show that NO metabolism plays an important role in peroxisome functions and signalling.


Asunto(s)
Arabidopsis/metabolismo , Cadmio/metabolismo , Óxido Nítrico/fisiología , Peroxisomas/metabolismo , Arabidopsis/fisiología , Arabidopsis/ultraestructura , Western Blotting , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Microscopía Confocal , Óxido Nítrico/metabolismo , Peroxisomas/ultraestructura , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Reacción en Cadena en Tiempo Real de la Polimerasa
13.
Int J Biol Macromol ; 161: 692-703, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32535204

RESUMEN

Mutation in TMEM240 is suggested to cause SCA21, but the specific mechanism has not been clarified. The subcellular localization, specific biological function, and corresponding mechanism of action of TMEM240 have also not been delineated. In this study, the mRNA and protein expression of TMEM240 were assessed using qPCR and western blotting, respectively. Live cell imaging was used to establish the sub-cellular location of TMEM240, and electron microscopy was used to determine the morphology and distribution of TMEM240 in the cell. TMEM240 was specifically expressed in the neurons. Exogenous TMEM240 formed a multilayered cell structure, which we refer to as TMEM240-Body (T240-Body). T240-Body was separated and purified by centrifugation and filtration. An anchor protein His-tagged-GFP-BP on Ni-NTA agarose was used to pull down T240-GFP binding proteins. Both the N-terminal and the C-terminal of TMEM240 were confirmed to be inside the T240-Body. Co-localization experiments suggested that peroxisomes might contribute to T240-Body formation, and the two transmembrane regions of TMEM240 appear to be essential for formation of the T240-Body. Emerin protein contributed to formation of T240-Body when combined with TMEM240. Overall, this study provides new insights into TMEM240, which inform future research to further our understanding of its biological function.


Asunto(s)
Encéfalo , Proteínas de la Membrana/metabolismo , Mutación , Neuronas , Peroxisomas , Degeneraciones Espinocerebelosas , Animales , Encéfalo/metabolismo , Encéfalo/ultraestructura , Células Hep G2 , Humanos , Proteínas de la Membrana/genética , Ratones , Neuronas/metabolismo , Neuronas/ultraestructura , Peroxisomas/genética , Peroxisomas/metabolismo , Peroxisomas/ultraestructura , Degeneraciones Espinocerebelosas/genética , Degeneraciones Espinocerebelosas/metabolismo , Degeneraciones Espinocerebelosas/patología
14.
Molecules ; 24(18)2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31514417

RESUMEN

Neurodegenerative diseases are characterized by oxidative stress, mitochondrial damage, and death of neuronal cells. To counteract such damage and to favor neurogenesis, neurotrophic factors could be used as therapeutic agents. Octadecaneuropeptide (ODN), produced by astrocytes, is a potent neuroprotective agent. In N2a cells, we studied the ability of ODN to promote neuronal differentiation. This parameter was evaluated by phase contrast microscopy, staining with crystal violet, cresyl blue, and Sulforhodamine 101. The effect of ODN on cell viability and mitochondrial activity was determined with fluorescein diacetate and DiOC6(3), respectively. The impact of ODN on the topography of mitochondria and peroxisomes, two tightly connected organelles involved in nerve cell functions and lipid metabolism, was evaluated by transmission electron microscopy and fluorescence microscopy: detection of mitochondria with MitoTracker Red, and peroxisome with an antibody directed against the ABCD3 peroxisomal transporter. The profiles in fatty acids, cholesterol, and cholesterol precursors were determined by gas chromatography, in some cases coupled with mass spectrometry. Treatment of N2a cells with ODN (10-14 M, 48 h) induces neurite outgrowth. ODN-induced neuronal differentiation was associated with modification of topographical distribution of mitochondria and peroxisomes throughout the neurites and did not affect cell viability and mitochondrial activity. The inhibition of ODN-induced N2a differentiation with H89, U73122, chelerythrine and U0126 supports the activation of a PKA/PLC/PKC/MEK/ERK-dependent signaling pathway. Although there is no difference in fatty acid profile between control and ODN-treated cells, the level of cholesterol and some of its precursors (lanosterol, desmosterol, lathosterol) was increased in ODN-treated cells. The ability of ODN to induce neuronal differentiation without cytotoxicity reinforces the interest for this neuropeptide with neurotrophic properties to overcome nerve cell damage in major neurodegenerative diseases.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Inhibidor de la Unión a Diazepam/farmacología , Lípidos/química , Mitocondrias/metabolismo , Neuropéptidos/farmacología , Fragmentos de Péptidos/farmacología , Peroxisomas/metabolismo , Proteína Quinasa C/metabolismo , Fosfolipasas de Tipo C/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Peroxisomas/efectos de los fármacos , Peroxisomas/ultraestructura , Rodaminas/química , Rodaminas/metabolismo , Transducción de Señal/efectos de los fármacos
15.
Sci Rep ; 9(1): 9553, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31267012

RESUMEN

Peroxisomes are involved in the degradation of very long-chain fatty acids (VLCFAs) by ß-oxidation. Besides neurological defects, peroxisomal dysfunction can also lead to testicular abnormalities. However, underlying alterations in the testes due to a peroxisomal defect are not well characterized yet. To maintain all metabolic functions, peroxisomes require an import machinery for the transport of matrix proteins. One component of this translocation machinery is PEX13. Its inactivation leads to a peroxisomal biogenesis defect. We have established a germ cell-specific KO of Pex13 to study the function of peroxisomes during spermatogenesis in mice. Exon 2 of floxed Pex13 was specifically excised in germ cells prior to meiosis by using a transgenic mouse strain carrying a STRA8 inducible Cre recombinase. Germ cell differentiation was interrupted at the round spermatid stage in Pex13 KO mice with formation of multinucleated giant cells (MNCs) and loss of mature spermatids. Due to a different cellular content in the germinal epithelium of Pex13 KO testes compared to control, whole testes biopsies were used for the analyses. Thus, differences in lipid composition and gene expression are only shown for whole testicular tissue but cannot be limited to single cells. Gas chromatography revealed an increase of shorter fatty acids and a decrease of n-6 docosapentaenoic acid (C22:5n-6) and n-3 docosahexaenoic acid (C22:6n-3), the main components of sperm plasma membranes. Representative genes of the metabolite transport and peroxisomal ß-oxidation were strongly down-regulated. In addition, structural components of the blood-testis barrier (BTB) were altered. To conclude, defects in the peroxisomal compartment interfere with normal spermatogenesis.


Asunto(s)
Azoospermia/congénito , Células Germinativas/metabolismo , Peroxisomas/metabolismo , Espermátides/metabolismo , Espermatogénesis , Animales , Azoospermia/genética , Azoospermia/metabolismo , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Infertilidad , Lípidos/química , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Peroxisomas/ultraestructura , Testículo/metabolismo , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo
16.
Curr Genet ; 65(6): 1383-1396, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31111312

RESUMEN

Peroxisomes are ubiquitous single-membrane-bound organelles that perform a variety of biochemical functions in eukaryotic cells. Proteins involved in peroxisomal biogenesis are collectively called peroxins. Currently, functions of most peroxins in phytopathogenic fungi are poorly understood. Here, we report identification of PEX1 and PEX10 in the phytopathogenic fungus, Fusarium graminearum, namely FgPEX1 and FgPEX10, the orthologs of yeast ScPEX1 and ScPEX10. To functionally characterize FgPEX1 and FgPEX10, we constructed deletion mutants of FgPEX1 and FgPEX10 (ΔPEX1 and ΔPEX10) by targeting gene-replacement strategies. Our data demonstrate that both mutants displayed reduced mycelial growth, conidiation, and production of perithecia. Deletion of FgPEX1 and FgPEX10 resulted in a shortage of acetyl-CoA, which is an important reason for the reduced deoxynivalenol production and inhibited virulence of F. graminearum. Moreover, ΔPEX1 and ΔPEX10 showed an increased accumulation of lipid droplets and endogenous reactive oxygen species. In addition, FgPEX1 and FgPEX10 were found to be involved in the maintenance of cell wall integrity and Woronin bodies.


Asunto(s)
Proteínas Fúngicas/fisiología , Fusarium/genética , Fusarium/patogenicidad , Peroxinas/fisiología , Peroxisomas/ultraestructura , ATPasas Asociadas con Actividades Celulares Diversas/genética , Acetilcoenzima A/metabolismo , Pared Celular/metabolismo , Proteínas Fúngicas/genética , Fusarium/citología , Fusarium/metabolismo , Gotas Lipídicas/metabolismo , Proteínas de la Membrana/genética , Microscopía Electrónica de Transmisión , Peroxinas/genética , Peroxisomas/genética , Peroxisomas/metabolismo , Enfermedades de las Plantas/microbiología , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Esporas Fúngicas/fisiología , Tricotecenos/metabolismo , Virulencia/genética
17.
Environ Microbiol Rep ; 11(4): 518-524, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30816609

RESUMEN

Several filamentous fungi are known to produce macroscopic pigmented hyphal aggregates named sclerotia. In recent years, some entomopathogenic fungi were reported to produce small sclerotia termed 'microsclerotia', becoming new potential propagules for biocontrol strategies. In this study, we described the production of microsclerotia-like pellets by the entomopathogenic fungus Beauveria bassiana. The carbon: nitrogen ratio equal to or higher than 12.5:1 amended with Fe2+ induced the germination of conidia, producing hyphal aggregate that formed sclerotial structures in submerged liquid cultures. These aggregates were able to tolerate desiccation as they germinated and subsequently produced viable conidia. Conidia derived from microsclerotial aggregates formulated with diatomaceous earth effectively kill Tribolium castaneum larvae. Optical and transmission microscopical imaging, qPCR and spectrophotometric analysis revealed that an oxidative stress scenario is involved in conidial differentiation into microsclerotia-like pellets, inducing fungal antioxidant response with high peroxidase activity - mainly detected in peroxisomes and mitochondria - and progress with active peroxisome proliferation. The results provide clues about B. bassiana microsclerotial differentiation and indicate that these pigmented aggregates are promising propagules for production, formulation and potentially application in the control of soil-inhabiting arthropod pests.


Asunto(s)
Beauveria/fisiología , Estrés Oxidativo , Peroxisomas/metabolismo , Animales , Beauveria/crecimiento & desarrollo , Beauveria/patogenicidad , Beauveria/ultraestructura , Medios de Cultivo , Tierra de Diatomeas/farmacología , Estructuras Fúngicas/crecimiento & desarrollo , Estructuras Fúngicas/patogenicidad , Estructuras Fúngicas/fisiología , Estructuras Fúngicas/ultraestructura , Larva/microbiología , Estrés Oxidativo/genética , Peroxidasa/metabolismo , Peroxisomas/genética , Peroxisomas/ultraestructura , Control Biológico de Vectores , Tribolium/microbiología , Virulencia
18.
J Cell Sci ; 132(6)2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30745342

RESUMEN

Fatty acyl-CoA reductase 1 (Far1) is a ubiquitously expressed peroxisomal membrane protein that generates the fatty alcohols required for the biosynthesis of ether lipids. Lipid droplet localization of exogenously expressed and endogenous human Far1 was observed by fluorescence microscopy under conditions of increased triglyceride synthesis in tissue culture cells. This unexpected finding was supported further by correlative light electron microscopy and subcellular fractionation. Selective permeabilization, protease sensitivity and N-glycosylation tagging suggested that Far1 is able to assume two different membrane topologies, differing in the orientation of the short hydrophilic C-terminus towards the lumen or the cytosol, respectively. Two closely spaced hydrophobic domains are contained within the C-terminal region. When analyzed separately, the second domain was sufficient for the localization of a fluorescent reporter to lipid droplets. Targeting of Far1 to lipid droplets was not impaired in either Pex19 or ASNA1 (also known as TRC40) CRISPR/Cas9 knockout cells. In conclusion, our data suggest that Far1 is a novel member of the rather exclusive group of dual topology membrane proteins. At the same time, Far1 shows lipid metabolism-dependent differential subcellular localizations to peroxisomes and lipid droplets.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Membranas Intracelulares/ultraestructura , Gotas Lipídicas/ultraestructura , Peroxisomas/ultraestructura , Animales , Humanos , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Microscopía Electrónica de Transmisión/métodos , Peroxisomas/metabolismo
19.
Int J Biochem Cell Biol ; 105: 24-34, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30268746

RESUMEN

Peroxisomes are single membrane enclosed cell organelles, which are present in almost all eukaryotic cells. In addition to the common peroxisomal pathways such as ß-oxidation of fatty acids and decomposition of H2O2, these organelles fulfil a range of metabolic and non-metabolic functions. Peroxisomes are very important since various human disorders exist that are caused by a defect in peroxisome function. Here we describe our current knowledge on the molecular mechanisms of peroxisome biogenesis in yeast, including peroxisomal protein sorting, organelle dynamics and peroxisomal membrane contact sites.


Asunto(s)
Peroxisomas/metabolismo , Levaduras/genética , Levaduras/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Metabolismo de los Lípidos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Mutación , Biogénesis de Organelos , Peroxinas/genética , Peroxinas/metabolismo , Señales de Direccionamiento al Peroxisoma , Peroxisomas/genética , Peroxisomas/ultraestructura , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Levaduras/ultraestructura
20.
Mol Biol Cell ; 29(22): 2766-2783, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30188767

RESUMEN

The gut has a central role in digestion and nutrient absorption, but it also serves in defending against pathogens, engages in mutually beneficial interactions with commensals, and is a major source of endocrine signals. Gut homeostasis is necessary for organismal health and changes to the gut are associated with conditions like obesity and diabetes and inflammatory illnesses like Crohn's disease. We report that peroxisomes, organelles involved in lipid metabolism and redox balance, are required to maintain gut epithelium homeostasis and renewal in Drosophila and for survival and development of the organism. Dysfunctional peroxisomes in gut epithelial cells activate Tor kinase-dependent autophagy that increases cell death and epithelial instability, which ultimately alter the composition of the intestinal microbiota, compromise immune pathways in the gut in response to infection, and affect organismal survival. Peroxisomes in the gut effectively function as hubs that coordinate responses from stress, metabolic, and immune signaling pathways to maintain enteric health and the functionality of the gut-microbe interface.


Asunto(s)
Autofagia , Drosophila melanogaster/citología , Drosophila melanogaster/inmunología , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/patología , Peroxisomas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Adenilato Quinasa/metabolismo , Animales , Autofagia/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Drosophila melanogaster/microbiología , Drosophila melanogaster/ultraestructura , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Epitelio/efectos de los fármacos , Epitelio/metabolismo , Epitelio/ultraestructura , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/ultraestructura , Interacciones Huésped-Patógeno/efectos de los fármacos , Inmunidad/efectos de los fármacos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/ultraestructura , Oxidación-Reducción , Peroxisomas/efectos de los fármacos , Peroxisomas/ultraestructura , Inhibidores de Proteínas Quinasas/farmacología , Regeneración/efectos de los fármacos , Transducción de Señal , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Estrés Fisiológico/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA