Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Sci Adv ; 10(24): eadn8386, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38865454

RESUMEN

Certain cyanobacteria alter their photosynthetic light absorption between green and red, a phenomenon called complementary chromatic acclimation. The acclimation is regulated by a cyanobacteriochrome-class photosensor that reversibly photoconverts between green-absorbing (Pg) and red-absorbing (Pr) states. Here, we elucidated the structural basis of the green/red photocycle. In the Pg state, the bilin chromophore adopted the extended C15-Z,anti structure within a hydrophobic pocket. Upon photoconversion to the Pr state, the bilin is isomerized to the cyclic C15-E,syn structure, forming a water channel in the pocket. The solvation/desolvation of the bilin causes changes in the protonation state and the stability of π-conjugation at the B ring, leading to a large absorption shift. These results advance our understanding of the enormous spectral diversity of the phytochrome superfamily.


Asunto(s)
Luz , Cianobacterias/metabolismo , Cianobacterias/fisiología , Aclimatación , Fotosíntesis , Fitocromo/metabolismo , Fitocromo/química , Modelos Moleculares , Pigmentos Biliares/metabolismo , Pigmentos Biliares/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Luz Roja
2.
J Phys Chem Lett ; 15(19): 5202-5207, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38717357

RESUMEN

Far-red cyanobacteriochromes (CBCRs) are bilin-based photosensory proteins that promise to be novel optical agents in optogenetics and deep tissue imaging. Recent structural studies of a far-red CBCR 2551g3 have revealed a unique all-Z,syn chromophore conformation in the far-red-absorbing Pfr state. Understanding the photoswitching mechanism through bilin photoisomerization is important for developing novel biomedical applications. Here, we employ femtosecond spectroscopy and site-directed mutagenesis to systematically characterize the dynamics of wild-type 2551g3 and four critical mutants in the 15Z Pfr state. We captured local relaxations in several picoseconds and isomerization dynamics in hundreds of picoseconds. Most mutants exhibited faster local relaxation, while their twisting dynamics and photoproducts depend on specific protein-chromophore interactions around the D-ring and C-ring. These results collectively reveal a unique dynamic pattern of excited-state evolution arising from a relatively rigid protein environment, thereby elucidating the molecular mechanism of Pfr-state photoisomerization in far-red CBCRs.


Asunto(s)
Proteínas Bacterianas , Isomerismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Cianobacterias/química , Mutagénesis Sitio-Dirigida , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Pigmentos Biliares/química , Pigmentos Biliares/metabolismo
3.
Biochemistry ; 63(9): 1225-1233, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38682295

RESUMEN

As plant photoreceptors, phytochromes are capable of detecting red light and far-red light, thereby governing plant growth. All2699 is a photoreceptor found in Nostoc sp. PCC7120 that specifically responds to red light and far-red light. All2699g1g2 is a truncated protein carrying the first and second GAF (cGMP phosphodiesterase/adenylyl cyclase/FhlA) domains of All2699. In this study, we found that, upon exposure to red light, the protein underwent aggregation, resulting in the formation of protein aggregates. Conversely, under far-red light irradiation, these protein aggregates dissociated. We delved into the factors that impact the aggregation of All2699g1g2, focusing on the protein structure. Our findings showed that the GAF2 domain contains a low-complexity (LC) loop region, which plays a crucial role in mediating protein aggregation. Specifically, phenylalanine at position 239 within the LC loop region was identified as a key site for the aggregation process. Furthermore, our research revealed that various factors, including irradiation time, temperature, concentration, NaCl concentration, and pH value, can impact the aggregation of All2699g1g2. The aggregation led to variations in Pfr concentration depending on temperature, NaCl concentration, and pH value. In contrast, ΔLC did not aggregate and therefore lacked responses to these factors. Consequently, the LC loop region of All2699g1g2 extended and enhanced sensory properties.


Asunto(s)
Proteínas Bacterianas , Luz , Nostoc , Nostoc/metabolismo , Nostoc/química , Nostoc/efectos de la radiación , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dominios Proteicos , Agregado de Proteínas , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Pigmentos Biliares/química , Pigmentos Biliares/metabolismo , Concentración de Iones de Hidrógeno , Fitocromo/química , Fitocromo/metabolismo
4.
J Mol Biol ; 436(5): 168357, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37944794

RESUMEN

Phytochromes constitute a family of photosensory proteins that are utilized by various organisms to regulate several physiological processes. Phytochromes bind a bilin pigment that switches its isomeric state upon absorption of red or far-red photons, resulting in protein conformational changes that are sensed by the organism. Previously, the ultrafast dynamics in bacterial phytochrome was resolved to atomic resolution by time-resolved serial femtosecond X-ray diffraction (TR-SFX), showing extensive changes in its molecular conformation at 1 picosecond delay time. However, the large excitation fluence of mJ/mm2 used in TR-SFX questions the validity of the observed dynamics. In this work, we present an excitation-dependent ultrafast transient absorption study to test the response of a related bacterial phytochrome to excitation fluence. We observe excitation power-dependent sub-picosecond dynamics, assigned to the population of high-lying excited state Sn through resonantly enhanced two-photon absorption, followed by rapid internal conversion to the low-lying S1 state. Inspection of the long-lived spectrum under high fluence shows that in addition to the primary intermediate Lumi-R, spectroscopic signatures of solvated electrons and ionized chromophore radicals are observed. Supported by numerical modelling, we propose that under excitation fluences of tens of µJ/mm2 and higher, bacterial phytochrome partly undergoes photoionization from the Sn state in competition with internal conversion to the S1 state in 300 fs. We suggest that the extensive structural changes of related, shorter bacterial phytochrome, lacking the PHY domain, resolved from TR-SFX may have been affected by the ionized species. We propose approaches to minimize the two-photon absorption process by tuning the excitation spectrum away from the S1 absorption or using phytochromes exhibiting minimized or shifted S1 absorption.


Asunto(s)
Proteínas Bacterianas , Fitocromo , Proteínas Bacterianas/química , Pigmentos Biliares/química , Isomerismo , Fitocromo/química , Análisis Espectral , Absorción Fisicoquímica , Conformación Proteica , Difracción de Rayos X
5.
Proc Natl Acad Sci U S A ; 120(17): e2300770120, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37071675

RESUMEN

Terrestrial ecosystems and human societies depend on oxygenic photosynthesis, which began to reshape our atmosphere approximately 2.5 billion years ago. The earliest known organisms carrying out oxygenic photosynthesis are the cyanobacteria, which use large complexes of phycobiliproteins as light-harvesting antennae. Phycobiliproteins rely on phycocyanobilin (PCB), a linear tetrapyrrole (bilin) chromophore, as the light-harvesting pigment that transfers absorbed light energy from phycobilisomes to the chlorophyll-based photosynthetic apparatus. Cyanobacteria synthesize PCB from heme in two steps: A heme oxygenase converts heme into biliverdin IXα (BV), and the ferredoxin-dependent bilin reductase (FDBR) PcyA then converts BV into PCB. In the current work, we examine the origins of this pathway. We demonstrate that PcyA evolved from pre-PcyA proteins found in nonphotosynthetic bacteria and that pre-PcyA enzymes are active FDBRs that do not yield PCB. Pre-PcyA genes are associated with two gene clusters. Both clusters encode bilin-binding globin proteins, phycobiliprotein paralogs that we designate as BBAGs (bilin biosynthesis-associated globins). Some cyanobacteria also contain one such gene cluster, including a BBAG, two V4R proteins, and an iron-sulfur protein. Phylogenetic analysis shows that this cluster is descended from those associated with pre-PcyA proteins and that light-harvesting phycobiliproteins are also descended from BBAGs found in other bacteria. We propose that PcyA and phycobiliproteins originated in heterotrophic, nonphotosynthetic bacteria and were subsequently acquired by cyanobacteria.


Asunto(s)
Cianobacterias , Ficobiliproteínas , Humanos , Filogenia , Ficobiliproteínas/metabolismo , Oxidorreductasas/metabolismo , Ecosistema , Pigmentos Biliares/química , Cianobacterias/química
6.
J Biol Chem ; 299(1): 102763, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36463961

RESUMEN

PcyA, a ferredoxin-dependent bilin pigment reductase, catalyzes the site-specific reduction of the two vinyl groups of biliverdin (BV), producing phycocyanobilin. Previous neutron crystallography detected both the neutral BV and its protonated form (BVH+) in the wildtype (WT) PcyA-BV complex, and a nearby catalytic residue Asp105 was found to have two conformations (protonated and deprotonated). Semiempirical calculations have suggested that the protonation states of BV are reflected in the absorption spectrum of the WT PcyA-BV complex. In the previously determined absorption spectra of the PcyA D105N and I86D mutants, complexed with BV, a peak at 730 nm, observed in the WT, disappeared and increased, respectively. Here, we performed neutron crystallography and quantum chemical analysis of the D105N-BV and I86D-BV complexes to determine the protonation states of BV and the surrounding residues and study the correlation between the absorption spectra and protonation states around BV. Neutron structures elucidated that BV in the D105N mutant is in a neutral state, whereas that in the I86D mutant is dominantly in a protonated state. Glu76 and His88 showed different hydrogen bonding with surrounding residues compared with WT PcyA, further explaining why D105N and I86D have much lower activities for phycocyanobilin synthesis than the WT PcyA. Our quantum mechanics/molecular mechanics calculations of the absorption spectra showed that the spectral change in D105N arises from Glu76 deprotonation, consistent with the neutron structure. Collectively, our findings reveal more mechanistic details of bilin pigment biosynthesis.


Asunto(s)
Pigmentos Biliares , Oxidorreductasas , Pigmentos Biliares/biosíntesis , Pigmentos Biliares/química , Biliverdina/química , Catálisis , Cristalografía , Oxidorreductasas/genética , Oxidorreductasas/química , Mutación
7.
Photochem Photobiol Sci ; 21(4): 447-469, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35394641

RESUMEN

Cyanobacteriochromes (CBCRs) are phytochrome-related photosensory proteins that play an essential role in regulating phototaxis, chromatic acclimation, and cell aggregation in cyanobacteria. Here, we apply solid-state NMR spectroscopy to the red/green GAF2 domain of the CBCR AnPixJ assembled in vitro with a uniformly 13C- and 15N-labeled bilin chromophore, tracking changes in electronic structure, geometry, and structural heterogeneity of the chromophore as well as intimate contacts between the chromophore and protein residues in the photocycle. Our data confirm that the bilin ring D is strongly twisted with respect to the B-C plane in both dark and photoproduct states. We also identify a greater structural heterogeneity of the bilin chromophore in the photoproduct than in the dark state. In addition, the binding pocket is more hydrated in the photoproduct. Observation of interfacial 1H contacts of the photoproduct chromophore, together with quantum mechanics/molecular mechanics (QM/MM)-based structural models for this photoproduct, clearly suggests the presence of a biprotonated (cationic) imidazolium side-chain for a conserved histidine residue (322) at a distance of ~2.7 Å, generalizing the recent theoretical findings that explicitly link the structural heterogeneity of the dark-state chromophore to the protonation of this specific residue. Moreover, we examine pH effects on this in vitro assembled holoprotein, showing a substantially altered electronic structure and protonation of the photoproduct chromophore even with a small pH drop from 7.8 to 7.2. Our studies provide further information regarding the light- and pH-induced changes of the chromophore and the rearrangements of the hydrogen-bonding and electrostatic interaction network around it. Possible correlations between structural heterogeneity of the chromophore, protonation of the histidine residue nearby, and hydration of the pocket in both photostates are discussed.


Asunto(s)
Fotorreceptores Microbianos , Fitocromo , Proteínas Bacterianas/química , Pigmentos Biliares/química , Pigmentos Biliares/metabolismo , Histidina , Concentración de Iones de Hidrógeno , Luz , Fotorreceptores Microbianos/química , Fitocromo/metabolismo
8.
J Phys Chem B ; 126(4): 813-821, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35076228

RESUMEN

Cyanobacteriochromes (CBCRs) belong to the phytochrome superfamily of photoreceptors, the members of which utilize a linear tetrapyrrole (bilin) as a chromophore. RcaE is a representative member of a green/red-type CBCR subfamily that photoconverts between a green-absorbing dark state and red-absorbing photoproduct (Pr). Our recent crystallographic study showed that the phycocyanobilin (PCB) chromophore of RcaE adopts a unique C15-E,syn configuration in the Pr state, unlike the typical C15-E,anti configuration for the phytochromes and other CBCRs. Here, we measured Raman spectra of the Pr state of RcaE with 1064 nm excitation and explored the structure of PCB and its interacting residues under physiologically relevant aqueous conditions. We also performed measurements of RcaE in D2O as well as the sample reconstituted with the PCB labeled with 15N or with both 13C and 15N. The observed Raman spectra were analyzed by quantum mechanics/molecular mechanics (QM/MM) calculations together with molecular dynamics simulations. The Raman spectra and their isotope effects were well-reproduced by the simulated spectra of fully protonated PCB with the C15-E,syn configuration and allowed us to assign most of the observed bands. The present vibrational analysis of the all syn bilin chromophore using the QM/MM method will advance future studies on CBCRs and the related proteins by vibrational spectroscopy.


Asunto(s)
Fotorreceptores Microbianos , Fitocromo , Proteínas Bacterianas/química , Pigmentos Biliares/química , Simulación de Dinámica Molecular , Fotorreceptores Microbianos/química , Fitocromo/química , Espectrometría Raman
9.
Chem Rev ; 121(24): 14906-14956, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34669383

RESUMEN

This review adds the bilin-binding phytochromes to the Chemical Reviews thematic issue "Optogenetics and Photopharmacology". The work is structured into two parts. We first outline the photochemistry of the covalently bound tetrapyrrole chromophore and summarize relevant spectroscopic, kinetic, biochemical, and physiological properties of the different families of phytochromes. Based on this knowledge, we then describe the engineering of phytochromes to further improve these chromoproteins as photoswitches and review their employment in an ever-growing number of different optogenetic applications. Most applications rely on the light-controlled complex formation between the plant photoreceptor PhyB and phytochrome-interacting factors (PIFs) or C-terminal light-regulated domains with enzymatic functions present in many bacterial and algal phytochromes. Phytochrome-based optogenetic tools are currently implemented in bacteria, yeast, plants, and animals to achieve light control of a wide range of biological activities. These cover the regulation of gene expression, protein transport into cell organelles, and the recruitment of phytochrome- or PIF-tagged proteins to membranes and other cellular compartments. This compilation illustrates the intrinsic advantages of phytochromes compared to other photoreceptor classes, e.g., their bidirectional dual-wavelength control enabling instant ON and OFF regulation. In particular, the long wavelength range of absorption and fluorescence within the "transparent window" makes phytochromes attractive for complex applications requiring deep tissue penetration or dual-wavelength control in combination with blue and UV light-sensing photoreceptors. In addition to the wide variability of applications employing natural and engineered phytochromes, we also discuss recent progress in the development of bilin-based fluorescent proteins.


Asunto(s)
Pigmentos Biliares , Fitocromo , Animales , Pigmentos Biliares/química , Luz , Optogenética , Fotoquímica , Células Fotorreceptoras/metabolismo , Fitocromo/química
10.
Protein Sci ; 30(10): 2083-2091, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34382282

RESUMEN

The chlorophyll biosynthesis regulator GENOMES UNCOUPLED 4 (GUN4) is conserved in nearly all oxygenic photosynthetic organisms. Recently, GUN4 has been found to be able to bind the linear tetrapyrroles (bilins) and stimulate the magnesium chelatase activity in the unicellular green alga Chlamydomonas reinhardtii. Here, we characterize GUN4 proteins from Arabidopsis thaliana and the cyanobacterium Synechocystis sp. PCC 6803 for their ability to bind bilins, and present the crystal structures of Synechocystis GUN4 in biliverdin-bound, phycocyanobilin-bound, and phytochromobilin-bound forms at the resolutions of 1.05, 1.10, and 1.70 Å, respectively. These linear molecules adopt a cyclic-helical conformation, and bind more tightly than planar porphyrins to the tetrapyrrole-binding pocket of GUN4. Based on structural comparison, we propose a working model of GUN4 in regulation of tetrapyrrole biosynthetic pathway, and address the role of the bilin-bound GUN4 in retrograde signaling.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Proteínas Bacterianas/química , Pigmentos Biliares/química , Péptidos y Proteínas de Señalización Intracelular/química , Synechocystis/química , Unión Proteica , Dominios Proteicos
11.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33972439

RESUMEN

Cyanobacteriochromes (CBCRs) are bilin-binding photosensors of the phytochrome superfamily that show remarkable spectral diversity. The green/red CBCR subfamily is important for regulating chromatic acclimation of photosynthetic antenna in cyanobacteria and is applied for optogenetic control of gene expression in synthetic biology. It is suggested that the absorption change of this subfamily is caused by the bilin C15-Z/C15-E photoisomerization and a subsequent change in the bilin protonation state. However, structural information and direct evidence of the bilin protonation state are lacking. Here, we report a high-resolution (1.63Å) crystal structure of the bilin-binding domain of the chromatic acclimation sensor RcaE in the red-absorbing photoproduct state. The bilin is buried within a "bucket" consisting of hydrophobic residues, in which the bilin configuration/conformation is C5-Z,syn/C10-Z,syn/C15-E,syn with the A- through C-rings coplanar and the D-ring tilted. Three pyrrole nitrogens of the A- through C-rings are covered in the α-face with a hydrophobic lid of Leu249 influencing the bilin pKa, whereas they are directly hydrogen bonded in the ß-face with the carboxyl group of Glu217. Glu217 is further connected to a cluster of waters forming a hole in the bucket, which are in exchange with solvent waters in molecular dynamics simulation. We propose that the "leaky bucket" structure functions as a proton exit/influx pathway upon photoconversion. NMR analysis demonstrated that the four pyrrole nitrogen atoms are indeed fully protonated in the red-absorbing state, but one of them, most likely the B-ring nitrogen, is deprotonated in the green-absorbing state. These findings deepen our understanding of the diverse spectral tuning mechanisms present in CBCRs.


Asunto(s)
Proteínas Bacterianas/química , Pigmentos Biliares/química , Complejos de Proteína Captadores de Luz/química , Fotorreceptores Microbianos/química , Fitocromo/química , Protones , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pigmentos Biliares/genética , Pigmentos Biliares/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Cianobacterias/química , Cianobacterias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Luz , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/metabolismo , Simulación de Dinámica Molecular , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Pirroles/química , Pirroles/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33727422

RESUMEN

Cyanobacteriochromes (CBCRs) are small, linear tetrapyrrole (bilin)-binding photoreceptors in the phytochrome superfamily that regulate diverse light-mediated adaptive processes in cyanobacteria. More spectrally diverse than canonical red/far-red-sensing phytochromes, CBCRs were thought to be restricted to sensing visible and near UV light until recently when several subfamilies with far-red-sensing representatives (frCBCRs) were discovered. Two of these frCBCRs subfamilies have been shown to incorporate bilin precursors with larger pi-conjugated chromophores, while the third frCBCR subfamily uses the same phycocyanobilin precursor found in the bulk of the known CBCRs. To elucidate the molecular basis of far-red light perception by this third frCBCR subfamily, we determined the crystal structure of the far-red-absorbing dark state of one such frCBCR Anacy_2551g3 from Anabaena cylindrica PCC 7122 which exhibits a reversible far-red/orange photocycle. Determined by room temperature serial crystallography and cryocrystallography, the refined 2.7-Å structure reveals an unusual all-Z,syn configuration of the phycocyanobilin (PCB) chromophore that is considerably less extended than those of previously characterized red-light sensors in the phytochrome superfamily. Based on structural and spectroscopic comparisons with other bilin-binding proteins together with site-directed mutagenesis data, our studies reveal protein-chromophore interactions that are critical for the atypical bathochromic shift. Based on these analyses, we propose that far-red absorption in Anacy_2551g3 is the result of the additive effect of two distinct red-shift mechanisms involving cationic bilin lactim tautomers stabilized by a constrained all-Z,syn conformation and specific interactions with a highly conserved anionic residue.


Asunto(s)
Pigmentos Biliares/química , Pigmentos Biliares/metabolismo , Cianobacterias/fisiología , Modelos Moleculares , Fitocromo/química , Fitocromo/metabolismo , Conformación Proteica , Luz , Optogenética , Relación Estructura-Actividad , Rayos Ultravioleta
13.
Proc Natl Acad Sci U S A ; 117(28): 16356-16362, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32591422

RESUMEN

Phytochromes are a diverse family of bilin-binding photoreceptors that regulate a wide range of physiological processes. Their photochemical properties make them attractive for applications in optogenetics and superresolution microscopy. Phytochromes undergo reversible photoconversion triggered by the Z ⇄ E photoisomerization about the double bond in the bilin chromophore. However, it is not fully understood at the molecular level how the protein framework facilitates the complex photoisomerization dynamics. We have studied a single-domain bilin-binding photoreceptor All2699g1 (Nostoc sp. PCC 7120) that exhibits photoconversion between the red light-absorbing (Pr) and far red-absorbing (Pfr) states just like canonical phytochromes. We present the crystal structure and examine the photoisomerization mechanism of the Pr form as well as the formation of the primary photoproduct Lumi-R using time-resolved spectroscopy and hybrid quantum mechanics/molecular mechanics simulations. We show that the unusually long excited state lifetime (broad lifetime distribution centered at ∼300 picoseconds) is due to the interactions between the isomerizing pyrrole ring D and an adjacent conserved Tyr142. The decay kinetics shows a strongly distributed character which is imposed by the nonexponential protein dynamics. Our findings offer a mechanistic insight into how the quantum efficiency of the bilin photoisomerization is tuned by the protein environment, thereby providing a structural framework for engineering bilin-based optical agents for imaging and optogenetics applications.


Asunto(s)
Fitocromo/química , Fitocromo/metabolismo , Pigmentos Biliares/química , Pigmentos Biliares/metabolismo , Cristalografía por Rayos X , Isomerismo , Cinética , Modelos Moleculares , Nostoc/metabolismo , Procesos Fotoquímicos , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Conformación Proteica , Análisis Espectral , Relación Estructura-Actividad
14.
Biochemistry ; 59(9): 1051-1062, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32069394

RESUMEN

Phytochromes are biological red/far-red light sensors found in many organisms. Prototypical phytochromes, including Cph1 from the cyanobacterium Synechocystis 6803, act as photochemical switches that interconvert between stable red (Pr)- and metastable far-red (Pfr)-absorbing states induced by photoisomerization of the bilin chromophore. The connection between photoconversion and the cellular output signal involves light-mediated global structural changes in the interaction between the photosensory module (PAS-GAF-PHY) and the C-terminal transmitter (output) module, usually a histidine kinase, as in the case of Cph1. The chromophore deprotonates transiently during the Pr → Pfr photoconversion in association with extensive global structural changes required for signal transmission. Here, we performed equilibrium studies in the Pr state, involving pH titration of the linear tetrapyrrole chromophore in different Cph1 constructs, and measurement of pH-dependent structural changes at various positions in the protein using picosecond time-resolved fluorescence anisotropy. The fluorescent reporter group was attached at positions 371 (PHY domain), 305 (GAF domain), and 120 (PAS domain), as well as at sites in the PAS-GAF bidomain. We show direct correlation of chromophore deprotonation with pH-dependent conformational changes in the various domains. Our results suggest that chromophore deprotonation is closely associated with a higher protein mobility (conformational space) both in proximal and in distal protein sites, implying a causal relationship that might be important for the global large protein arrangements and thus intramolecular signal transduction.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pigmentos Biliares/metabolismo , Fotorreceptores Microbianos/metabolismo , Fitocromo/química , Proteínas Quinasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Pigmentos Biliares/química , Histidina Quinasa/metabolismo , Luz , Conformación Molecular , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/ultraestructura , Fitocromo/metabolismo , Proteínas Quinasas/química , Proteínas Quinasas/ultraestructura , Transducción de Señal , Synechocystis/metabolismo , Tetrapirroles/metabolismo
15.
J Biol Chem ; 295(3): 771-782, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31822504

RESUMEN

Phytochromobilin (PΦB) is a red/far-red light sensory pigment in plant phytochrome. PΦB synthase is a ferredoxin-dependent bilin reductase (FDBR) that catalyzes the site-specific reduction of bilins, which are sensory and photosynthesis pigments, and produces PΦB from biliverdin, a heme-derived linear tetrapyrrole pigment. Here, we determined the crystal structure of tomato PΦB synthase in complex with biliverdin at 1.95 Å resolution. The overall structure of tomato PΦB synthase was similar to those of other FDBRs, except for the addition of a long C-terminal loop and short helices. The structure further revealed that the C-terminal loop is part of the biliverdin-binding pocket and that two basic residues in the C-terminal loop form salt bridges with the propionate groups of biliverdin. This suggested that the C-terminal loop is involved in the interaction with ferredoxin and biliverdin. The configuration of biliverdin bound to tomato PΦB synthase differed from that of biliverdin bound to other FDBRs, and its orientation in PΦB synthase was inverted relative to its orientation in the other FDBRs. Structural and enzymatic analyses disclosed that two aspartic acid residues, Asp-123 and Asp-263, form hydrogen bonds with water molecules and are essential for the site-specific A-ring reduction of biliverdin. On the basis of these observations and enzymatic assays with a V121A PΦB synthase variant, we propose the following mechanistic product release mechanism: PΦB synthase-catalyzed stereospecific reduction produces 2(R)-PΦB, which when bound to PΦB synthase collides with the side chain of Val-121, releasing 2(R)-PΦB from the synthase.


Asunto(s)
Biliverdina/química , Oxidorreductasas/química , Fitocromo/biosíntesis , Conformación Proteica , Aminoácidos/química , Aminoácidos/genética , Pigmentos Biliares/biosíntesis , Pigmentos Biliares/química , Biliverdina/genética , Catálisis , Cristalografía por Rayos X , Enlace de Hidrógeno , Solanum lycopersicum/enzimología , Oxidorreductasas/genética , Oxidorreductasas/ultraestructura , Fotosíntesis/genética , Fitocromo/química , Fitocromo/genética , Estructura Secundaria de Proteína
16.
Curr Opin Struct Biol ; 59: 73-80, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30954759

RESUMEN

In mammals, the green heme metabolite biliverdin is converted to a yellow anti-oxidant by NAD(P)H-dependent biliverdin reductase (BVR), whereas in O2-dependent photosynthetic organisms it is converted to photosynthetic or light-sensing pigments by ferredoxin-dependent bilin reductases (FDBRs). In NADP+-bound and biliverdin-bound BVR-A, two biliverdins are stacked at the binding cleft; one is positioned to accept hydride from NADPH, and the other appears to donate a proton to the first biliverdin through a neighboring arginine residue. During the FDBR-catalyzed reaction, electrons and protons are supplied to bilins from ferredoxin and from FDBRs and waters bound within FDBRs, respectively. Thus, the protonation sites of bilin and catalytic residues are important for the analysis of site-specific reduction. The neutron structure of FDBR sheds light on this issue.


Asunto(s)
Pigmentos Biliares/química , Enzimas/química , Relación Estructura-Actividad Cuantitativa , Animales , Pigmentos Biliares/metabolismo , Catálisis , Humanos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Conformación Proteica
17.
J Phys Chem B ; 123(15): 3242-3247, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30913882

RESUMEN

Phytochrome and cyanobacteriochrome utilize a linear methine-bridged tetrapyrrole (bilin) to control numerous biological processes. They show a reversible photoconversion between two spectrally distinct states. This photocycle is initiated by a C═C double-bond photoisomerization of the bilin followed by its thermal relaxations with transient and/or stationary changes in the protonation state of the pyrrole moiety. However, it has never been identified which of the four pyrrole nitrogen atoms is deprotonated. Here, we report a resonance Raman spectroscopic study on cyanobacteriochrome RcaE, which has been proposed to contain a deprotonated bilin for its green-absorbing 15 Z state. The observed Raman spectra were well reproduced by a simulated structure whose bilin B ring is deprotonated, with the aid of molecular dynamics and quantum mechanics/molecular mechanics calculations. The results revealed that the deprotonation of B and C rings has the distinct effect on the overall bilin structure, which will be relevant to the color tuning and photoconversion mechanisms of the phytochrome superfamily. Furthermore, this study documents the ability of vibrational spectroscopy combined with the advanced spectral analysis to visualize a proton of a cofactor molecule embedded in a protein moiety.


Asunto(s)
Pigmentos Biliares/química , Simulación de Dinámica Molecular , Nitrógeno/química , Fotorreceptores Microbianos/química , Protones , Pirroles/química , Teoría Cuántica , Espectrometría Raman , Cianobacterias
18.
Planta ; 248(4): 875-892, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29951845

RESUMEN

MAIN CONCLUSION: Although the PAO/phyllobilin pathway of chlorophyll breakdown is active in grass leaf senescence, the abundance of phyllobilins is far below the amount of degraded chlorophyll. The yellowing of fully developed leaves is the most prominent visual symptom of plant senescence. Thereby, chlorophyll is degraded via the so-called pheophorbide a oxygenase (PAO)/phyllobilin pathway to a species-specific set of phyllobilins, linear tetrapyrrolic products of chlorophyll breakdown. Here, we investigated the diversity and abundance of phyllobilins in cereal and forage crops, i.e. barley, rice, ryegrass, sorghum and wheat, using liquid chromatography-mass spectrometry. A total of thirteen phyllobilins were identified, among them four novel, not yet described ones, pointing to a rather high diversity of phyllobilin-modifying activities present in the Gramineae. Along with these phyllobilins, barley orthologs of known Arabidopsis thaliana chlorophyll catabolic enzymes were demonstrated to localize in the chloroplast, and two of them, i.e. PAO and pheophytin pheophorbide hydrolase, complemented respective Arabidopsis mutants. These data confirm functionality of the PAO/phyllobilin pathway in grasses. Interestingly, when comparing phyllobilin abundance with amounts of degraded chlorophyll in senescent leaves, in most analyzed grass species only minor fractions of chlorophyll were recovered as phyllobilins, opposite to A. thaliana where phyllobilin quantities match degraded chlorophyll rather well. These data show that, despite the presence and activity of the PAO/phyllobilin pathway in barley (and other cereals), phyllobilins do not accumulate stoichiometrically, implying possible degradation of chlorophyll beyond the phyllobilin level.


Asunto(s)
Pigmentos Biliares/metabolismo , Clorofila/metabolismo , Hordeum/enzimología , Redes y Vías Metabólicas , Oxigenasas/metabolismo , Poaceae/enzimología , Pigmentos Biliares/química , Clorofila/análogos & derivados , Clorofila/química , Genes Reporteros , Hordeum/química , Hordeum/genética , Mutación , Oxigenasas/genética , Hojas de la Planta/química , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Poaceae/química , Poaceae/genética , Proteínas Recombinantes de Fusión , Factores de Tiempo
19.
J Org Chem ; 81(15): 6292-302, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27391671

RESUMEN

Bilin chromophores and bilirubin are involved in relevant biological functions such as light perception in plants and as protective agents against Alzheimer and other diseases. Despite their extensive use, a deep rationalization of the main factors controlling the thermal and photochemical properties has not been performed yet, which in turn hampers further applications of these versatile molecules. In an effort to understand those factors and allow control of the relevant properties, a combined experimental and computational study has been carried out for diverse model systems to understand the interconversion between Z and E isomers. In this study, we have demonstrated the crucial role of steric hindrance and hydrogen-bond interactions in thermal stability and the ability to control them by designing novel compounds. We also determined several photochemical properties and studied the photodynamics of two model systems in more detail, observing a fast relaxation of the excited state shorter than 2 ps in both cases. Finally, the computational study allowed us to rationalize the experimental evidence.


Asunto(s)
Pigmentos Biliares/química , Bilirrubina/química , Simulación por Computador , Cristalografía por Rayos X , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Modelos Biológicos , Mutación , Procesos Fotoquímicos , Programas Informáticos , Estereoisomerismo
20.
Rapid Commun Mass Spectrom ; 30(13): 1469-74, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27321834

RESUMEN

RATIONALE: Bilin tetrapyrroles including stercobilin are unique to mammalian waste; they have been used as markers of source water contamination and may have important diagnostic value in human health conditions. Unfortunately, commercial isotopomers for bilins are not available. Thus, there is a need for isotopomer standards of stercobilin and other bilins for quantification in environmental and clinical diagnostic applications. METHODS: A procedure is described here using H2 (18) O to label the carboxylic acid groups of bilin tetrapyrroles. Reaction conditions as a function of temperature and reagent volume were found to produce a mixture of isotopomers, as assessed by electrospray ionization and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). Stability as a function of storage time and temperature and in conjunction with solid-phase extraction (SPE) was assessed. RESULTS: The highest labeling efficiency was achieved at 70 °C for 8 h, while a stable ratio of the isotopmers could be produced at 60 °C for 4 h. The stability of the isotopic distribution was maintained under storage (room temperature or frozen) for 20 days. It was also stable throughout SPE. The high mass accuracy and resolving power of FTICRMS enables clear distinction between (18) O-labeled bilins from other unlabeled bilins present, avoiding a potential interference in quantitation. CONCLUSIONS: A procedure was developed to label bilins with (18) O. The final ratio of the (18) O-labeled bilin isotopomers was reproducible and highly stable for at least 20 days under storage. This ratio was not changed in any statistically significant way even after SPE. Thus a reliable method for producing stable isotopomer ratios for bilins has been achieved. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Pigmentos Biliares/química , Metabolómica , Espectrometría de Masa por Ionización de Electrospray , Animales , Humanos , Tetrapirroles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA