Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Tree Physiol ; 44(5)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38696364

RESUMEN

Modeling and simulating the growth of the branching of tree species remains a challenge. With existing approaches, we can reconstruct or rebuild the branching architectures of real tree species, but the simulation of the growth process remains unresolved. First, we present a tree growth model to generate branching architectures that resemble real tree species. Secondly, we use a quantitative morphometric approach to infer the shape similarity of the generated simulations and real tree species. Within a functional-structural plant model, we implement a set of biological parameters that affect the branching architecture of trees. By modifying the parameter values, we aim to generate basic shapes of spruce, pine, oak and poplar. Tree shapes are compared using geometric morphometrics of landmarks that capture crown and stem outline shapes. Five biological parameters, namely xylem flow, shedding rate, proprioception, gravitysense and lightsense, most influenced the generated tree branching patterns. Adjusting these five parameters resulted in the different tree shapes of spruce, pine, oak, and poplar. The largest effect was attributed to gravity, as phenotypic responses to this effect resulted in different growth directions of gymnosperm and angiosperm branching architectures. Since we were able to obtain branching architectures that resemble real tree species by adjusting only a few biological parameters, our model is extendable to other tree species. Furthermore, the model will also allow the simulation of structural tree-environment interactions. Our simplifying approach to shape comparison between tree species, landmark geometric morphometrics, showed that even the crown-trunk outlines capture species differences based on their contrasting branching architectures.


Asunto(s)
Modelos Biológicos , Árboles , Árboles/crecimiento & desarrollo , Árboles/anatomía & histología , Xilema/crecimiento & desarrollo , Xilema/anatomía & histología , Quercus/crecimiento & desarrollo , Quercus/anatomía & histología , Quercus/fisiología , Picea/crecimiento & desarrollo , Picea/anatomía & histología , Picea/fisiología , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/anatomía & histología , Pinus/crecimiento & desarrollo , Pinus/anatomía & histología , Simulación por Computador
2.
Tree Physiol ; 44(5)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38676919

RESUMEN

Studying the response of physiological and xylem anatomical traits under cadmium stress is helpful to understand plants' response to heavy metal stress. Here, seedlings of Pinus thunbergii Parl. were treated with 50, 100 and 150 mg kg-1 Cd2+ for 28 days. Cadmium and nonstructural carbohydrate content of leaves, stems and roots, root Cd2+ flux, cadmium distribution pattern in stem xylem and phloem, stem xylem hydraulic traits, cell wall component fractions of stems and roots, phytohormonal content such as abscisic acid, gibberellic acid 3, molecule -indole-3-acetic acid, and jasmonic acid from both leaves and roots, as well as xylem anatomical traits from both stems and roots were measured. Root Cd2+ flux increased from 50 to 100 mmol L-1 Cd2+ stress, however it decreased at 150 mmol L-1 Cd2+. Cellulose and hemicellulose in leaves, stems and roots did not change significantly under cadmium stress, while pectin decreased significantly. The nonstructural carbohydrate content of both leaves and stems showed significant changes under cadmium stress while the root nonstructural carbohydrate content was not affected. In both leaves and roots, the abscisic acid content significantly increased under cadmium stress, while the gibberellic acid 3, indole-3-acetic acid and jasmonic acid methylester content significantly decreased. Both xylem specific hydraulic conductivity and xylem water potential decreased with cadmium stress, however tracheid diameter and double wall thickness of the stems and roots were not affected. High cadmium intensity was found in both the stem xylem and phloem in all cadmium stressed treatments. Our study highlighted the in situ observation of cadmium distribution in both the xylem and phloem, and demonstrated the instant response of physiological traits such as xylem water potential, xylem specific hydraulic conductivity, root Cd2+ flux, nonstructural carbohydrate content, as well as phytohormonal content under cadmium stress, and the less affected traits such as xylem anatomical traits, cellulose and hemicellulose.


Asunto(s)
Cadmio , Pinus , Plantones , Xilema , Cadmio/metabolismo , Xilema/metabolismo , Xilema/fisiología , Pinus/fisiología , Pinus/anatomía & histología , Pinus/metabolismo , Pinus/efectos de los fármacos , Plantones/fisiología , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/anatomía & histología , Reguladores del Crecimiento de las Plantas/metabolismo , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/anatomía & histología , Tallos de la Planta/metabolismo , Tallos de la Planta/fisiología , Estrés Fisiológico , Raíces de Plantas/anatomía & histología , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Raíces de Plantas/efectos de los fármacos , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/efectos de los fármacos
3.
J Plant Res ; 137(4): 619-626, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38568301

RESUMEN

The nurse effect is a positive interaction in which a nurse plant improves the abiotic environment for another species (beneficiary plant) and facilitates its establishment. The evergreen shrub Vaccinium vitis-idaea (a beneficiary plant) grows mainly under the dwarf shrub Pinus pumila (a nurse plant) in the alpine regions of central Japan. However, whether V. vitis-idaea shrubs under various P. pumila shrubs spread through clonal growth and/or seeds remains unclear. We investigated the clonal structure of V. vitis-idaea under the nurse plant P. pumila in Japanese alpine regions. MIG-seq analysis was conducted to clarify the clonal diversity of V. vitis-idaea in isolated and patchy P. pumila plots on a ridge (PATs), and in a plot covered by dense P. pumila on a slope adjacent to the ridge (MAT) on Mt. Norikura, Japan. We detected 28 multilocus genotypes in 319 ramets of V. vitis-idaea across 11 PATs and MAT. Three genets expanded to more than 10 m in the MAT. Some genets were shared among neighboring PATs or among PATs and MAT. These findings suggest that the clonal growth of V. vitis-idaea plays an important role in the sustainability of populations. The clonal diversity of V. vitis-idaea was positively related with the spatial size of PATs and was higher in MAT than in PATs at a small scale. Therefore, the spatial spread of the nurse plant P. pumila might facilitate the nurse effect on the genetic diversity of beneficiary plants, leading to the sustainability of beneficiary populations.


Asunto(s)
Pinus , Vaccinium vitis-Idaea , Japón , Vaccinium vitis-Idaea/genética , Pinus/genética , Pinus/crecimiento & desarrollo , Pinus/anatomía & histología , Genotipo , Variación Genética , Ecosistema
4.
Nature ; 620(7972): 97-103, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532816

RESUMEN

Earth system models and various climate proxy sources indicate global warming is unprecedented during at least the Common Era1. However, tree-ring proxies often estimate temperatures during the Medieval Climate Anomaly (950-1250 CE) that are similar to, or exceed, those recorded for the past century2,3, in contrast to simulation experiments at regional scales4. This not only calls into question the reliability of models and proxies but also contributes to uncertainty in future climate projections5. Here we show that the current climate of the Fennoscandian Peninsula is substantially warmer than that of the medieval period. This highlights the dominant role of anthropogenic forcing in climate warming even at the regional scale, thereby reconciling inconsistencies between reconstructions and model simulations. We used an annually resolved 1,170-year-long tree-ring record that relies exclusively on tracheid anatomical measurements from Pinus sylvestris trees, providing high-fidelity measurements of instrumental temperature variability during the warm season. We therefore call for the construction of more such millennia-long records to further improve our understanding and reduce uncertainties around historical and future climate change at inter-regional and eventually global scales.


Asunto(s)
Cambio Climático , Pinus , Temperatura , Árboles , Cambio Climático/historia , Cambio Climático/estadística & datos numéricos , Calentamiento Global/historia , Calentamiento Global/estadística & datos numéricos , Reproducibilidad de los Resultados , Árboles/anatomía & histología , Árboles/crecimiento & desarrollo , Historia Medieval , Historia del Siglo XXI , Modelos Climáticos , Incertidumbre , Pinus/anatomía & histología , Pinus/crecimiento & desarrollo , Internacionalidad
5.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33941644

RESUMEN

How coniferous forests evolved in the Northern Hemisphere remains largely unknown. Unlike most groups of organisms that generally follow a latitudinal diversity gradient, most conifer species in the Northern Hemisphere are distributed in mountainous areas at middle latitudes. It is of great interest to know whether the midlatitude region has been an evolutionary cradle or museum for conifers and how evolutionary and ecological factors have driven their spatiotemporal evolution. Here, we investigated the macroevolution of Pinus, the largest conifer genus and characteristic of northern temperate coniferous forests, based on nearly complete species sampling. Using 1,662 genes from transcriptome sequences, we reconstructed a robust species phylogeny and reestimated divergence times of global pines. We found that ∼90% of extant pine species originated in the Miocene in sharp contrast to the ancient origin of Pinus, indicating a Neogene rediversification. Surprisingly, species at middle latitudes are much older than those at other latitudes. This finding, coupled with net diversification rate analysis, indicates that the midlatitude region has provided an evolutionary museum for global pines. Analyses of 31 environmental variables, together with a comparison of evolutionary rates of niche and phenotypic traits with a net diversification rate, found that topography played a primary role in pine diversification, and the aridity index was decisive for the niche rate shift. Moreover, fire has forced diversification and adaptive evolution of Pinus Our study highlights the importance of integrating phylogenomic and ecological approaches to address evolution of biological groups at the global scale.


Asunto(s)
Ecología/métodos , Ecosistema , Evolución Molecular , Filogenia , Pinus/genética , Análisis Espacio-Temporal , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Especiación Genética , Variación Genética , Geografía , Fenotipo , Pinus/anatomía & histología , Pinus/clasificación , Especificidad de la Especie , Factores de Tiempo
6.
Sci Rep ; 10(1): 22066, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33328534

RESUMEN

Pinus massoniana Lamb. is one of the most sensitive species to acid deposition among forest woody plants, but differences in acid resistance among pine families still exist. It is of great significance to study the differences in acid resistance of Masson pine families and to analyze the physiological regulation mechanism of their acid resistance. In this study, the 100-day-old seedlings of 16 Masson pine families were treated with the simulated acid rain (SAR) at different pH levels (5.6, 4.5, 3.5 and 2.5) for 100 days to investigate the plant morphology, chlorophyll content, and root physiological responses. Results showed that pine family No. 35 maintained the good morphology, high chlorophyll content and organic acids secretion, and low plasma membrane permeability exposed to SAR, while family No. 79 presented the opposite. SAR not only increased the root plasma membrane permeability, but also induced an exudation of organic acids from the pine roots, and the test parameters changed sharply when the SAR pH was lower than 4.5. The results indicated that Masson pine could resist to acidic environment (pH 4.5-5.6), and family No. 35 had the acid resistance while the family No. 79 was sensitive to acid stress. The acid resistance diversity of different pine families had close relation with the root physiological processes, including the root plasma membrane permeability and organic acids secretion. For the future research, the natural genetic variation of Masson pine in response to acid stress and its acid resistance mechanism should be further studied.


Asunto(s)
Pinus/anatomía & histología , Pinus/metabolismo , Plantones/anatomía & histología , Plantones/metabolismo , Suelo , Ácidos/metabolismo , Ácidos/farmacología , Concentración de Iones de Hidrógeno
7.
New Phytol ; 225(1): 222-233, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31247133

RESUMEN

Strategies for deep soil water acquisition (WAdeep ) are critical to a species' adaptation to drought. However, it is unknown how WAdeep determines the abundance and resource economy strategies of understorey shrub species. With data from 13 understorey shrub species in subtropical coniferous plantations, we investigated associations between the magnitude of WAdeep , the seasonal plasticity of WAdeep , midday leaf water potential (Ψmd ), species abundance and resource economic traits across organs. Higher capacity for WAdeep was associated with higher intrinsic water use efficiency, but was not necessary for maintaining higher Ψmd in the dry season nor was it an ubiquitous trait possessed by the most common shrub species. Species with higher seasonal plasticity of WAdeep had lower wood density, indicating that fast species had higher plasticity in deep soil resource acquisition. However, the magnitude and plasticity of WAdeep were not related to shallow fine root economy traits, suggesting independent dimensions of soil resource acquisition between deep and shallow soil. Our results provide new insights into the mechanisms through which the magnitude and plasticity of WAdeep interact with shallow soil and aboveground resource acquisition traits to integrate the whole-plant economic spectrum and, thus, community assembly processes.


Asunto(s)
Pinus/fisiología , Hojas de la Planta/fisiología , Suelo/química , Agua/metabolismo , Sequías , Isótopos de Oxígeno/análisis , Fenotipo , Pinus/anatomía & histología , Hojas de la Planta/anatomía & histología , Raíces de Plantas/anatomía & histología , Raíces de Plantas/fisiología , Estaciones del Año , Madera
8.
New Phytol ; 225(1): 209-221, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31461530

RESUMEN

The extent to which water availability can be used to predict the enlargement and final dimensions of xylem conduits remains an open issue. We reconstructed the time course of tracheid enlargement in Pinus sylvestris trees in central Spain by repeated measurements of tracheid diameter on microcores sampled weekly during a 2 yr period. We analyzed the role of water availability in these dynamics empirically through time-series correlation analysis and mechanistically by building a model that simulates daily tracheid enlargement rate and duration based on Lockhart's equation and water potential as the sole input. Tracheid enlargement followed a sigmoid-like time course, which varied intra- and interannually. Our empirical analysis showed that final tracheid diameter was strongly related to water availability during tracheid enlargement. The mechanistic model was calibrated and successfully validated (R2  = 0.92) against the observed tracheid enlargement time course. The model was also able to reproduce the seasonal variations of tracheid enlargement rate, duration and final diameter (R2  = 0.84-0.99). Our results support the hypothesis that tracheid enlargement and final dimensions can be modeled based on the direct effect of water potential on turgor-driven cell expansion. We argue that such a mechanism is consistent with other reported patterns of tracheid dimension variation.


Asunto(s)
Pinus sylvestris/fisiología , Agua/metabolismo , Xilema/fisiología , Modelos Biológicos , Pinus/anatomía & histología , Pinus sylvestris/anatomía & histología , Estaciones del Año , España , Árboles , Xilema/anatomía & histología
9.
Tree Physiol ; 39(2): 312-319, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29850887

RESUMEN

Most conifer species have needle-shaped leaves that are only a few centimeters long. In general, variation in leaf size has been associated with environmental factors, such as cold or drought stress. However, it has recently been proposed that sugar export efficiency is the limiting factor for conifer needle length, based on the results obtained using a mathematical model of phloem transport. Here, phloem transport rates in long conifer needles were experimentally determined to test if the mathematical model accurately represents phloem transport. The validity of the model's assumptions was tested by anatomical analyses and sugar quantification. Furthermore, various environmental and physiological factors were tested for their correlation with needle length. The results indicate that needle length is not limited by sugar transport efficiency, but, instead, by winter temperatures and light availability. The identification of factors that influence needle size is instrumental for using this trait as a variable in breeding programs.


Asunto(s)
Ambiente , Pinus/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Luz , Modelos Biológicos , Floema/metabolismo , Pinus/anatomía & histología , Hojas de la Planta/anatomía & histología , Azúcares/metabolismo , Temperatura , Árboles/anatomía & histología
10.
Tree Physiol ; 39(1): 135-142, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30272223

RESUMEN

The leaf area to sapwood area ratios of trees (Al:AS) can shift to maintain homeostatic gas exchange per unit leaf area in response to climate variability. We tested the hypothesis that trees alter their Al:AS ratios in response to long-term warming and reduced precipitation in order to maintain leaf-specific gas exchange rates under more stressful conditions. Whole-tree Al:AS was measured on mature piñon pine (Pinus edulis Engelm.) and one-seed juniper (Juniperus monosperma (Engelm.) Sarg.) trees after 5 years (2012-16) of chronic exposure to increased temperature (+4.8 °C), precipitation reduction (-45%), or both simultaneously. No difference was found in Al:As among treatments for either species. Associated with this lack of shift in Al:As were large changes in pre-dawn leaf water potential and stomatal conductance, consistent with theoretical expectations of interactions between leaf and whole-tree hydraulic supply. Our results suggest that a lack of whole-tree acclimation in Al:As results in the reductions in plant gas exchange and water status associated with long-term warming and reduced precipitation in semi-arid woodlands.


Asunto(s)
Aclimatación , Calentamiento Global , Juniperus/fisiología , Pinus/fisiología , Hojas de la Planta/fisiología , Árboles/fisiología , Sequías , Juniperus/anatomía & histología , Pinus/anatomía & histología , Hojas de la Planta/anatomía & histología , Árboles/anatomía & histología , Agua
11.
Chemosphere ; 220: 116-126, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30579948

RESUMEN

We conducted a dendrochemical study in order to evaluate the exposure of territories and populations to different types of pollutants and to characterise the history of pollution in one of the most intensely industrialised areas of Europe: the industrial port zone of Fos, also heavily urbanised. To perform the study, two tree species have been selected, Pinus halepensis and Populus nigra, on a rural plot located roughly 20 km away from the industrial harbour, an urban plot located in the city of Fos-sur-Mer and an industrial plot. Our study indicated that poplar was a more relevant model for the dendrochemical studies, exhibiting a higher bioaccumulation capacity than pine except for Hg, Sb and Mn. Moreover, thanks to this work, we observed significant exposure of the trees in the urban and industrial areas to As, Cd, Co, Cu, Mo, Sb, Zn, Al, Ca, and Mg, highlighting the exposure of the territory and populations living in the vicinity of the industrial harbour. The temporal variability of the concentrations measured in the tree rings corresponds to the increasing industrialisation of the territory as well as to the evolution of the industrial processes. Thus, this project highlighted the exposure of the Gulf of Fos to atmospheric emissions (industrial, road and urban) of the industrial harbour as well as the changes over time. It also pointed out the relevance of using dendrochemistry to measure atmospheric exposure of metals and metalloids and its temporal variability.


Asunto(s)
Monitoreo del Ambiente/métodos , Contaminación Ambiental/historia , Metales Pesados/análisis , Pinus/metabolismo , Populus/metabolismo , Ciudades , Contaminación Ambiental/análisis , Europa (Continente) , Francia , Historia del Siglo XX , Historia del Siglo XXI , Residuos Industriales/análisis , Pinus/anatomía & histología , Populus/anatomía & histología , Urbanización
12.
Int J Biol Macromol ; 126: 385-391, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30576738

RESUMEN

This study investigated the physicochemical properties, bioaccessibility and in vitro antioxidant ability of the polyphenols isolated from the pine cones of Pinus koraiensis (PKP) under the simulated gastrointestinal digestion. The results found that PKP was mainly composed by derivatives of apigenin, phloretin, quercetin, myricetin, ellagitannin, and chlorogenic acid, and possessed the flat and smooth lump surface morphology. Through respective establishment of saliva, gastric fluid and small intestinal fluid digestive model in vitro, the compositions of phenolic compounds were totally different due to biotransformation. Compared with the phenolic composition of undigested PKP, the derivatives of apigenin, quercetin and ellagitannin were still detected after simulated digestion. A decrease of antioxidant capacity on free radical in vitro was observed throughout the simulated digestion processes, corresponding to the variation in phenolic content and composition. Our results highlighted that gastrointestinal digestion process might essentially influence the absorption of polyphenols, leading to the reduction of bioavailability.


Asunto(s)
Antioxidantes/química , Antioxidantes/farmacología , Fenómenos Químicos , Pinus/anatomía & histología , Pinus/química , Polifenoles/química , Polifenoles/farmacología , Disponibilidad Biológica , Compuestos de Bifenilo/química , Líquidos Corporales/química , Depuradores de Radicales Libres/farmacología , Humanos , Fenoles/análisis , Picratos/química , Saliva/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
13.
Tree Physiol ; 38(10): 1538-1547, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30137634

RESUMEN

Trees utilize a combination of chemical and anatomical defenses against a myriad of attacking organisms. However, persistent pathogen infection that alters resource acquisition may impact growth and defense relationships, which could have consequences for tree resistance. We characterized systemic chemical and anatomical changes in jack pine (Pinus banksiana) in response to infection by the parasitic plant dwarf mistletoe (Arceuthobium americanum) and identified how the growth-defense relationship is altered due to infection severity. Our study found that the growth and defense relationship in jack pine was altered due to infection and that chemical defenses in the phloem received a relatively higher priority than radial growth and anatomical defenses. Chemical defenses in the phloem had a non-linear relationship with infection severity with increasing concentrations of monoterpenes in trees with moderate infection and decreasing concentrations at high infection. In contrast, both radial growth and vertical resin duct production decreased with increasing infection severity. While constitutive resin duct counts and many monoterpene compound concentrations were positively correlated, this relationship was not maintained in infected trees. Furthermore, radial growth and basal area increment was positively correlated with resin duct production and monoterpene concentration in non-infected trees but had fewer relationships in severely infected trees. We conclude that while both chemical and anatomical defenses may be used as indicators for potential resistance to biotic stress in pines, changes in resource allocation patterns between these defenses after infection will likely have consequences on tree resistance to subsequent biotic attacks.


Asunto(s)
Pinus/crecimiento & desarrollo , Viscaceae/fisiología , Madera/crecimiento & desarrollo , Pinus/anatomía & histología , Pinus/química , Pinus/fisiología , Enfermedades de las Plantas , Madera/anatomía & histología , Madera/química
14.
Ann Bot ; 122(2): 239-250, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29897405

RESUMEN

Background and Aims: Understanding root traits and their trade-off with other plant processes is important for understanding plant functioning in natural ecosystems as well as agricultural systems. The aim of the present study was to determine the relationship between root morphology and the hydraulic characteristics of several orders of fine roots (<2 mm) for species differing in shade tolerance (low, moderate and high). Methods: The morphological, anatomical and hydraulic traits across five distal root orders were measured in species with different levels of shade tolerance and life history strategies. The species studied were Acer negundo, Acer rubrum, Acer saccharum, Betula alleghaniensis, Betula lenta, Quercus alba, Quercus rubra, Pinus strobus and Pinus virginiana. Key Results: Compared with shade-tolerant species, shade-intolerant species produced thinner absorptive roots with smaller xylem lumen diameters and underwent secondary development less frequently, suggesting that they had shorter life spans. Shade-tolerant species had greater root specific hydraulic conductance among these roots due to having larger diameter xylems, although these roots had a lower calculated critical tension for conduit collapse. In addition, shade-intolerant species exhibited greater variation in hydraulic conductance across different root growth rings in woody transport roots of the same root order as compared with shade-tolerant species. Conclusions: Plant growth strategies were extended to include root hydraulic properties. It was found that shade intolerance in trees was associated with conservative root hydraulics but greater plasticity in number of xylem conduits and hydraulic conductance. Root traits of shade-intolerant species were consistent with the ability to proliferate roots quickly for rapid water uptake needed to support rapid shoot growth, while minimizing risk in uncertain environments.


Asunto(s)
Acer/anatomía & histología , Betula/anatomía & histología , Pinus/anatomía & histología , Transpiración de Plantas/fisiología , Quercus/anatomía & histología , Acer/fisiología , Acer/efectos de la radiación , Adaptación Fisiológica , Betula/fisiología , Betula/efectos de la radiación , Ecosistema , Luz , Pinus/fisiología , Pinus/efectos de la radiación , Raíces de Plantas/anatomía & histología , Raíces de Plantas/fisiología , Raíces de Plantas/efectos de la radiación , Quercus/fisiología , Quercus/efectos de la radiación , Árboles , Agua/metabolismo , Madera , Xilema/anatomía & histología , Xilema/fisiología , Xilema/efectos de la radiación
15.
Tree Physiol ; 38(8): 1098-1109, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29688500

RESUMEN

Understanding how climate affects xylem formation is critical for predicting the impact of future conditions on tree growth and functioning in the Mediterranean region, which is expected to face warmer and drier conditions. However, mechanisms of growth response to climate at different temporal scales are still largely unknown, being complicated by separation between spring and autumn xylogenesis (bimodal temporal pattern) in most species such as Mediterranean pines. We investigated wood anatomical characteristics and carbon stable isotope composition in Mediterranean Pinus pinea L. along tree-ring series at intra-ring resolution to assess xylem formation processes and responses to intra-annual climate variability. Xylem anatomy was strongly related to environmental conditions occurring a few months before and during the growing season, but was not affected by summer drought. In particular, the lumen diameter of the first earlywood tracheids was related to winter precipitation, whereas the size of tracheids produced later was influenced by mid-spring precipitation. Diameter of latewood tracheids was associated with precipitation in mid-autumn. In contrast, tree-ring carbon isotope composition was mostly related to climate of the previous seasons. Earlywood was likely formed using both recently and formerly assimilated carbon, while latewood relied mostly on carbon accumulated many months prior to its formation. Our integrated approach provided new evidence on the short-term and carry-over effects of climate on the bimodal temporal xylem formation in P. pinea. Investigations on different variables and time scales are necessary to disentangle the complex climate influence on tree growth processes under Mediterranean conditions.


Asunto(s)
Isótopos de Carbono/análisis , Clima , Pinus/anatomía & histología , Pinus/química , Agua/metabolismo , Estaciones del Año , Madera/anatomía & histología , Madera/química , Xilema/crecimiento & desarrollo
16.
Plant Cell Environ ; 41(7): 1551-1564, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29569276

RESUMEN

Plants close their stomata during drought to avoid excessive water loss, but species differ in respect to the drought severity at which stomata close. The stomatal closure point is related to xylem anatomy and vulnerability to embolism, but it also has implications for phloem transport and possibly phloem anatomy to allow sugar transport at low water potentials. Desiccation-tolerant plants that close their stomata at severe drought should have smaller xylem conduits and/or fewer and smaller interconduit pits to reduce vulnerability to embolism but more phloem tissue and larger phloem conduits compared with plants that avoid desiccation. These anatomical differences could be expected to increase in response to long-term reduction in precipitation. To test these hypotheses, we used tridimensional synchroton X-ray microtomograph and light microscope imaging of combined xylem and phloem tissues of 2 coniferous species: one-seed juniper (Juniperus monosperma) and piñon pine (Pinus edulis) subjected to precipitation manipulation treatments. These species show different xylem vulnerability to embolism, contrasting desiccation tolerance, and stomatal closure points. Our results support the hypothesis that desiccation tolerant plants require higher phloem transport capacity than desiccation avoiding plants, but this can be gained through various anatomical adaptations in addition to changing conduit or tissue size.


Asunto(s)
Juniperus/anatomía & histología , Floema/anatomía & histología , Pinus/anatomía & histología , Árboles/anatomía & histología , Xilema/anatomía & histología , Deshidratación , Juniperus/fisiología , Juniperus/ultraestructura , Microscopía , Floema/fisiología , Floema/ultraestructura , Pinus/fisiología , Pinus/ultraestructura , Estomas de Plantas/fisiología , Estomas de Plantas/ultraestructura , Árboles/fisiología , Árboles/ultraestructura , Microtomografía por Rayos X , Xilema/fisiología , Xilema/ultraestructura
17.
Sci Rep ; 8(1): 2960, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29440663

RESUMEN

Plant roots are a highly heterogeneous and hierarchical system. Although the root-order method is superior to the root diameter method for revealing differences in the morphology and physiology of fine roots, its complex partitioning limits its application. Whether root order can be determined by partitioning the main root based on its diameter remains uncertain. Four methods were employed for studying the morphological characteristics of seedling roots of two Pinus species in a natural and nitrogen-enriched environment. The intrinsic relationships among categories of roots by root order and diameter were systematically compared to explore the possibility of using the latter to describe root morphology. The normal transformation method proved superior to the other three in that the diameter intervals corresponded most closely (at least 68.3%) to the morphological characteristics. The applied methods clearly distinguished the results from the natural and nitrogen-rich environments. Considering both root diameter and order simplified the classification of fine roots, and improved the estimation of root lifespan and the data integrity of field collection, but failed to partition all roots into uniform diameter intervals.


Asunto(s)
Biología Computacional/métodos , Raíces de Plantas/anatomía & histología , Raíces de Plantas/clasificación , Pinus/anatomía & histología , Pinus/clasificación
18.
BMC Ecol ; 18(1): 9, 2018 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-29454355

RESUMEN

BACKGROUND: Mixed forests are believed to enhance ecosystem functioning and sustainability due to complementary resource use, environmental benefits and improved soil properties. The facilitation between different species may induce overyielding. Meanwhile, the species-specific fine root foraging strategies and tradeoffs would determine the structure and dynamics of plant communities. Here the aim was to investigate the admixing effects of fine-root biomass, vertical distribution and morphology in Pinus massoniana-Cinnamomum camphora mixed plantations and corresponding monocultures at 10-, 24- and 45-year old stands. RESULTS: The fine root biomass in the Pinus-Cinnamomum mixed forest exerted a certain degree of overyielding effect. These positive admixing effects, however, did not enhance with forest stand development. The overall relative yield total ranged from 1.83 and 1.51 to 1.33 in 10-, 24- and 45-year-old stand, respectively. The overyielding was mainly attributed to the over-performance of late successional species, Cinnamomum, in mixed stands. The vertical fine root biomass distribution model showed fine roots of pioneer species, Pinus, shifted to the superficial layer when mixed with Cinnamomum. Furthermore, the specific root length (SRL) of Pinus was significantly higher in Pinus-Cinnamomum mixed stands than that in monocultures, and the magnitude of differences increased over time. However, the vertical fine-root distribution and SRL for Cinnamomum did not show significant differences between monoculture and mixtures. CONCLUSIONS: Our results indicated that the magnitude of fine root overyielding in mixed forests showed a high degree of consistency with the total amount of fine root biomass itself, suggesting the overyielding effects in mixed forests were correlated with the degree of belowground interaction and competition degree involved. The late successional species, Cinnamomum, invested more carbon to belowground by increasing the fine root biomass in mixtures. While the pioneer species, Pinus, adapted to the presence of the species Cinnamomum by modification of vertical distribution and root morphological plasticity in the mixtures. These species-specific fine root foraging strategies might imply the differences of forest growth strategies of co-occurring species and contribute to the success and failure of particular species during the succession over time.


Asunto(s)
Cinnamomum camphora/fisiología , Pinus/fisiología , Raíces de Plantas/fisiología , Biomasa , China , Cinnamomum camphora/anatomía & histología , Agricultura Forestal/métodos , Pinus/anatomía & histología , Raíces de Plantas/anatomía & histología
19.
Tree Physiol ; 38(2): 212-222, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29309674

RESUMEN

In alpine regions, tree hydraulics are limited by low temperatures that restrict xylem growth and induce winter frost drought and freezing stress. While several studies have dealt with functional limitations, data on elevational changes in functionally relevant xylem anatomical parameters are still scarce. In wood cores of Pinus cembra L. and Picea abies (L.) Karst. trunks, harvested along five elevational transects, xylem anatomical parameters (tracheid hydraulic diameter dh, wall reinforcement (t/b)2), pit dimensions (pit aperture Da, pit membrane Dm and torus Dt diameters) and respective functional indices (torus overlap O, margo flexibility) were measured. In both species, tracheid diameters decreased and (t/b)2 increased with increasing elevation, while pit dimensions and functional indices remained rather constant (P. cembra: Dt 10.3 ± 0.2 µm, O 0.477 ± 0.005; P. abies: Dt 9.30 ± 0.18 µm, O 0.492 ± 0.005). However, dh increased with tree height following a power trajectory with an exponent of 0.21, and also pit dimensions increased with tree height (exponents: Dm 0.18; Dt 0.14; Da 0.11). Observed elevational trends in xylem structures were predominantly determined by changes in tree size. Tree height-related changes in anatomical traits showed a remarkable robustness, regardless of the distributional ranges of study species. Despite increasing stress intensities towards the timberline, no adjustment in hydraulic safety at the pit level was observed.


Asunto(s)
Ambiente , Picea/anatomía & histología , Pinus/anatomía & histología , Altitud , Austria , Picea/crecimiento & desarrollo , Pinus/crecimiento & desarrollo , Madera/anatomía & histología , Xilema/anatomía & histología , Xilema/crecimiento & desarrollo
20.
Planta ; 247(1): 171-180, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28913637

RESUMEN

MAIN CONCLUSION: FTIR microspectroscopy, in combination with spectral averaging procedure, enables precise analysis of pollen grains for chemical characterization and identification studies of fresh and fossilised pollen in botany, ecology and palaeosciences. Infrared microspectroscopy (µFTIR) of Pinaceae pollen can provide valuable information on plant phenology, ecophysiology and paleoecology, but measurements are challenging, resulting in unreproducible spectra. The comparative analysis of µFTIR spectra belonging to morphologically different Pinaceae pollen, namely bisaccate Pinus and monosaccate Tsuga pollen, was conducted. The study shows that the main cause of spectral variability is non-radial symmetry of bisaccate pollen grains, while additional variation is caused by Mie scattering. Averaging over relatively small number of single pollen grain spectra (approx. 5-10) results with reproducible data on pollen chemical composition. The practical applicability of the µFTIR spectral averaging method has been demonstrated by the partial least-squares regression-based differentiation of the two closely related Pinus species with morphologically indistinguishable pollen: Pinus mugo (mountain pine) and Pinus sylvestris (Scots pine). The study has demonstrated that the µFTIR approach can be used for identification, differentiation and chemical characterization of pollen with complex morphology. The methodology enables analysis of fresh pollen, as well as fossil pollen from sediment core samples, and can be used in botany, ecology and paleoecology for study of biotic and abiotic effects on plants.


Asunto(s)
Pinaceae/química , Polen/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Botánica , Ecología , Fósiles , Análisis Multivariante , Pinaceae/anatomía & histología , Pinus/anatomía & histología , Pinus/química , Polen/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA