Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 340
Filtrar
1.
World J Microbiol Biotechnol ; 40(10): 302, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150639

RESUMEN

The genus Phytophthora contains more than 100 plant pathogenic species that parasitize a wide range of plants, including economically important fruits, vegetables, cereals, and forest trees, causing significant losses. Global agriculture is seriously threatened by fungicide resistance in Phytophthora species, which makes it imperative to fully comprehend the mechanisms, frequency, and non-chemical management techniques related to resistance mutations. The mechanisms behind fungicide resistance, such as target-site mutations, efflux pump overexpression, overexpression of target genes and metabolic detoxification routes for fungicides routinely used against Phytophthora species, are thoroughly examined in this review. Additionally, it assesses the frequency of resistance mutations in various Phytophthora species and geographical areas, emphasizing the rise of strains that are resistant to multiple drugs. The effectiveness of non-chemical management techniques, including biological control, host resistance, integrated pest management plans, and cultural practices, in reducing fungicide resistance is also thoroughly evaluated. The study provides important insights for future research and the development of sustainable disease management strategies to counter fungicide resistance in Phytophthora species by synthesizing current information and identifying knowledge gaps.


Asunto(s)
Farmacorresistencia Fúngica , Fungicidas Industriales , Phytophthora , Enfermedades de las Plantas , Phytophthora/efectos de los fármacos , Phytophthora/genética , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/parasitología , Farmacorresistencia Fúngica/genética , Mutación , Agricultura
2.
J Agric Food Chem ; 72(31): 17599-17607, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39046270

RESUMEN

The discovery of readily available and easily modifiable new models is a crucial and practical solution for agrochemical innovation. Antifungal function-oriented fusion of triazole with the prevalidated lead (R)-LE001 affords a novel framework with a broad and enhanced antifungal spectrum. Characterized by the easy accessibility and adjustability of [1,2,4]triazolo[4,3-a]pyridine, modular fine-tuning provided a set of unprecedented leads (e.g., Z23, Z25, Z26, etc.) with superior antifungal potentials than the positive control boscalid. Candidate Z23 exhibited a more promising antifungal activity against Sclerotinia sclerotiorum, Botrytis cinerea, and Phytophthora capsici with EC50 values of 0.7, 0.6, and 0.5 µM, respectively. This candidate could effectively control boscalid-resistant B. cinerea strains and also exhibit good vivo efficacy in controlling gray mold. Noteworthily, both the SDH-inhibition and the efficiency against Oomycete P. capsici are quite distinct from that of the positive control boscalid. A molecular docking simulation also differentiates Z23 from boscalid. These findings highlight the potential of [1,2,4]triazolo[4,3-a]pyridine amide as a novel antifungal model.


Asunto(s)
Compuestos de Anilina , Ascomicetos , Botrytis , Fungicidas Industriales , Niacinamida , Phytophthora , Enfermedades de las Plantas , Triazoles , Fungicidas Industriales/química , Fungicidas Industriales/farmacología , Botrytis/efectos de los fármacos , Botrytis/crecimiento & desarrollo , Triazoles/química , Triazoles/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Niacinamida/química , Niacinamida/farmacología , Relación Estructura-Actividad , Phytophthora/efectos de los fármacos , Compuestos de Anilina/química , Compuestos de Anilina/farmacología , Ascomicetos/efectos de los fármacos , Ascomicetos/química , Estructura Molecular , Oxazoles/química , Oxazoles/farmacología
3.
Pestic Biochem Physiol ; 202: 105949, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879335

RESUMEN

Quinone outside inhibitor (QoI) has been applied to manage taro leaf blight caused by Phytophthora colocasiae in southeastern of China for many years. The risk of P. colocasiae to QoI and the potential resistant mechanism remain unknown. In this study, the 74 P. colocasiae strains were sampled from southeastern of China. Sequence analysis of the QoI target Cytb showed one nucleotide variant in the fragment of this gene in this population, producing two haplotypes. The nucleotide variant leads to codon change at 142 (GGT to GCT) producing A142 (alanine) and G142 (glycine) in Hap_1 and Hap_2 strains, respectively. The sensitivity differentiation to azoxystrobin of two haplotypes were observed in vitro. The Hap_1 and Hap_2 strains were confirmed resistant and sensitive by control efficacy of label rate fungicide application, which was 3.0% and 88.8% treated with 500 µg/mL azoxystrobin, respectively. In addition, 10.0 µg/mL azoxystrobin plus 50 µg/mL salicylhydroxamic acid (SHAM) supplemented in PDA medium was identified as a discriminatory dose for differentiation of these two phenotype strains. The azoxystrobin resistant frequency reached 86.5%, indicating prevalence of QoI resistance in the field. Further fitness related features showed that no significant difference in temperature sensitivity, mycelial growth rate, sporangia production, zoospore release and aggressiveness between azoxystrobin-resistant and sensitive strains indicating no potential fitness cost for azoxystrobin resistance. Taken together, azoxystrobin resistance need to be taken into consideration to manage taro leaf blight in southeastern of China.


Asunto(s)
Fungicidas Industriales , Phytophthora , Pirimidinas , Estrobilurinas , Estrobilurinas/farmacología , Fungicidas Industriales/farmacología , China , Phytophthora/efectos de los fármacos , Phytophthora/genética , Pirimidinas/farmacología , Enfermedades de las Plantas/microbiología , Farmacorresistencia Fúngica/genética
4.
Pestic Biochem Physiol ; 202: 105956, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879338

RESUMEN

Pepper southern blight, caused by Sclerotium rolfsii, is a devastating soil-borne disease resulting in significant loss to pepper, Capsicum annuum L. production. Here, we isolated an antagonistic bacterial strain XQ-29 with antifungal activity against S. rolfsii from rhizospheric soil of pepper. Combining the morphological and biochemical characteristics with the 16S rDNA sequencing, XQ-29 was identified as Streptomyces griseoaurantiacus. It exhibited an inhibition of 96.83% against S. rolfsii and displayed significant inhibitory effects on Botrytis cinerea, Phytophthora capsica and Rhizoctonia solani. Furthermore, XQ-29 significantly reduced the pepper southern blight by 100% and 70.42% during seedling and growth stages, respectively. The antifungal mechanism involved altering the mycelial morphology, disrupting cell wall and membrane integrity, accompanied by accumulation of reactive oxygen species and lipid peroxidation in S. rolfsii mycelia. Furthermore, XQ-29 promoted growth and stimulated resistance of pepper plants by increasing defense-related enzyme activities and upregulating defense-related genes. Correspondingly, XQ-29 harbors numerous functional biosynthesis gene clusters in its genome, including those for siderophores and melanin production. The metabolic constituents present in the ethyl acetate extracts, which exhibited an EC50 value of 85.48 ± 1.62 µg/mL, were identified using LC-MS. Overall, XQ-29 demonstrates significant potential as a biocontrol agent against southern blight disease.


Asunto(s)
Botrytis , Capsicum , Enfermedades de las Plantas , Rhizoctonia , Streptomyces , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Capsicum/microbiología , Streptomyces/genética , Streptomyces/fisiología , Botrytis/efectos de los fármacos , Botrytis/fisiología , Rhizoctonia/fisiología , Rhizoctonia/efectos de los fármacos , Basidiomycota/fisiología , Phytophthora/fisiología , Phytophthora/efectos de los fármacos , Agentes de Control Biológico/farmacología , Antifúngicos/farmacología
5.
Pestic Biochem Physiol ; 202: 105900, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879291

RESUMEN

The phytopathogenic oomycete Phytophthora litchii is the culprit behind the devastating disease known as "litchi downy blight", which causes large losses in litchi production. Although fluopimomide exhibits strong inhibitory efficacy against P. litchii, the exact mechanism of resistance is still unknown. The sensitivity of 137 P. litchii isolates to fluopimomide was assessed, and it was discovered that the median effective concentration (EC50) of the fungicide had a unimodal frequency distribution with a mean value of 0.763 ± 0.922 µg/mL. Comparing the resistant mutants to the equivalent parental isolates, the resistance mutants' survival fitness was much lower. While there was no cross-resistance between fluopimomide and other oomycete inhibitors, there is a notable positive cross-resistance between fluopimomide and fluopicolide. According to the thorough investigation, P. litchii had a moderate chance of developing fluopimomide resistance. The point mutations N771S and K847N in the VHA-a of P. litchii (PlVHA-a) were present in the fluopimomide-resistant mutants, and the two point mutations in PlVHA-a conferring fluopimomide resistance were verified by site-directed mutagenesis in the sensitive P. capsici isolate BYA5 and molecular docking.


Asunto(s)
Fungicidas Industriales , Phytophthora , Mutación Puntual , Phytophthora/efectos de los fármacos , Phytophthora/genética , Fungicidas Industriales/farmacología , Morfolinas/farmacología , Benzamidas , Piridinas
6.
Food Chem ; 457: 140158, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38936133

RESUMEN

Synergistic effect of dimethomorph (DIM) and pyrimethanil (PYM) was evaluated using the Wadley method and the molecular mechanism of the antifungal effects of the combined treatment was systematically investigated. DIM+PYM had a synergistic effect on Phytophthora capsici, with the synergistic effect being observed at 5:1, at which the synergy coefficient was 1.8536. The mycelia of the pathogen treated with DIM+PYM were branched, uneven in thickness, and swollen. Moreover, scanning electron microscopy (SEM) revealed that DIM+PYM caused mycelium breaks, swelling, and apex enlargement, while transmission electron microscopy (TEM) revealed structural damage, cavities, and cell membrane morphological abnormalities. DIM+PYM inhibited the growth of mycelia, destroyed the cell membrane, interfered with energy metabolism, reduced protein and sugar content. Additionally, the transcriptome and metabolome of fungi treated with DIM+PYM changed significantly; specifically, there were 1571 differentially expressed genes and 802 differential metabolites. DIM+PYM may mainly damage the cell membrane, energy, protein, soluble sugar pathways.


Asunto(s)
Fungicidas Industriales , Morfolinas , Phytophthora , Pirimidinas , Phytophthora/efectos de los fármacos , Phytophthora/crecimiento & desarrollo , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Pirimidinas/farmacología , Pirimidinas/química , Morfolinas/farmacología , Morfolinas/química , Sinergismo Farmacológico , Enfermedades de las Plantas/microbiología , Micelio/crecimiento & desarrollo , Micelio/efectos de los fármacos , Micelio/química
7.
Pest Manag Sci ; 80(9): 4617-4627, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38747671

RESUMEN

BACKGROUND: The discovery of antimicrobial ingredients from natural products could be an effective way to create novel fungicides. Rubia cordifolia L., a traditional Chinese herb, may have antimicrobial effects on plant pathogens according to our previous screening study. RESULTS: Rubia cordifolia L. extracts had moderate inhibitory effects on apple Valsa canker (Valsa mali) and tomato grey mould (Botrytis cinerea) at a concentration of 10 mg mL-1. With the use of bioguided isolation methods, eight compounds (1-8) were obtained, including the new compound 2,2,6-trimethyl-6-(4-methylphenyl)-tetrahydropyrano- 3-ol (7), and seven quinone derivatives. Two compounds, mollugin (1) and 1,3,6-trihydroxy-2-methylanthraquinone (6), were found to exhibit outstanding antifungal activities against V. mali and Phytophthora capsici Leon. The half maximal effective concentration (EC50) of compound 1 and compound 6 against V. mali were 79.08 and 81.78 µg mL-1, respectively, and the EC50 of compound 6 against P. capsici was 4.86 µg mL-1. Compound 1 also showed excellent activity against tobacco mosaic virus (TMV). The inactive, inductive, protective and curative activities against TMV were 84.29%, 83.38%, 86.81%, and 60.02%, respectively, at a concentration of 500 µg mL-1, which were all close to or greater than that of the positive control (100 µg mL-1 chitosan oligosaccharide, COS). CONCLUSION: Mollugin and 1,3,6-trihydroxy-2-methylanthraquinone are potentially valuable active compounds that lay a foundation for research on botanical fungicide products derived from R. cordifolia L. and provide lead structures for quinone derivative synthesis and structural modification. © 2024 Society of Chemical Industry.


Asunto(s)
Antraquinonas , Fungicidas Industriales , Rubia , Antraquinonas/farmacología , Antraquinonas/química , Rubia/química , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/microbiología , Botrytis/efectos de los fármacos , Phytophthora/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química
8.
Molecules ; 29(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731455

RESUMEN

Phytophthora capsici is an important plant pathogenic oomycete that causes great losses to vegetable production around the world. Antofine is an important alkaloid isolated from Cynanchum komarovii Al. Iljinski and exhibits significant antifungal activity. In this study, the effect of antofine on the mycelial growth, morphology, and physiological characteristics of P. capsici was investigated using colorimetry. Meanwhile, the activity of mitochondrial respiratory chain complexes of P. capsici was evaluated following treatment with a 30% effective concentration (EC30), as well as EC50 and EC70, of antofine for 0, 12, 24, and 48 h. The results showed that antofine had a significant inhibitory effect against P. capsici, with an EC50 of 5.0795 µg/mL. After treatment with antofine at EC50 and EC70, the mycelia were rough, less full, and had obvious depression; they had an irregular protrusion structure; and they had serious wrinkles. In P. capsici, oxalic acid and exopolysaccharide contents decreased significantly, while cell membrane permeability and glycerol content increased when treated with antofine. Reactive oxygen species (ROS) entered a burst state in P. capsici after incubation with antofine for 3 h, and fluorescence intensity was 2.43 times higher than that of the control. The activities of the mitochondrial respiratory chain complex II, III, I + III, II + III, V, and citrate synthase in P. capsici were significantly inhibited following treatment with antofine (EC50 and EC70) for 48 h compared to the control. This study revealed that antofine is likely to affect the pathways related to the energy metabolism of P. capsici and thus affect the activity of respiratory chain complexes. These results increase our understanding of the action mechanism of antofine against P. capsici.


Asunto(s)
Phytophthora , Especies Reactivas de Oxígeno , Phytophthora/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Antifúngicos/farmacología , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
9.
J Agric Food Chem ; 72(20): 11716-11723, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38728745

RESUMEN

A total of 32 novel sulfoximines bearing cyanoguanidine and nitroguanidine moieties were designed and synthesized by a rational molecule design strategy. The bioactivities of the title compounds were evaluated and the results revealed that some of the target compounds possessed excellent antifungal activities against six agricultural fungi, including Sclerotinia sclerotiorum, Fusarium graminearum, Phytophthora capsici, Botrytis cinerea, Rhizoctonia solani, and Pyricularia grisea. Among them, compounds 8e1 and 8e4 exhibited significant efficacy against P. grisea with EC50 values of 2.72 and 2.98 µg/mL, respectively, which were much higher than that of commercial fungicides boscalid (47.95 µg/mL). Interestingly, in vivo assays determined compound 8e1 possessed outstanding activity against S. sclerotiorum with protective and curative effectiveness of 98 and 95.6% at 50 µg/mL, which were comparable to those of boscalid (93.2, 91.9%). The further preliminary mechanism investigation disclosed that compound 8e1 could damage the structure of the cell membrane of S. sclerotiorum, increase its permeability, and suppress its growth. Overall, the findings enhanced that these novel sulfoximine derivatives could be potential lead compounds for the development of new fungicides.


Asunto(s)
Diseño de Fármacos , Fungicidas Industriales , Fusarium , Guanidinas , Enfermedades de las Plantas , Rhizoctonia , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Fungicidas Industriales/síntesis química , Guanidinas/química , Guanidinas/farmacología , Guanidinas/síntesis química , Relación Estructura-Actividad , Rhizoctonia/efectos de los fármacos , Rhizoctonia/crecimiento & desarrollo , Fusarium/efectos de los fármacos , Fusarium/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Phytophthora/efectos de los fármacos , Phytophthora/crecimiento & desarrollo , Ascomicetos/efectos de los fármacos , Ascomicetos/crecimiento & desarrollo , Botrytis/efectos de los fármacos , Botrytis/crecimiento & desarrollo , Estructura Molecular
10.
Molecules ; 29(8)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38675600

RESUMEN

The natural pesticide phenazine-1-carboxylic acid (PCA) is known to lack phloem mobility, whereas Metalaxyl is a representative phloem systemic fungicide. In order to endow PCA with phloem mobility and also enhance its antifungal activity, thirty-two phenazine-1-carboxylic acid-N-phenylalanine esters conjugates were designed and synthesized by conjugating PCA with the active structure N-acylalanine methyl ester of Metalaxyl. All target compounds were characterized by 1H NMR, 13C NMR and HRMS. The antifungal evaluation results revealed that several target compounds exhibited moderate to potent antifungal activities against Sclerotinia sclerotiorum, Bipolaris sorokiniana, Phytophthora parasitica, Phytophthora citrophthora. In particular, compound F7 displayed excellent antifungal activity against S. sclerotiorum with an EC50 value of 6.57 µg/mL, which was superior to that of Metalaxyl. Phloem mobility study in castor bean system indicated good phloem mobility for the target compounds F1-F16. Particularly, compound F2 exhibited excellent phloem mobility; the content of compound F2 in the phloem sap of castor bean was 19.12 µmol/L, which was six times higher than Metalaxyl (3.56 µmol/L). The phloem mobility tests under different pH culture solutions verified the phloem translocation of compounds related to the "ion trap" effect. The distribution of the compound F2 in tobacco plants further suggested its ambimobility in the phloem, exhibiting directional accumulation towards the apical growth point and the root. These results provide valuable insights for developing phloem mobility fungicides mediated by exogenous compounds.


Asunto(s)
Alanina , Alanina/análogos & derivados , Fenazinas , Fenazinas/química , Fenazinas/farmacología , Fenazinas/síntesis química , Alanina/química , Alanina/farmacología , Phytophthora/efectos de los fármacos , Antifúngicos/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Floema/metabolismo , Floema/efectos de los fármacos , Ascomicetos/efectos de los fármacos , Ascomicetos/metabolismo , Fungicidas Industriales/farmacología , Fungicidas Industriales/síntesis química , Fungicidas Industriales/química , Diseño de Fármacos , Ésteres/química , Ésteres/farmacología , Ésteres/síntesis química
11.
Pestic Biochem Physiol ; 201: 105876, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685244

RESUMEN

Black shank, a devastating disease in tobacco production worldwide, is caused by the oomycete plant pathogen Phytophthora nicotianae. Fluopicolide is a pyridinylmethyl-benzamides fungicide with a unique mechanism of action and has been widely used for controlling a variety of oomycetes such as Plasmopara viticola, Phytophthora infestans, Pseudoperonospora cubensis, P. nicotianae and Bremia lactucae. However, the fluopicolide-resistance risk and molecular basis in P. nicotianae have not been reported. In this study, the sensitivity profile of 141 P. nicotianae strains to fluopicolide was determined, with a mean median effective concentration (EC50) value of 0.12 ± 0.06µg/mL. Five stable fluopicolide-resistant mutants of P. nicotianae were obtained by fungicide adaptation, and the compound fitness index of these resistant mutants were lower than that of their parental isolates. Additionally, cross-resistance tests indicated that the sensitivity of fluopicolide did not correlate with other oomycete fungicides, apart from fluopimomide. DNA sequencing revealed two point mutations, G765E and N769Y, in the PpVHA-a protein in the fluopicolide-resistant mutants. Transformation and expression of PpVHA-a genes carrying G765E and N769Y in the sensitive wild-type isolate confirmed that it was responsible for fluopicolide resistance. These results suggest that P. nicotianae has a low to medium resistance risk to fluopicolide in laboratory and that point mutations, G765E and N769Y, in PpVHA-a are associated with the observed fluopicolide resistance.


Asunto(s)
Fungicidas Industriales , Mutación , Nicotiana , Phytophthora , Enfermedades de las Plantas , Phytophthora/efectos de los fármacos , Phytophthora/genética , Nicotiana/microbiología , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/microbiología , Benzamidas/farmacología , Piridinas/farmacología , Farmacorresistencia Fúngica/genética
12.
Plant Dis ; 108(7): 2104-2110, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38468135

RESUMEN

Phytophthora rubi is an important pathogen causing Phytophthora root rot of red raspberries worldwide. Management of this disease is partially achieved with fungicides, but efficacy has been low, and growers are concerned about fungicide resistance. To determine whether fungicide resistance is developing, Phytophthora species were isolated from 26 raspberry fields with root rot, identified, and evaluated for sensitivity to four fungicides: mefenoxam, phosphorous acid, oxathiapiprolin, and dimethomorph. The majority of the recovered 152 Phytophthora isolates were P. rubi (143 isolates, 25 fields), with P. megasperma (8 isolates, 2 fields) and P. gonapodyides (1isolate, 1field) being found much less frequently. These results confirm P. rubi as the dominant species affecting the Washington red raspberry industry. Almost all tested isolates were sensitive to all four fungicide chemistries, although three isolates were less sensitive to mefenoxam, with effective concentration for 50% growth inhibition (EC50) values ranging from 3.53 to 100 µg active ingredient/ml. No resistance was detected against current fungicide label rates. However, other reasons were identified for why fungicides have been ineffective. Label rates vary widely by brand, and most fungicides are applied in the fall when P. rubi is inactive. In addition, some phosphorous acid products are only labeled for foliar applications, which have been shown to be less effective than soil applications in other agricultural systems. Efficacy trials are needed to compare foliar and soil fungicide applications at different times of the year for their ability to control Phytophthora root rot in red raspberry production fields.


Asunto(s)
Fungicidas Industriales , Phytophthora , Enfermedades de las Plantas , Rubus , Phytophthora/efectos de los fármacos , Fungicidas Industriales/farmacología , Rubus/microbiología , Enfermedades de las Plantas/microbiología , Washingtón , Alanina/análogos & derivados
13.
Chem Biodivers ; 21(5): e202400355, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38453645

RESUMEN

In an attempt to search for new natural products-based antifungal agents, fifty-three nootkatone derivatives were designed, synthesized, and evaluated for their antifungal activity against Phytophthora parasitica var nicotianae, Fusarium oxysporum, Fusarium graminearum and Phomopsis sp. by the mycelium growth rate method. Nootkatone derivatives N17 exhibited good inhibitory activity against Phomopsis. sp. with EC50 values of 2.02 µM. The control effect of N17 against Phomopsis. sp. on kiwifruit showed that N17 exhibited a good curative effect in reducing kiwifruit rot at the concentration of 202 µM(100×EC50 ), with the curative effect of 41.11 %, which was better than commercial control of pyrimethanil at the concentration of 13437 µM(100×EC50 ) with the curative effect of 38.65 %. Phomopsis. sp. mycelium treated with N17 showed irregular surface collapse and shrinkage, and the cell membrane crinkled irregularly, vacuoles expanded significantly, mitochondria contracted, and organelles partially swollen by the SEM and TEM detected. Preliminary pharmacological experiments show that N17 exerted antifungal effects by altering release of cellular contents, and altering cell membrane permeability and integrity. The cytotoxicity test demonstrated that N17 showed almost no toxicity to K562 cells. The presented results implied that N17 may be as a potential antifungal agents for developing more efficient fungicides to control Phomopsis sp.


Asunto(s)
Antifúngicos , Diseño de Fármacos , Fusarium , Pruebas de Sensibilidad Microbiana , Oximas , Antifúngicos/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Fusarium/efectos de los fármacos , Oximas/química , Oximas/farmacología , Oximas/síntesis química , Relación Estructura-Actividad , Hidrazonas/farmacología , Hidrazonas/química , Hidrazonas/síntesis química , Phytophthora/efectos de los fármacos , Estructura Molecular , Sesquiterpenos Policíclicos/farmacología , Sesquiterpenos Policíclicos/química , Sesquiterpenos Policíclicos/síntesis química , Relación Dosis-Respuesta a Droga , Ascomicetos/efectos de los fármacos
14.
Plant Dis ; 108(6): 1582-1590, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38173255

RESUMEN

Isolates of the citrus brown rot pathogens Phytophthora citrophthora and P. syringae from the Inland Empire (IE) and Ventura Co. (VE) regions of southern California were evaluated for their sensitivity to ethaboxam, fluopicolide, mandipropamid, and oxathiapiprolin, and the previously published baselines that were generated for Central Valley (CV) isolates of California were expanded. Fungicides were generally more toxic to CV isolates of both species for all four fungicides. Specific differences were found in the toxicity of ethaboxam to P. syringae where CV isolates on average were 6.8 or 8.2 times more sensitive than those from the VE or IE regions, respectively. Based on the grouping of isolates in an unweighted pair-group method with arithmetic mean (UPGMA) dendrogram, as well as fastStructure analyses and plotting of principal component analyses (PCAs), differences in ethaboxam sensitivity could be related to differences in genetic background of the isolates. Isolates of P. citrophthora from the IE and VE had slightly reduced (i.e., 1.5×) sensitivity to mandipropamid as compared with isolates from the CV and were found on distinct branches in the UPGMA dendrogram. Differences in genetic background of less sensitive isolates within each species indicate that these two phenotypes emerged multiple times independently. IE and VE isolates of both species were sensitive to mefenoxam. Moderate resistance to potassium phosphite (EC50 values of 25 to 75 µg/ml) was present in IE and VE isolates of P. syringae, whereas some IE isolates of P. citrophthora were considered resistant with EC50 values of up to 113.69 µg/ml. Resistance to potassium phosphite did not relate to distinct genotypes.


Asunto(s)
Citrus , Fungicidas Industriales , Phytophthora , Enfermedades de las Plantas , California , Fungicidas Industriales/farmacología , Phytophthora/efectos de los fármacos , Phytophthora/genética , Phytophthora/fisiología , Citrus/microbiología , Enfermedades de las Plantas/microbiología
15.
Plant Dis ; 108(6): 1612-1620, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38127637

RESUMEN

Phytophthora nicotianae causes devastating disease in a range of hosts, including tobacco (N. tabacum L.), tomato, citrus, strawberry, and numerous ornamentals. Black shank, caused by P. nicotianae, is the most economically important disease to tobacco production in Tennessee and North Carolina. Black shank management includes the use of resistant cultivars, crop rotation, and fungicides. Fungicide resistance is a concern for black shank management due to the limited number of active ingredients available and the repeated exposure of pathogen populations to these products. In vitro fungicide sensitivity assays were conducted on 155 P. nicotianae isolates collected in Tennessee and North Carolina in 2021 and 2022 to determine their EC50 values for oxathiapiprolin, mandipropamid, and fluopicolide. The P. nicotianae was isolated predominantly from burley, dark, and flue-cured tobacco showing symptoms of black shank as well as tomato with buckeye rot symptoms. A discriminatory dose was used to determine each isolate's sensitivity to mefenoxam in 2021 and 2022. In 2021, EC50 values were determined for oxathiapiprolin, mandipropamid, and fluopicolide. In 2022, discriminatory doses based on EC75 values were used to determine each isolate's sensitivity to these fungicides. All isolates from the 2 years were sensitive to mefenoxam, mandipropamid, and fluopicolide. One isolate in 2022 was moderately sensitive to oxathiapiprolin, while all other isolates were sensitive.


Asunto(s)
Fungicidas Industriales , Nicotiana , Phytophthora , Enfermedades de las Plantas , North Carolina , Fungicidas Industriales/farmacología , Phytophthora/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Nicotiana/microbiología , Tennessee , Piridinas/farmacología , Amidas/farmacología , Compuestos Heterocíclicos con 3 Anillos/farmacología , Norbornanos , Alanina/análogos & derivados , Hidrocarburos Fluorados , Pirazoles , Ácidos Carboxílicos
16.
Chem Biodivers ; 20(3): e202201103, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36683342

RESUMEN

The plant diseases caused by a variety of pathogens such as viruses, bacteria and fungi pose a great threat to global food production and food safety. Therefore, the search for green, efficient and pollution-free pesticides has become an important task. In this article, 23 myricetin derivatives containing thiazolebisamides active groups have been designed and synthesized. Their activities were evaluated by performing in vitro antibacterial and in vivo antiviral assays, microscale thermophoresis (MST) and molecular docking assays. The results of in vivo antiviral assays showed that compounds A4 and A23 exhibited good antiviral activity with EC50 values of 79.0 and 54.1 µg/mL for therapeutic activity and 103.3 and 91.2 µg/mL for protective activity, respectively. The dissociation constants (Kd) values of compounds A4 and A23 against TMV-CP were 0.021 and 0.018 µM, respectively, determined by microscale thermophoresis (MST), which were much smaller than those of the commercial drug ningnanmycin (NNM), which were 2.84 µM. The interaction of compounds A4, A23 with TMV-CP was further verified at the molecular level. In addition, in vitro antifungal assays of this series of compounds showed that they exhibited some inhibitory activity against a variety of fungi, especially against the phytophthora capsici. Among them, A13 and A20 showed similar inhibitory activity to the control drug azoxystrobin at 100 µg/mL against the phytophthora capsici.


Asunto(s)
Antifúngicos , Antivirales , Flavonoides , Antifúngicos/química , Antifúngicos/farmacología , Antivirales/química , Antivirales/farmacología , Diseño de Fármacos , Flavonoides/química , Flavonoides/farmacología , Hongos/efectos de los fármacos , Hongos/metabolismo , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Phytophthora/efectos de los fármacos , Phytophthora/metabolismo , Relación Estructura-Actividad , Tiazoles/química , Tiazoles/farmacología , Virus del Mosaico del Tabaco/química , Virus del Mosaico del Tabaco/metabolismo
17.
Sci Rep ; 12(1): 2191, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35140298

RESUMEN

Recently, plant essential oils (EOs) have attracted special attention in plant disease control and food preservation. Since ancient times, essential oils extracted from plants have exhibited many biological characteristics, especially antimicrobial properties. Recent studies have described the potentials of EOs and derivatives to inhibit the growth and reproduction of microorganisms, mainly in response of overwhelming concerns of consumers about food safety. In the context of returning to nature, with the advancement of science and technology and improved living standards, people have begun to seek solutions for food hygiene without chemical additives. Therefore, biological pesticides and plant-oriented chemicals have received special attention from scientists because they are environmentally friendly and nonhazardous, sustainable, and effective alternatives against many noxious phytopathogens. Present study is intended to appraise the fungicidal properties of ginger EOs to combat leaf blight disease of taro, which threatens global taro production. Farmers often hinge on extremely toxic synthetic fungicides to manage diseases, but the residual effects and resistance of chemicals are unavoidable. The microwave-assisted hydrodistillation method was used for ginger EOs extraction and an FTIR (ATR) spectrometer was used to evaluate their chemical composition and citral was identified as most abundant compound (89.05%) in oil. The pathogen isolated from lesions of diseased taro plants was identified as Phytophthora colocasiae and used as test fungus in the present study. Ginger EO was evaluated in-vitro for antifungal properties against mycelium growth, sporangium production, zoospore germination, leaf, and corm necrosis inhibition. Repeated experiments have shown that the concentration of ginger essential oil (1250 ppm) proved to be the lowest dose to obtain 100% inhibition of fungal growth and spore germination, sporangia formation and leaf necrosis assessment. These results are derived from this fungal species and a hypothesis that involves further research on other plant pathogens to demonstrate the overall potency of essential oils. This study references the easy, economic, and environmental management and control of plant diseases using essential oils and byproducts.


Asunto(s)
Antifúngicos/farmacología , Aceites Volátiles/química , Aceites Volátiles/farmacología , Phytophthora/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Zingiber officinale/química , Colocasia/efectos de los fármacos , Colocasia/parasitología , Hongos/efectos de los fármacos , Germinación/efectos de los fármacos , Micelio/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/microbiología , Aceites de Plantas/química , Aceites de Plantas/farmacología , Esporangios/efectos de los fármacos , Esporas/efectos de los fármacos
18.
J Nat Prod ; 84(9): 2600-2605, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34469140

RESUMEN

Two new bioactive trisubstituted furanones, named pinofuranoxins A and B (1 and 2), were isolated from Diplodia sapinea, a worldwide conifer pathogen causing severe disease. Pinofuranoxins A and B were characterized essentially by NMR and HRESIMS spectra, and their relative and absolute configurations were assigned by NOESY experiments and computational analyses of electronic circular dichroism spectra. They induced necrotic lesions on Hedera helix L., Phaseolus vulgaris L., and Quercus ilex L. Compound 1 completely inhibited the growth of Athelia rolfsii and Phytophthora cambivora, while 2 showed antioomycetes activity against P. cambivora. In the Artemia salina assay both toxins showed activity inducing larval mortality.


Asunto(s)
Ascomicetos/química , Furanos/farmacología , Enfermedades de las Plantas/microbiología , Animales , Artemia/efectos de los fármacos , Basidiomycota/efectos de los fármacos , Fungicidas Industriales/aislamiento & purificación , Fungicidas Industriales/farmacología , Furanos/aislamiento & purificación , Hedera/efectos de los fármacos , Estructura Molecular , Phaseolus/efectos de los fármacos , Phytophthora/efectos de los fármacos , Quercus/efectos de los fármacos , Túnez
19.
Chem Biodivers ; 18(9): e2100329, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34346150

RESUMEN

Endeavor to discover biorational natural products-based fungicides, two series (26) of novel 1-sulfonyloxy/acyloxydihydroeugenol derivatives (3a-p and 5a-j) were prepared and assessed for their fungicidal activity against P. capsici Leonian, in vitro. Results of fungicidal activity revealed that, among all compounds, especially compounds 3a, 5c, and 5e displayed the most potent anti-oomycete activity against P. capsici with EC50 values of 69.33, 68.81, and 67.77 mg/L, respectively. Overall, the anti-oomycete activities of 1-acyloxydihydroeugenol derivatives (5a-j) were higher than that of 1-sulfonyloxydihydroeugenol derivatives (3a-p). It is proved that the introduction of the acyl group at hydroxy position of dihydroeugenol is more beneficial to improve its anti-oomycete activity than that of the sulfonyl group. These preliminary results will pave the way for further modification of dihydroeugenol in the development of potential new fungicides.


Asunto(s)
Productos Biológicos/farmacología , Eugenol/farmacología , Fungicidas Industriales/farmacología , Oomicetos/efectos de los fármacos , Productos Biológicos/síntesis química , Productos Biológicos/química , Eugenol/análogos & derivados , Eugenol/química , Fungicidas Industriales/síntesis química , Fungicidas Industriales/química , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Phytophthora/efectos de los fármacos
20.
Braz J Microbiol ; 52(4): 2145-2152, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34287810

RESUMEN

Gram-negative, aerobic, rod-shaped, non-spore-forming, motile bacteria, designated CBAS 719 T, CBAS 732 and CBAS 720 were isolated from leaf litter samples, collected in Espírito Santo State, Brazil, in 2008. Sequences of the 16S rRNA, gyrB, lepA and recA genes showed that these strains grouped with Burkholderia plantarii LMG 9035 T, Burkholderia gladioli LMG 2216 T and Burkholderia glumae LMG 2196 T in a clade of phytopathogenic Burkholderia species. Digital DNA-DNA hybridization experiments and ANI analyses demonstrated that strain CBAS 719 T represents a novel species in this lineage that is very closely related with B. plantarii. The genome sequence of the type strain is 7.57 Mbp and its G + C content is 69.01 mol%. The absence of growth on TSA medium supplemented with 3% (w/v) NaCl, citrate assimilation, ß-galactosidase (PNPG) activity, and of lipase C14 activity differentiated strain CBAS 719 T from B. plantarii LMG 9035 T, its nearest phylogenetic neighbor. Its predominant fatty acid components were C16:0, C18:1 ω7c, cyclo-C17:0 and summed feature 3 (C16:1 ω7c and/or C15:0 iso 2-OH). Based on these genotypic and phenotypic characteristics, the strains CBAS 719 T, CBAS 732 and CBAS 720 are classified in a novel Burkholderia species, for which the name Burkholderia perseverans sp. nov. is proposed. The type strain is CBAS 719 T (= LMG 31557 T = INN12T).


Asunto(s)
Antibiosis , Burkholderia , Ecosistema , Agaricales/efectos de los fármacos , Agaricales/fisiología , Antibiosis/fisiología , Aspergillus/efectos de los fármacos , Aspergillus/fisiología , Técnicas de Tipificación Bacteriana , Brasil , Burkholderia/química , Burkholderia/clasificación , Burkholderia/genética , ADN Bacteriano/genética , Fosfolípidos/análisis , Filogenia , Phytophthora/efectos de los fármacos , Phytophthora/fisiología , Hojas de la Planta/microbiología , ARN Ribosómico 16S/genética , Especificidad de la Especie , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA