Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 420
Filtrar
1.
BMC Genomics ; 25(1): 694, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009985

RESUMEN

Animals plastically adjust their physiological and behavioural phenotypes to conform to their social environment-social niche conformance. The degree of sexual competition is a critical part of the social environment to which animals adjust their phenotypes, but the underlying genetic mechanisms are poorly understood. We conducted a study to investigate how differences in sperm competition risk affect the gene expression profiles of the testes and two brain areas (posterior pallium and optic tectum) in breeding male zebra finches (Taeniopygia castanotis). In this pre-registered study, we investigated a large sample of 59 individual transcriptomes. We compared two experimental groups: males held in single breeding pairs (low sexual competition) versus those held in two pairs (elevated sexual competition) per breeding cage. Using weighted gene co-expression network analysis (WGCNA), we observed significant effects of the social treatment in all three tissues. However, only the treatment effects found in the pallium were confirmed by an additional randomisation test for statistical robustness. Likewise, the differential gene expression analysis revealed treatment effects only in the posterior pallium (ten genes) and optic tectum (six genes). No treatment effects were found in the testis at the single gene level. Thus, our experiments do not provide strong evidence for transcriptomic adjustment specific to manipulated sperm competition risk. However, we did observe transcriptomic adjustments to the manipulated social environment in the posterior pallium. These effects were polygenic rather than based on few individual genes with strong effects. Our findings are discussed in relation to an accompanying paper using the same animals, which reports behavioural results consistent with the results presented here.


Asunto(s)
Pinzones , Transcriptoma , Animales , Masculino , Pinzones/genética , Pinzones/fisiología , Testículo/metabolismo , Perfilación de la Expresión Génica , Conducta Sexual Animal , Colículos Superiores/metabolismo , Espermatozoides/metabolismo , Conducta Social
2.
Environ Pollut ; 358: 124461, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38964643

RESUMEN

Identifying key molecular pathways and genes involved in the response to urban pollutants is an important step in furthering our understanding of the impact of urbanisation on wildlife. The expansion of urban habitats and the associated human-introduced environmental changes are considered a global threat to the health and persistence of humans and wildlife. The present study experimentally investigates how short-term exposure to three urban-related pollutants -soot, artificial light at night (ALAN) and traffic noise-affects transcriptome-wide gene expression in livers from captive female zebra finches (Taeniopygia guttata). Compared to unexposed controls, 17, 52, and 28 genes were differentially expressed in soot, ALAN and noise-exposed birds, respectively. In soot-exposed birds, the enriched gene ontology (GO) terms were associated with a suppressed immune system such as interferon regulating genes (IRGs) and responses to external stimuli. For ALAN-exposed birds, enriched GO terms were instead based on downregulated genes associated with detoxification, redox, hormonal-, and metabolic processes. Noise exposure resulted in downregulation of genes associated with the GO terms: cellular responses to substances, catabolic and cytokine responses. Among the individually differentially expressed genes (DEGs), soot led to an increased expression of genes related to tumour progression. Likewise, ALAN revealed an upregulation of multiple genes linked to different cancer types. Both sensory pollutants (ALAN and noise) led to increased expression of genes linked to neuronal function. Interestingly, noise caused upregulation of genes associated with serotonin regulation and function (SLC6A4 and HTR7), which previous studies have shown to be under selection in urban birds. These outcomes indicate that short-term exposure to the three urban pollutants perturbate the liver transcriptome, but most often in different ways, which highlights future studies of multiple-stress exposure and their interactive effects, along with their long-term impacts for urban-dwelling wildlife.


Asunto(s)
Perfilación de la Expresión Génica , Hígado , Transcriptoma , Animales , Hígado/metabolismo , Femenino , Ruido/efectos adversos , Pinzones/genética , Contaminantes Ambientales , Luz
3.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38916488

RESUMEN

Nest building is a vital behavior exhibited during breeding in birds, and is possibly induced by environmental and social cues. Although such behavioral plasticity has been hypothesized to be controlled by adult neuronal plasticity, empirical evidence, especially at the neurogenomic level, remains limited. Here, we aim to uncover the gene regulatory networks that govern avian nest construction and examine whether they are associated with circuit rewiring. We designed an experiment to dissect this complex behavior into components in response to pair bonding and nest material acquisition by manipulating the presence of mates and nest materials in 30 pairs of zebra finches. Whole-transcriptome analysis of 300 samples from five brain regions linked to avian nesting behaviors revealed nesting-associated gene expression enriched with neural rewiring functions, including neurogenesis and neuron projection. The enriched expression was observed in the motor/sensorimotor and social behavior networks of female finches, and in the dopaminergic reward system of males. Female birds exhibited predominant neurotranscriptomic changes to initiate the nesting stage, while males showed major changes after entering this stage, underscoring sex-specific roles in nesting behavior. Notably, major neurotranscriptomic changes occurred during pair bonding, with minor changes during nest material acquisition, emphasizing social interactions in nest construction. We also revealed gene expression associated with reproductive behaviors and tactile sensing for nesting behavior. This study presents novel neurogenomic evidence supporting the hypothesis of adult neural plasticity underlying avian nest-construction behavior. By uncovering the genetic toolkits involved, we offer novel insights into the evolution of animals' innate ability to construct nests.


Asunto(s)
Encéfalo , Pinzones , Redes Reguladoras de Genes , Comportamiento de Nidificación , Animales , Pinzones/genética , Pinzones/fisiología , Encéfalo/metabolismo , Encéfalo/fisiología , Femenino , Masculino , Conducta Social , Transcriptoma
4.
Nat Commun ; 15(1): 4174, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755126

RESUMEN

The transition from natal downs for heat conservation to juvenile feathers for simple flight is a remarkable environmental adaptation process in avian evolution. However, the underlying epigenetic mechanism for this primary feather transition is mostly unknown. Here we conducted time-ordered gene co-expression network construction, epigenetic analysis, and functional perturbations in developing feather follicles to elucidate four downy-juvenile feather transition events. We report that extracellular matrix reorganization leads to peripheral pulp formation, which mediates epithelial-mesenchymal interactions for branching morphogenesis. α-SMA (ACTA2) compartmentalizes dermal papilla stem cells for feather renewal cycling. LEF1 works as a key hub of Wnt signaling to build rachis and converts radial downy to bilateral symmetry. Novel usage of scale keratins strengthens feather sheath with SOX14 as the epigenetic regulator. We show that this primary feather transition is largely conserved in chicken (precocial) and zebra finch (altricial) and discuss the possibility that this evolutionary adaptation process started in feathered dinosaurs.


Asunto(s)
Pollos , Plumas , Pinzones , Animales , Plumas/crecimiento & desarrollo , Plumas/metabolismo , Pollos/genética , Pinzones/genética , Regulación del Desarrollo de la Expresión Génica , Matriz Extracelular/metabolismo , Epigénesis Genética , Redes Reguladoras de Genes , Vía de Señalización Wnt , Queratinas/metabolismo , Queratinas/genética , Evolución Biológica , Morfogénesis/genética
5.
Science ; 384(6694): 475-480, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38662819

RESUMEN

Noise pollution is expanding at an unprecedented rate and is increasingly associated with impaired reproduction and development across taxa. However, whether noise sound waves are intrinsically harmful for developing young-or merely disturb parents-and the fitness consequences of early exposure remain unknown. Here, by only manipulating the offspring, we show that sole exposure to noise in early life in zebra finches has fitness consequences and causes embryonic death during exposure. Exposure to pre- and postnatal traffic noise cumulatively impaired nestling growth and physiology and aggravated telomere shortening across life stages until adulthood. Consistent with a long-term somatic impact, early life noise exposure, especially prenatally, decreased individual offspring production throughout adulthood. Our findings suggest that the effects of noise pollution are more pervasive than previously realized.


Asunto(s)
Pinzones , Ruido , Animales , Pinzones/genética , Pinzones/crecimiento & desarrollo , Aptitud Genética , Ruido/efectos adversos , Ruido del Transporte/efectos adversos , Reproducción , Acortamiento del Telómero
6.
Comp Med ; 74(2): 115-120, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38508695

RESUMEN

The zebra finch (Taeniopygia castanotis) is a songbird sold in the pet trade and commonly used in research. In this report, we describe a set of partially overlapping traits shared by 3 birds in 2 broods from the same nest box that included atypical morphologic, developmental, and behavioral characteristics. The most obvious feature of this novel phenotype was feathers exhibiting a clumped appearance, which was accompanied by slow growth, delayed expression of adult plumage traits, and tameness, which we define as a lack of escape response upon handling without behavioral indicators of stress such as rapid breathing. Surprisingly, these birds also displayed a fatal response to nonhuman stressors. In one brood, a male expressed all of these characteristics, 2 females were wild-type, and a male sibling expressed only a hyperactive stress response but was otherwise normal. This indicates that the stress response could be inherited independently of the other abnormalities found in the male nest mate. In a second brood, a male bearing the abnormal feather phenotype behaved similarly to the male in the first brood, supporting the possibility that tameness is genetically associated with the unusual feather phenotype. The 2 other male and 2 female nest mates from this brood were behaviorally and visually normal, although the females developed slowly. Although similar traits have appeared in the aviary previously, such as slow development and small size, these are the first cases documented in detail. This correlated suite of traits suggests a linkage among altered feather growth, developmental rate, and brain and/or physiologic traits influencing normal fear and stress responses in the zebra finch. Awareness and study of the mechanism(s) linking these traits by examination of underlying genetic or environmental factors will allow a better understanding of the relationship between physical and behavioral traits in domesticated laboratory animals.


Asunto(s)
Plumas , Pinzones , Fenotipo , Animales , Masculino , Femenino , Pinzones/fisiología , Pinzones/genética , Estrés Fisiológico , Humanos , Conducta Animal
7.
Proc Biol Sci ; 291(2019): 20232796, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38531403

RESUMEN

Despite constituting an essential component of fitness, reproductive success can vary remarkably between individuals and the causes of such variation are not well understood across taxa. In the zebra finch-a model songbird, almost all the variation in sperm morphology and swimming speed is maintained by a large polymorphic inversion (commonly known as a supergene) on the Z chromosome. The relationship between this polymorphism and reproductive success is not fully understood, particularly for females. Here, we explore the effects of female haplotype, and the combination of male and female genotype, on several primary reproductive traits in a captive population of zebra finches. Despite the inversion polymorphism's known effects on sperm traits, we find no evidence that inversion haplotype influences egg production by females or survival of embryos through to hatching. However, our findings do reinforce existing evidence that the inversion polymorphism is maintained by a heterozygote advantage for male fitness. This work provides an important step in understanding the causes of variation in reproductive success in this model species.


Asunto(s)
Pinzones , Animales , Masculino , Femenino , Pinzones/genética , Semen , Espermatozoides , Reproducción , Fenotipo , Inversión Cromosómica
8.
Dev Comp Immunol ; 151: 105106, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38013114

RESUMEN

Species-specific neural inflammation can be induced by profound immune signalling from periphery to brain. Recent advances in transcriptomics offer cost-effective approaches to study this regulation. In a population of captive zebra finch (Taeniopygia guttata), we compare the differential gene expression patterns in lipopolysaccharide (LPS)-triggered peripheral inflammation revealed by RNA-seq and QuantSeq. The RNA-seq approach identified more differentially expressed genes but failed to detect any inflammatory markers. In contrast, QuantSeq results identified specific expression changes in the genes regulating inflammation. Next, we adopted QuantSeq to relate peripheral and brain transcriptomes. We identified subtle changes in the brain gene expression during the peripheral inflammation (e.g. up-regulation in AVD-like and ACOD1 expression) and detected co-structure between the peripheral and brain inflammation. Our results suggest benefits of the 3'end transcriptomics for association studies between peripheral and neural inflammation in genetically heterogeneous models and identify potential targets for the future brain research in birds.


Asunto(s)
Pinzones , Pájaros Cantores , Animales , Pájaros Cantores/genética , Transcriptoma , ARN Mensajero/metabolismo , Perfilación de la Expresión Génica , Encéfalo/metabolismo , Inflamación/genética , Inflamación/metabolismo , Pinzones/genética
9.
Evolution ; 77(12): 2533-2546, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-37671423

RESUMEN

Divergent natural selection should lead to adaptive radiation-that is, the rapid evolution of phenotypic and ecological diversity originating from a single clade. The drivers of adaptive radiation have often been conceptualized through the concept of "adaptive landscapes," yet formal empirical estimates of adaptive landscapes for natural adaptive radiations have proven elusive. Here, we use a 17-year dataset of Darwin's ground finches (Geospiza spp.) at an intensively studied site on Santa Cruz (Galápagos) to estimate individual apparent lifespan in relation to beak traits. We use these estimates to model a multi-species fitness landscape, which we also convert to a formal adaptive landscape. We then assess the correspondence between estimated fitness peaks and observed phenotypes for each of five phenotypic modes (G. fuliginosa, G. fortis [small and large morphotypes], G. magnirostris, and G. scandens). The fitness and adaptive landscapes show 5 and 4 peaks, respectively, and, as expected, the adaptive landscape was smoother than the fitness landscape. Each of the five phenotypic modes appeared reasonably close to the corresponding fitness peak, yet interesting deviations were also documented and examined. By estimating adaptive landscapes in an ongoing adaptive radiation, our study demonstrates their utility as a quantitative tool for exploring and predicting adaptive radiation.


Asunto(s)
Pinzones , Passeriformes , Animales , Pinzones/genética , Selección Genética , Fenotipo , Ecuador , Pico
10.
Science ; 381(6665): eadf6218, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37769091

RESUMEN

A fundamental goal in evolutionary biology is to understand the genetic architecture of adaptive traits. Using whole-genome data of 3955 of Darwin's finches on the Galápagos Island of Daphne Major, we identified six loci of large effect that explain 45% of the variation in the highly heritable beak size of Geospiza fortis, a key ecological trait. The major locus is a supergene comprising four genes. Abrupt changes in allele frequencies at the loci accompanied a strong change in beak size caused by natural selection during a drought. A gradual change in Geospiza scandens occurred across 30 years as a result of introgressive hybridization with G. fortis. This study shows how a few loci with large effect on a fitness-related trait contribute to the genetic potential for rapid adaptive radiation.


Asunto(s)
Adaptación Biológica , Pico , Pinzones , Introgresión Genética , Especiación Genética , Selección Genética , Animales , Pico/anatomía & histología , Ecuador , Pinzones/anatomía & histología , Pinzones/genética , Frecuencia de los Genes , Metagenómica , Sitios Genéticos
11.
Mol Ecol ; 32(17): 4911-4920, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37395529

RESUMEN

Heat waves are predicted to be detrimental for organismal physiology with costs for survival that could be reflected in markers of biological state such as telomeres. Changes in early life telomere dynamics driven by thermal stress are of particular interest during the early post-natal stages of altricial birds because nestlings quickly shift from being ectothermic to endothermic after hatching. Telomeres of ectothermic and endothermic organisms respond differently to environmental temperature, but few investigations within species that transition from ectothermy to endothermy are available. Also, ambient temperature influences parental brooding behaviour, which will alter the temperature experienced by offspring and thereby, potentially, their telomeres. We exposed zebra finch nestlings to experimental heat waves and compared their telomere dynamics to that of a control group at 5, 12 and 80 days of age that encapsulate the transition from the ectothermic to the endothermic thermoregulatory stage; we also recorded parental brooding, offspring sex, mass, growth rates, brood size and hatch order. Nestling mass showed an inverse relationship with telomere length, and nestlings exposed to heat waves showed lower telomere attrition during their first 12 days of life (ectothermic stage) compared to controls. Additionally, parents of heated broods reduced the time they spent brooding offspring (at 5 days old) compared to controls. Our results indicate that the effect of heat waves on telomere dynamics likely varies depending on age and thermoregulatory stage of the offspring in combination with parental brooding behaviour during growth.


Asunto(s)
Pinzones , Passeriformes , Animales , Calor , Passeriformes/fisiología , Regulación de la Temperatura Corporal , Telómero/genética , Pinzones/genética
12.
Dev Comp Immunol ; 144: 104704, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37019350

RESUMEN

Toll-like receptors (TLRs) form a key component of animal innate immunity, being responsible for recognition of conserved microbial structures. As such, TLRs may be subject to diversifying and balancing selection, which maintains allelic variation both within and between populations. However, most research on TLRs in non-model avian species is focused on bottlenecked populations with depleted genetic variation. Here, we assessed variation at the extracellular domains of three TLR genes (TLR1LA, TLR3, TLR4) across eleven species from two passerine families of buntings (Emberizidae) and finches (Fringillidae), all having large breeding population sizes (millions of individuals). We found extraordinary TLR polymorphism in our study taxa, with >100 alleles detected at TLR1LA and TLR4 across species and high haplotype diversity (>0.75) in several species. Despite recent species divergence, no nucleotide allelic variants were shared between species, suggesting rapid TLR evolution. Higher variation at TLR1LA and TLR4 than TLR3 was associated with a stronger signal of diversifying selection, as measured with nucleotide substitutions rates and the number of positively selected sites (PSS). Structural protein modelling of TLRs showed that some PSS detected within TLR1LA and TLR4 were previously recognized as functionally important sites or were located in their proximity, possibly affecting ligand recognition. Furthermore, we identified PSS responsible for major surface electrostatic charge clustering, which may indicate their adaptive importance. Our study provides compelling evidence for the divergent evolution of TLR genes in buntings and finches and indicates that high TLR variation may be adaptively maintained via diversifying selection acting on functional ligand binding sites.


Asunto(s)
Pinzones , Passeriformes , Animales , Receptor Toll-Like 4/genética , Pinzones/genética , Ligandos , Receptor Toll-Like 3/genética , Receptores Toll-Like/genética , Receptores Toll-Like/química , Passeriformes/genética , Evolución Molecular
13.
FASEB J ; 37(1): e22706, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36520042

RESUMEN

Primordial germ cells (PGCs) have been used in avian genetic resource conservation and transgenic animal production. Despite their potential applications to numerous avian taxa facing extinction due to habitat loss and degradation, research has largely focused on poultry, such as chickens, in part owing to the difficulty in obtaining intact PGCs from other species. Recently, phenotypic differences between PGCs of chicken and zebra finch, a wild bird with vocal learning, in early embryonic development have been reported. In this study, we used advanced single-cell RNA sequencing (scRNA-seq) technology to evaluate zebra finch and chicken PGCs and surrounding cells, and to identify species-specific characteristics. We constructed single-cell transcriptome landscapes of chicken gonadal PGCs for a comparison with previously reported scRNA-seq data for zebra finch. We identified interspecific differences in several signaling pathways in gonadal PGCs and somatic cells. In particular, NODAL and insulin signaling pathway activity levels were higher in zebra finch than in chickens, whereas activity levels of the downstream FGF signaling pathway, involved in the proliferation of chicken PGCs, were higher in chickens. This study is the first cross-species single-cell transcriptomic analysis targeting birds, revealing differences in germ cell development between phylogenetically distant Galliformes and Passeriformes. Our results provide a basis for understanding the reproductive physiology of avian germ cells and for utilizing PGCs in the restoration of endangered birds and the production of transgenic birds.


Asunto(s)
Pollos , Pinzones , Animales , Pollos/genética , Pinzones/genética , Transcriptoma , Células Germinativas , Transducción de Señal
14.
Nat Commun ; 13(1): 6033, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36229469

RESUMEN

Endogenous retroviruses (ERVs) are inherited remnants of retroviruses that colonized host germline over millions of years, providing a sampling of retroviral diversity across time. Here, we utilize the strength of Darwin's finches, a system synonymous with evolutionary studies, for investigating ERV history, revealing recent retrovirus-host interactions in natural populations. By mapping ERV variation across all species of Darwin's finches and comparing with outgroup species, we highlight geographical and historical patterns of retrovirus-host occurrence, utilizing the system for evaluating the extent and timing of retroviral activity in hosts undergoing adaptive radiation and colonization of new environments. We find shared ERVs among all samples indicating retrovirus-host associations pre-dating host speciation, as well as considerable ERV variation across populations of the entire Darwin's finches' radiation. Unexpected ERV variation in finch species on different islands suggests historical changes in gene flow and selection. Non-random distribution of ERVs along and between chromosomes, and across finch species, suggests association between ERV accumulation and the rapid speciation of Darwin's finches.


Asunto(s)
Retrovirus Endógenos , Pinzones , Passeriformes , Animales , Evolución Biológica , Ecuador , Retrovirus Endógenos/genética , Pinzones/genética , Flujo Génico , Passeriformes/genética , Filogenia
15.
Mol Ecol ; 31(21): 5552-5567, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36086992

RESUMEN

Emerging pathogens can have devastating effects on naïve hosts, but disease outcomes often vary among host species. Comparing the cellular response of different hosts to infection can provide insight into mechanisms of host defence. Here, we used RNA-seq to characterize the transcriptomic response of Darwin's finches to avian poxvirus, a disease of concern in the Galápagos Islands. We tested whether gene expression differs between infected and uninfected birds, and whether transcriptomic differences were related either to known antiviral mechanisms and/or the co-option of the host cellular environment by the virus. We compared two species, the medium ground finch (Geospiza fortis) and the vegetarian finch (Platyspiza crassirostris), to determine whether endemic Galápagos species differ in their response to pox. We found that medium ground finches had a strong transcriptomic response to infection, upregulating genes involved in the innate immune response including interferon production, inflammation, and other immune signalling pathways. In contrast, vegetarian finches had a more limited response, and some changes in this species were consistent with viral manipulation of the host's cellular function and metabolism. Many of the transcriptomic changes mirrored responses documented in model and in vitro studies of poxviruses. Our results thus indicate that many pathways of host defence against poxviruses are conserved among vertebrates and present even in hosts without a long evolutionary history with the virus. At the same time, the differences we observed between closely related species suggests that some endemic species of Galápagos finch could be more susceptible to avian pox than others.


Resumen Los patógenos emergentes pueden generar efectos devastadores en huéspedes nuevos, sin embargo, los efectos de la enfermedad varían según el tipo de huésped. Al comparar la respuesta celular de las diferentes especies afectadas se puede determinar el mecanismo de defensa del huésped, y la base de susceptibilidad a la enfermedad. A través de la secuenciación de ARN, se caracterizó la respuesta de transcripción de viruela aviar, un virus introducido, en los pinzones de Darwin. Probamos si una expresión genética difiere entre aves infectadas y no infectadas, y si la diferencia de transcripción estaba relacionada con mecanismos antivirales conocidos y/o con la co-opción del entorno celular del hospedero por parte del virus. Comparamos dos especies, pinzón mediano de tierra (Geospiza fortis) y pinzón vegetariano (Platyspiza crassirostris), para determinar si estas especies tienen variación en sus respuestas al mismo patógeno nuevo. Encontramos que el pinzón mediano de tierra presenta una fuerte respuesta de transcripción a la infección, involucrando a la regulación de genes inmunes que incluyen la producción de interferón, inflamación y otras vías de respuesta inmunológica. A diferencia del pinzón vegetariano que presenta una respuesta más limitada a la infección. Nuestros resultados revelaron evidencia de manipulación viral en la función celular del hospedador y en el metabolismo del huésped, proporcionando información sobre como la viruela aviar afecta al huésped. Varias de las respuestas de transcripción a la infección se ven reflejadas en estudios in vitro y en modelos animales, lo cual indica que muchas vías de defensa del huésped contra la viruela son conservadas en vertebrados incluso en huéspedes sin una historia evolutiva larga del virus. Al mismo tiempo, la variación que observamos entre especies estrechamente relacionadas indica que algunas especies endémicas de pinzones de Galápagos podrían ser más susceptibles a la viruela aviar que otras especies.


Asunto(s)
Pinzones , Passeriformes , Animales , Pinzones/genética , Transcriptoma/genética , Passeriformes/genética , Antivirales , Interferones/genética , Ecuador
16.
Gene ; 843: 146803, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35961439

RESUMEN

The zebra finch (Taeniopygia guttata), a representative oscine songbird species, has been widely studied to investigate behavioral neuroscience, most notably the neurobiological basis of vocal learning, a rare trait shared in only a few animal groups including humans. In 2019, an updated zebra finch genome annotation (bTaeGut1_v1.p) was released from the Ensembl database and is substantially more comprehensive than the first version published in 2010. In this study, we utilized the publicly available RNA-seq data generated from Illumina-based short-reads and PacBio single-molecule real-time (SMRT) long-reads to assess the bird transcriptome. To analyze the high-throughput RNA-seq data, we adopted a hybrid bioinformatic approach combining short and long-read pipelines. From our analysis, we added 220 novel genes and 8,134 transcript variants to the Ensembl annotation, and predicted a new proteome based on the refined annotation. We further validated 18 different novel proteins by using mass-spectrometry data generated from zebra finch caudal telencephalon tissue. Our results provide additional resources for future studies of zebra finches utilizing this improved bird genome annotation and proteome.


Asunto(s)
Pinzones , Animales , Encéfalo , Femenino , Pinzones/genética , Humanos , Masculino , Proteoma/genética , Caracteres Sexuales , Transcriptoma/genética , Vocalización Animal
17.
Cell Rep ; 40(5): 111152, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35926465

RESUMEN

We present the transcriptomic changes underlying the development of an extreme neuroanatomical sex difference. The robust nucleus of the arcopallium (RA) is a key component of the songbird vocal motor system. In zebra finch, the RA is initially monomorphic and then atrophies in females but grows up to 7-fold larger in males. Mirroring this divergence, we show here that sex-differential gene expression in the RA expands from hundreds of predominantly sex chromosome Z genes in early development to thousands of predominantly autosomal genes by the time sexual dimorphism asymptotes. Male-specific developmental processes include cell and axonal growth, synapse assembly and activity, and energy metabolism; female-specific processes include cell polarity and differentiation, transcriptional repression, and steroid hormone and immune signaling. Transcription factor binding site analyses support female-biased activation of pro-apoptotic regulatory networks. The extensive and sex-specific transcriptomic reorganization of RA provides insights into potential drivers of sexually dimorphic neurodevelopment.


Asunto(s)
Pinzones , Animales , Encéfalo/metabolismo , Femenino , Pinzones/genética , Masculino , Caracteres Sexuales , Transcriptoma/genética , Vocalización Animal/fisiología
18.
Int J Biol Macromol ; 219: 366-373, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-35931296

RESUMEN

Darwin's finches, with the primary diversity in the shape and size of their beaks, represent an excellent model system to study speciation and adaptive evolution. It is generally held that evolution depends on the natural selection of heritable phenotypic variations originating from the genetic mutations. However, it is now increasingly evident that epigenetic transgenerational inheritance of phenotypic variation can also guide evolutionary change. Several studies have shown that the bone morphogenetic protein BMP4 is a major driver of beak morphology. A recent study explored variability of the morphological, genetic, and epigenetic differences in the adjacent "urban" and "rural" populations of two species of Darwin's finches on the Galápagos Islands and revealed significant changes in methylation patterns in several genes including those involved in the BMP/TGFß pathway in the sperm DNA compared to erythrocyte DNA. These observations indicated that epigenetic changes caused by environmental fluctuations can be passed on to the offspring. Nonetheless, the mechanism by which dysregulated expression of BMP4 impacts beak morphology remains poorly understood. Here, we show that BMP4 is an intrinsically disordered protein and present a causal a link between epigenetic changes, BMP4 dysregulation and the evolution of the beak of the finch by natural selection.


Asunto(s)
Pinzones , Proteínas Intrínsecamente Desordenadas , Animales , Pico/anatomía & histología , Pico/metabolismo , Evolución Biológica , Proteínas Morfogenéticas Óseas/genética , Pinzones/anatomía & histología , Pinzones/genética , Pinzones/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Masculino , Semen/metabolismo
19.
Sci Adv ; 8(35): eabm5800, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36044564

RESUMEN

The color patterns that adorn animals' coats not only exhibit extensive diversity linked to various ecological functions but also display recurrences in geometry, orientation, or body location. How processes of pattern formation shape such phenotypic trends remains a mystery. Here, we surveyed plumage color patterns in passerine finches displaying extreme apparent variation and identified a conserved set of color domains. We linked these domains to putative embryonic skin regions instructed by early developmental tissues and outlined by the combinatory expression of few genetic markers. We found that this embryonic prepattern is largely conserved in birds displaying drastic color differences in the adult, interspecies variation resulting from the masking or display of each domain depending on their coloration. This work showed that a simple molecular landscape serves as common spatial template to extensive color pattern variation in finches, revealing that early conserved landmarks and molecular pathways are a major cause of phenotypic trends.


Asunto(s)
Pinzones , Animales , Color , Pinzones/genética
20.
Biol Aujourdhui ; 216(1-2): 41-47, 2022.
Artículo en Francés | MEDLINE | ID: mdl-35876520

RESUMEN

Small-scale evolution or microevolution concerns evolution at the intra-specific level or between closely related species. At the intra-specific level, it allows the analysis of the evolutionary forces at work: mutation, genetic drift, migration and selection. Moreover, because of the short evolutionary time, it is easier to identify the genetic basis of observed phenotypic differences. Most studies focus on current populations but more and more analyses are performed on ancient DNA. This provides important information for tracing the history of populations and also allows the reconstruction of phenotypes of individuals that disappeared several thousand years ago. In this short review, I present studies showing how pre-zygotic or post-zygotic barriers involved in species formation are set up using the example of the geographical barrier due to the formation of the Isthmus of Panama and that of the heterochromatin divergence in Drosophilidae. I also describe the different approaches that have been used to identify the genetic basis of well known phenotypic variations: candidate gene approach (about melanism in felines), QTL mapping (variation in the number of lateral bone plates in sticklebacks), association study (pigmentation in the Asian ladybird). Finally, I illustrate the key impact of natural selection with the iconic example of the evolution of the beak of Galapagos finches, and the role of certain developmental genes in its morphological diversification.


Title: L'évolution à petite échelle. Abstract: L'évolution à petite échelle ou microévolution concerne l'évolution au niveau intra-spécifique ou entre espèces proches. Au niveau intra-spécifique, elle permet d'analyser les forces évolutives en action : mutation, dérive génétique, migration et sélection. De plus, en raison de ce temps évolutif court, il est plus facile d'identifier les bases génétiques des différences phénotypiques observées. La plupart des études porte sur des populations actuelles mais de plus en plus de travaux analysent l'ADN ancien. Ces derniers apportent non seulement des informations importantes pour retracer l'histoire des populations mais permettent également de reconstituer les phénotypes d'individus disparus depuis plusieurs milliers d'années. Dans cette courte revue, je présente des travaux montrant comment se mettent en place des barrières pré-zygotiques ou post-zygotiques impliquées dans la formation d'espèces, avec l'exemple de la barrière géographique due à la formation de l'isthme de Panama et celui de la divergence de l'hétérochromatine chez les drosophilidés. Par ailleurs, à propos de cas bien établis, je décris les différentes approches qui ont été utilisées pour identifier les bases génétiques de variations phénotypiques : approche gène-candidat pour ce qui concerne le mélanisme chez les félins, cartographie QTL (Quantitative trait loci) pour la variation du nombre de plaques osseuses latérales chez les épinoches, étude d'association pour la pigmentation chez la coccinelle asiatique. Enfin, j'illustre le rôle de la sélection naturelle avec l'exemple iconique de l'évolution du bec des pinsons des Galapagos et l'implication de certains gènes du développement dans sa diversification morphologique.


Asunto(s)
Pinzones , Selección Genética , Animales , Pico/anatomía & histología , Evolución Biológica , Gatos , Evolución Molecular , Pinzones/anatomía & histología , Pinzones/genética , Variación Genética , Mutación , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA