Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.264
Filtrar
1.
Indian J Pharmacol ; 56(3): 166-171, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-39078179

RESUMEN

BACKGROUND: Azathioprine (AZA) is a widely used immunosuppressant drug. Leukopenia is a serious adverse effect of the drug which often necessitates dose reduction or drug withdrawal. Predictors of leukopenia include genetic and nongenetic factors. Genetic polymorphism of AZA-metabolizing enzyme, thiopurine S-methyltransferase (TPMT) is well established. There is inconclusive evidence about the role of Nudix hydrolase (NUDT15) gene polymorphism. This case-control study assessed the association of genetic polymorphisms of NUDT15 and TPMT with leukopenia induced by AZA. MATERIALS AND METHODS: Cases were patients on AZA who developed leukopenia (white blood cell count <4000/µl) within 1 year of treatment initiation that necessitated dose reduction or drug withdrawal. Age and gender-matched patients without leukopenia within 1 year of treatment with AZA served as controls. TPMT (3 loci: c238G to C, c460G to A, c719A to G) and NUDT15 (c 415C to T, rs116855232) genotyping were done using TPMT strip assay and polymerase chain reaction-restriction fragment length polymorphism, respectively. Genotype frequencies were noted, and the odds ratio was calculated to determine the association between genotypes and leukopenia. RESULTS: Twenty-nine subjects (15 cases and 14 controls) were enrolled. Statistically significant differences were not observed in the TPMT genotype (*1/*1 and *1/*3C) (P = 0.23) between cases and controls. NUDT15 genotypes (*1/*1 and *1/*3) (P = 0.65) also showed no statistically significant difference between cases and controls. CONCLUSION: The above genotypes do not appear to be associated with AZA-induced leukopenia in an eastern Indian population.


Asunto(s)
Azatioprina , Inmunosupresores , Leucopenia , Metiltransferasas , Pirofosfatasas , Humanos , Leucopenia/inducido químicamente , Leucopenia/genética , Azatioprina/efectos adversos , Pirofosfatasas/genética , Metiltransferasas/genética , Estudios de Casos y Controles , Femenino , Masculino , India , Adulto , Inmunosupresores/efectos adversos , Persona de Mediana Edad , Polimorfismo Genético , Genotipo , Polimorfismo de Nucleótido Simple , Adulto Joven , Hidrolasas Nudix
2.
Cells ; 13(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38994980

RESUMEN

The Ectonucleotide Pyrophosphatase/Phosphodiesterase 1 (ENPP1) ectoenzyme regulates vascular intimal proliferation and mineralization of bone and soft tissues. ENPP1 variants cause Generalized Arterial Calcification of Infancy (GACI), a rare genetic disorder characterized by ectopic calcification, intimal proliferation, and stenosis of large- and medium-sized arteries. ENPP1 hydrolyzes extracellular ATP to pyrophosphate (PPi) and AMP. AMP is the precursor of adenosine, which has been implicated in the control of neointimal formation. Herein, we demonstrate that an ENPP1-Fc recombinant therapeutic inhibits proliferation of vascular smooth muscle cells (VSMCs) in vitro and in vivo. Addition of ENPP1 and ATP to cultured VSMCs generated AMP, which was metabolized to adenosine. It also significantly decreased cell proliferation. AMP or adenosine alone inhibited VSMC growth. Inhibition of ecto-5'-nucleotidase CD73 decreased adenosine accumulation and suppressed the anti-proliferative effects of ENPP1/ATP. Addition of AMP increased cAMP synthesis and phosphorylation of VASP at Ser157. This AMP-mediated cAMP increase was abrogated by CD73 inhibitors or by A2aR and A2bR antagonists. Ligation of the carotid artery promoted neointimal hyperplasia in wild-type mice, which was exacerbated in ENPP1-deficient ttw/ttw mice. Prophylactic or therapeutic treatments with ENPP1 significantly reduced intimal hyperplasia not only in ttw/ttw but also in wild-type mice. These findings provide the first insight into the mechanism of the anti-proliferative effect of ENPP1 and broaden its potential therapeutic applications beyond enzyme replacement therapy.


Asunto(s)
5'-Nucleotidasa , Adenosina , Proliferación Celular , Músculo Liso Vascular , Miocitos del Músculo Liso , Hidrolasas Diéster Fosfóricas , Pirofosfatasas , Transducción de Señal , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Pirofosfatasas/metabolismo , Pirofosfatasas/genética , 5'-Nucleotidasa/metabolismo , 5'-Nucleotidasa/genética , Animales , Proliferación Celular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Adenosina/metabolismo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/efectos de los fármacos , Ratones , Humanos , Adenosina Monofosfato/metabolismo , Ratones Endogámicos C57BL , AMP Cíclico/metabolismo , Masculino , Calcificación Vascular/metabolismo , Calcificación Vascular/patología , Calcificación Vascular/genética
3.
Genet Test Mol Biomarkers ; 28(8): 322-327, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084859

RESUMEN

Aims: This study aimed to investigate the impact of genetic polymorphisms of thiopurine methyltransferase (TPMT) and NUDT15 on pharmacokinetics profile of mercaptopurine in healthy adults in China. Methods: Blood samples were obtained from 45 healthy adult volunteers who were administered azathioprine. Genomic DNA was extracted and sequenced for TPMT and NUDT15. The plasma concentrations of 6-mercaptopurine (6-MP) were determined by ultra-performance liquid chromatography-tandem mass spectrometry. Finally, pharmacokinetic parameters were calculated based on the time-concentration curve. Results: Among the 45 healthy adult volunteers enrolled in the study, two TPMT allelic variants and three NUDT15 allelic variants were detected. In total, six genotypes were identified, including TPMT*1/*1&NUDT15*1/*1, TPMT*1/*1&NUDT15*1/*2, TPMT*1/*1&NUDT15*1/*9, TPMT*1/*1&NUDT15*2/*5, TPMT*1/*6&NUDT15*1/*2, and TPMT*1/*3&NUDT15*1/*2. The results indicated that Area Under Curve (AUC) of 6-MP in volunteers with TPMT*1/*3&NUDT15*1/*2 and TPMT*1/*6&NUDT15*1/*2 were 1.57-1.62-fold higher than in individuals carrying the wild type (TPMT*1/*1&NUDT15*1/*1). Compared with wild type, the half-life (T1/2) of TPMT*1/*6&NUDT15*1/*2 was extended by 1.98 times, whereas T1/2 of TPMT*1/*3&NUDT15*1/*2 decreased by 67%. The maximum concentration (Cmax) of TPMT*1/*3&NUDT15*1/*2 increased significantly by 2.15-fold, whereas the corresponding clearance (CL/F) decreased significantly by 58.75%. Conclusion: The findings of this study corroborate the notion that various genotypes of TPMT and NUDT15 can impact the pharmacokinetics of mercaptopurine, potentially offering foundational insights for personalized mercaptopurine therapy.


Asunto(s)
Genotipo , Voluntarios Sanos , Mercaptopurina , Metiltransferasas , Pirofosfatasas , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Adulto , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Masculino , Mercaptopurina/farmacocinética , Mercaptopurina/metabolismo , Femenino , Alelos , Polimorfismo Genético/genética , China , Polimorfismo de Nucleótido Simple/genética , Pueblo Asiatico/genética , Adulto Joven , Persona de Mediana Edad , Azatioprina/farmacocinética , Azatioprina/metabolismo , Hidrolasas Nudix
4.
Pharmacogenomics J ; 24(4): 20, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38906864

RESUMEN

Thiopurines, an effective therapy for Crohn's disease (CD), often lead to adverse events (AEs). Gene polymorphisms affecting thiopurine metabolism may predict AEs. This retrospective study in CD patients (n = 114) with TPMT activity > 5 Units/Red Blood Cells analyzed TPMT (c.238 G > C, c.460 G > A, c.719 A > G), ITPA (c.94 C > A, IVS2 + 21 A > C), and NUDT15 (c.415 C > T) polymorphisms. All patients received azathioprine (median dose 2.2 mg/kg) with 41.2% experiencing AEs, mainly myelotoxicity (28.1%). No NUDT15 polymorphisms were found, 7% had TPMT, and 31.6% had ITPA polymorphisms. AEs led to therapy modifications in 41.2% of patients. Multivariate analysis identified advanced age (OR 1.046, p = 0.007) and ITPA IVS2 + 21 A > C (OR 3.622, p = 0.015) as independent predictors of AEs. IVS2 + 21 A > C was also associated with myelotoxicity (OR 2.863, p = 0.021). These findings suggest that ITPA IVS2 + 21 A > C polymorphism and advanced age predict AEs during thiopurine therapy for CD with intermediate-normal TPMT activity.


Asunto(s)
Azatioprina , Enfermedad de Crohn , Metiltransferasas , Pirofosfatasas , Humanos , Enfermedad de Crohn/genética , Enfermedad de Crohn/tratamiento farmacológico , Pirofosfatasas/genética , Femenino , Masculino , Adulto , Estudios Retrospectivos , Azatioprina/efectos adversos , Azatioprina/uso terapéutico , Metiltransferasas/genética , Persona de Mediana Edad , Adulto Joven , Inmunosupresores/efectos adversos , Inmunosupresores/uso terapéutico , Adolescente , Variantes Farmacogenómicas/genética , Polimorfismo de Nucleótido Simple/genética , Polimorfismo Genético/genética , Mercaptopurina/efectos adversos , Mercaptopurina/uso terapéutico , Análisis Multivariante , Anciano , Factores de Riesgo , Hidrolasas Nudix , Inosina Trifosfatasa
5.
Appl Environ Microbiol ; 90(7): e0081424, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38888337

RESUMEN

Tetrahydrofolate is a cofactor involved in C1 metabolism including biosynthesis pathways for adenine and serine. In the classical tetrahydrofolate biosynthesis pathway, the steps removing three phosphate groups from the precursor 7,8-dihydroneopterin triphosphate (DHNTP) remain unclear in many bacteria. DHNTP pyrophosphohydrolase hydrolyzes pyrophosphate from DHNTP and produces 7,8-dihydroneopterin monophosphate. Although two structurally distinct DHNTP pyrophosphohydrolases have been identified in the intestinal bacteria Lactococcus lactis and Escherichia coli, the distribution of their homologs is limited. Here, we aimed to identify a third DHNTP pyrophosphohydrolase gene in the intestinal lactic acid bacterium Limosilactobacillus reuteri. In a gene operon including genes involved in dihydrofolate biosynthesis, we focused on the lreu_1276 gene, annotated as Ham1 family protein or XTP/dITP diphosphohydrolase, as a candidate encoding DHNTP pyrophosphohydrolase. The Lreu_1276 recombinant protein was prepared using E. coli and purified. Biochemical analyses of the reaction product revealed that the Lreu_1276 protein displays significant pyrophosphohydrolase activity toward DHNTP. The optimal reaction temperature and pH were 35°C and around 7, respectively. Substrate specificity was relatively strict among 17 tested compounds. Although previously characterized DHNTP pyrophosphohydrolases prefer Mg2+, the Lreu_1276 protein exhibited maximum activity in the presence of Mn2+, with a specific activity of 28.2 ± 2.0 µmol min-1 mg-1 in the presence of 1 mM Mn2+. The three DHNTP pyrophosphohydrolases do not share structural similarity to one another, and the distribution of their homologs does not overlap, implying that the Lreu_1276 protein represents a third structurally novel DHNTP pyrophosphohydrolase in bacteria. IMPORTANCE: The identification of a structurally novel DHNTP pyrophosphohydrolase in L. reuteri provides valuable information in understanding tetrahydrofolate biosynthesis in bacteria that possess lreu_1276 homologs. Interestingly, however, even with the identification of a third family of DHNTP pyrophosphohydrolases, there are still a number of bacteria that do not harbor homologs for any of the three genes while possessing other genes involved in the biosynthesis of the pterin ring structure. This suggests the presence of an unrecognized DHNTP pyrophosphohydrolase gene in bacteria. As humans do not harbor DHNTP pyrophosphohydrolase, the high structural diversity of enzymes responsible for a reaction in tetrahydrofolate biosynthesis may provide an advantage in designing inhibitors targeting a specific group of bacteria in the intestinal microbiota.


Asunto(s)
Proteínas Bacterianas , Limosilactobacillus reuteri , Pirofosfatasas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Limosilactobacillus reuteri/genética , Limosilactobacillus reuteri/enzimología , Limosilactobacillus reuteri/metabolismo , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Pterinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Neopterin/análogos & derivados
6.
Int J Mol Sci ; 25(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38891956

RESUMEN

Regulatory cystathionine ß-synthase (CBS) domains are widespread in proteins; however, difficulty in structure determination prevents a comprehensive understanding of the underlying regulation mechanism. Tetrameric microbial inorganic pyrophosphatase containing such domains (CBS-PPase) is allosterically inhibited by AMP and ADP and activated by ATP and cell alarmones diadenosine polyphosphates. Each CBS-PPase subunit contains a pair of CBS domains but binds cooperatively to only one molecule of the mono-adenosine derivatives. We used site-directed mutagenesis of Desulfitobacterium hafniense CBS-PPase to identify the key elements determining the direction of the effect (activation or inhibition) and the "half-of-the-sites" ligand binding stoichiometry. Seven amino acid residues were selected in the CBS1 domain, based on the available X-ray structure of the regulatory domains, and substituted by alanine and other residues. The interaction of 11 CBS-PPase variants with the regulating ligands was characterized by activity measurements and isothermal titration calorimetry. Lys100 replacement reversed the effect of ADP from inhibition to activation, whereas Lys95 and Gly118 replacements made ADP an activator at low concentrations but an inhibitor at high concentrations. Replacement of these residues for alanine increased the stoichiometry of mono-adenosine phosphate binding by twofold. These findings identified several key protein residues and suggested a "two non-interacting pairs of interacting regulatory sites" concept in CBS-PPase regulation.


Asunto(s)
Cistationina betasintasa , Cistationina betasintasa/metabolismo , Cistationina betasintasa/química , Cistationina betasintasa/genética , Mutación , Unión Proteica , Mutagénesis Sitio-Dirigida , Nucleótidos de Adenina/metabolismo , Nucleótidos de Adenina/química , Dominios Proteicos , Pirofosfatasas/metabolismo , Pirofosfatasas/química , Pirofosfatasas/genética , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Pirofosfatasa Inorgánica/metabolismo , Pirofosfatasa Inorgánica/química , Pirofosfatasa Inorgánica/genética , Modelos Moleculares , Sitios de Unión
7.
Bioorg Med Chem Lett ; 110: 129820, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38851358

RESUMEN

The STING (stimulator of interferon genes) pathway is one of the pathways that regulate innate immunity, and the extracellular hydrolytic enzyme ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) has been identified as its dominant negative regulator. Since activation of the innate immune system is a promising strategy for the treatment of various infectious diseases and cancers, ENPP1 inhibitors have attracted great attention as candidate drugs. We have previously identified small-molecule ENPP1 inhibitors having a [1,2,4]triazolo[1,5-a]pyrimidine scaffold by means of chemical screening using a fluorescence probe, TG-mAMP. In this study, we evaluated the structure-activity relationships of the hit and lead compounds in detail, and succeeded in developing compounds that strongly and selectively inhibit ENPP1 not only in vitro, but also in cellular systems.


Asunto(s)
Hidrolasas Diéster Fosfóricas , Pirimidinas , Pirofosfatasas , Relación Estructura-Actividad , Hidrolasas Diéster Fosfóricas/metabolismo , Humanos , Pirimidinas/química , Pirimidinas/farmacología , Pirimidinas/síntesis química , Pirofosfatasas/antagonistas & inhibidores , Pirofosfatasas/metabolismo , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Estructura Molecular , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química
8.
mBio ; 15(8): e0108424, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38940614

RESUMEN

Inositol pyrophosphate 1,5-IP8 regulates expression of a fission yeast phosphate homeostasis regulon, comprising phosphate acquisition genes pho1, pho84, and tgp1, via its action as an agonist of precocious termination of transcription of the upstream lncRNAs that repress PHO mRNA synthesis. 1,5-IP8 levels are dictated by a balance between the Asp1 N-terminal kinase domain that converts 5-IP7 to 1,5-IP8 and three inositol pyrophosphatases-the Asp1 C-terminal domain (a histidine acid phosphatase), Siw14 (a cysteinyl-phosphatase), and Aps1 (a Nudix enzyme). In this study, we report the biochemical and genetic characterization of Aps1 and an analysis of the effects of Asp1, Siw14, and Aps1 mutations on cellular inositol pyrophosphate levels. We find that Aps1's substrate repertoire embraces inorganic polyphosphates, 5-IP7, 1-IP7, and 1,5-IP8. Aps1 displays a ~twofold preference for hydrolysis of 1-IP7 versus 5-IP7 and aps1∆ cells have twofold higher levels of 1-IP7 vis-à-vis wild-type cells. While neither Aps1 nor Siw14 is essential for growth, an aps1∆ siw14∆ double mutation is lethal on YES medium. This lethality is a manifestation of IP8 toxicosis, whereby excessive 1,5-IP8 drives derepression of tgp1, leading to Tgp1-mediated uptake of glycerophosphocholine. We were able to recover an aps1∆ siw14∆ mutant on ePMGT medium lacking glycerophosphocholine and to suppress the severe growth defect of aps1∆ siw14∆ on YES by deleting tgp1. However, the severe growth defect of an aps1∆ asp1-H397A strain could not be alleviated by deleting tgp1, suggesting that 1,5-IP8 levels in this double-pyrophosphatase mutant exceed a threshold beyond which overzealous termination affects other genes, which results in cytotoxicity. IMPORTANCE: Repression of the fission yeast PHO genes tgp1, pho1, and pho84 by lncRNA-mediated interference is sensitive to changes in the metabolism of 1,5-IP8, a signaling molecule that acts as an agonist of precocious lncRNA termination. 1,5-IP8 is formed by phosphorylation of 5-IP7 and catabolized by inositol pyrophosphatases from three distinct enzyme families: Asp1 (a histidine acid phosphatase), Siw14 (a cysteinyl phosphatase), and Aps1 (a Nudix hydrolase). This study entails a biochemical characterization of Aps1 and an analysis of how Asp1, Siw14, and Aps1 mutations impact growth and inositol pyrophosphate pools in vivo. Aps1 catalyzes hydrolysis of inorganic polyphosphates, 5-IP7, 1-IP7, and 1,5-IP8 in vitro, with a ~twofold preference for 1-IP7 over 5-IP7. aps1∆ cells have twofold higher levels of 1-IP7 than wild-type cells. An aps1∆ siw14∆ double mutation is lethal because excessive 1,5-IP8 triggers derepression of tgp1, leading to toxic uptake of glycerophosphocholine.


Asunto(s)
Pirofosfatasas , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/enzimología , Schizosaccharomyces/metabolismo , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Pirofosfatasa Inorgánica/metabolismo , Pirofosfatasa Inorgánica/genética , Fosfatos de Inositol/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Regulación Fúngica de la Expresión Génica , Mutación , Hidrolasas Nudix , Enzimas Multifuncionales
9.
Adv Sci (Weinh) ; 11(31): e2401634, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38888507

RESUMEN

Radiation enteritis is the most common complication of pelvic radiotherapy, but there is no effective prevention or treatment drug. Apoptotic T cells and their products play an important role in regulating inflammation and maintaining physiological immune homeostasis. Here it is shown that systemically infused T cell-derived apoptotic extracellular vesicles (ApoEVs) can target mice irradiated intestines and alleviate radiation enteritis. Mechanistically, radiation elevates the synthesis of intestinal 2'3' cyclic GMP-AMP (cGAMP) and activates cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) proinflammatory pathway. After systemic infusion of ApoEVs, the ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) enriches on the surface of ApoEVs hydrolyze extracellular cGAMP, resulting in inhibition of the cGAS-STING pathway activated by irradiation. Furthermore, after ApoEVs are phagocytosed by phagocytes, ENPP1 on ApoEVs hydrolyzed intracellular cGAMP, which serves as an intracellular cGAMP hydrolyzation mode, thereby alleviating radiation enteritis. The findings shed light on the intracellular and extracellular hydrolysis capacity of ApoEVs and their role in inflammation regulation.


Asunto(s)
Apoptosis , Enteritis , Vesículas Extracelulares , Nucleótidos Cíclicos , Hidrolasas Diéster Fosfóricas , Pirofosfatasas , Hidrolasas Diéster Fosfóricas/metabolismo , Vesículas Extracelulares/metabolismo , Animales , Ratones , Enteritis/metabolismo , Pirofosfatasas/metabolismo , Nucleótidos Cíclicos/metabolismo , Linfocitos T/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Traumatismos por Radiación/metabolismo , Hidrólisis
10.
BMC Oral Health ; 24(1): 659, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840172

RESUMEN

BACKGROUND: Peri-implantitis (PI) is a frequent inflammatory disorder characterised by progressive loss of the supporting bone. Not all patients with recognised risk factors develop PI. The aim of this study is to evaluate the presence of single nucleotide polymorphisms (SNP) of inflammatory and bone metabolism related proteins in a population treated with dental implants from the Basque Country (Spain). METHODS: We included 80 patients with diagnosis of PI and 81 patients without PI, 91 women and 70 men, with a mean age of 60.90 years. SNPs of BMP-4, BRINP3, CD14, FGF-3, FGF-10, GBP-1, IL-1α, IL-1ß, IL-10, LTF, OPG and RANKL proteins were selected. We performed a univariate and bivariate analysis using IBM SPSS® v.28 statistical software. RESULTS: Presence of SNPs GBP1 rs7911 (p = 0.041) and BRINP3 rs1935881 (p = 0.012) was significantly more common in patients with PI. Patients with PI who smoked (> 10 cig/day) showed a higher presence of OPG rs2073617 SNP (p = 0.034). Also, BMP-4 rs17563 (p = 0.018) and FGF-3 rs1893047 (p = 0.014) SNPs were more frequent in patients with PI and Type II diabetes mellitus. CONCLUSIONS: Our findings suggest that PI could be favoured by an alteration in the osseointegration of dental implants, based on an abnormal immunological response to peri-implant infection in patients from the Basque Country (Spain).


Asunto(s)
Implantes Dentales , Periimplantitis , Polimorfismo de Nucleótido Simple , Humanos , Masculino , Femenino , Estudios de Casos y Controles , Persona de Mediana Edad , España , Periimplantitis/genética , Osteoprotegerina/genética , Anciano , Proteína Morfogenética Ósea 4/genética , Proteínas de Unión al GTP/genética , Ligando RANK/genética , Interleucina-1alfa/genética , Hidrolasas Diéster Fosfóricas , Pirofosfatasas
11.
In Vivo ; 38(4): 2041-2048, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38936894

RESUMEN

BACKGROUND/AIM: Hematotoxicity is a life-threatening condition that has become the major cause of drug discontinuation in patients with acute lymphoblastic leukemia (ALL). The nudix hydrolase 15 (NUDT15) gene polymorphism (c.415C>T) is reported to have an association with the hematotoxicity of 6-mercaptopurine (6-MP) as maintenance therapy in patients with ALL. However, the prevalence of this genetic polymorphism in the Indonesian population is unknown. This study aimed to assess the frequency of NUDT15 polymorphism among Indonesian pediatric patients with ALL and its association with the hematotoxicity of 6-MP. PATIENTS AND METHODS: A total of 101 stored DNA samples from pediatric patients with ALL receiving 6-MP treatment were used for genetic testing. Direct sequencing was conducted to determine the NUDT15 c.415C>T genotype. Chi-square or Fisher's exact test were employed to examine the association between the NUDT15 c.415C>T genotype and hematotoxicity. RESULTS: All (100%) of the DNA samples from patients with ALL treated with 6-MP exhibited a homozygous variant of the NUDT15 c.415C>T genotype, 70.3% of which showed hematotoxicity to some extent. We found no significant differences in NUDT15 gene polymorphism among patients with ALL with different states of hematotoxicity. CONCLUSION: The observed high frequency of NUDT15 c.415C>T in our study population might explain the elevated prevalence of 6-MP-associated hematotoxicity in pediatric patients with ALL within the Indonesian population. Our study provides new insight regarding the NUDT15 gene polymorphism and its relation to hematotoxicity. Further studies are required to determine the necessity of adjusting the initial dose of 6-MP for Indonesian pediatric patients with ALL.


Asunto(s)
Mercaptopurina , Hidrolasas Nudix , Leucemia-Linfoma Linfoblástico de Células Precursoras , Pirofosfatasas , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Alelos , Antimetabolitos Antineoplásicos/efectos adversos , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genotipo , Indonesia/epidemiología , Mercaptopurina/efectos adversos , Hidrolasas Nudix/genética , Polimorfismo de Nucleótido Simple , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Pirofosfatasas/genética
12.
Sci Rep ; 14(1): 13139, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849394

RESUMEN

The enzyme dUTPase has an essential role in maintaining genomic integrity. In mouse, nuclear and mitochondrial isoforms of the enzyme have been described. Here we present the isoform-specific mRNA expression levels in different murine organs during development using RT-qPCR. In this study, we analyzed organs of 14.5-day embryos and of postnatal 2-, 4-, 10-week- and 13-month-old mice. We demonstrate organ-, sex- and developmental stage-specific differences in the mRNA expression levels of both isoforms. We found high mRNA expression level of the nuclear isoform in the embryo brain, and the expression level remained relatively high in the adult brain as well. This was surprising, since dUTPase is known to play an important role in proliferating cells, and mass production of neural cells is completed by adulthood. Thus, we investigated the pattern of the dUTPase protein expression specifically in the adult brain with immunostaining and found that dUTPase is present in the germinative zones, the subventricular and the subgranular zones, where neurogenesis occurs and in the rostral migratory stream where neuroblasts migrate to the olfactory bulb. These novel findings suggest that dUTPase may have a role in cell differentiation and indicate that accurate dTTP biosynthesis can be vital, especially in neurogenesis.


Asunto(s)
Encéfalo , Neurogénesis , Pirofosfatasas , Animales , Pirofosfatasas/metabolismo , Pirofosfatasas/genética , Ratones , Femenino , Masculino , Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , ARN Mensajero/genética , ARN Mensajero/metabolismo
13.
Cell Rep ; 43(5): 114209, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38749434

RESUMEN

2'3'-Cyclic guanosine monophosphate (GMP)-AMP (cGAMP) is a second messenger synthesized upon detection of cytosolic double-stranded DNA (dsDNA) and passed between cells to facilitate downstream immune signaling. Ectonucleotide pyrophosphatase phosphodiesterase I (ENPP1), an extracellular enzyme, was the only metazoan hydrolase known to regulate cGAMP levels to dampen anti-cancer immunity. Here, we uncover ENPP3 as the second and likely the only other metazoan cGAMP hydrolase under homeostatic conditions. ENPP3 has a tissue expression pattern distinct from ENPP1's and accounts for all cGAMP hydrolysis activity in ENPP1-deficient mice. Importantly, we also show that, as with ENPP1, selectively abolishing ENPP3's cGAMP hydrolysis activity results in diminished cancer growth and metastasis of certain tumor types in a stimulator of interferon genes (STING)-dependent manner. Both ENPP1 and ENPP3 are extracellular enzymes, suggesting the dominant role that extracellular cGAMP must play as a mediator of cell-cell innate immune communication. Our work demonstrates that ENPP1 and ENPP3 non-redundantly dampen extracellular cGAMP-STING signaling, pointing to ENPP3 as a target for cancer immunotherapy.


Asunto(s)
Inmunidad Innata , Proteínas de la Membrana , Nucleótidos Cíclicos , Hidrolasas Diéster Fosfóricas , Pirofosfatasas , Animales , Nucleótidos Cíclicos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Ratones , Proteínas de la Membrana/metabolismo , Pirofosfatasas/metabolismo , Pirofosfatasas/genética , Humanos , Ratones Endogámicos C57BL , Hidrólisis , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología , Transducción de Señal
14.
Cell Death Differ ; 31(8): 1044-1056, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38762596

RESUMEN

Adipogenesis significantly contributes to healthy adipose tissue expansion in obesity. Increasing adipocyte number or function to alleviate adipose tissue overload could serve as a therapeutic strategy for both lipodystrophy and obesity-related metabolic syndrome. Inorganic pyrophosphatase (PPA1) is an enzyme that catalyzes the hydrolysis of pyrophosphate (PPi) and is involved in many biochemical reactions, but its function in adipose tissue has not been studied previously. In this study, we demonstrated that adipose-specific PPA1 knockout (PPA1AKO) mice showed lipodystrophy and spontaneously developed hepatic steatosis and severe insulin resistance under normal chow diet feeding. PPA1 deficiency suppressed the differentiation of primary adipocyte precursors and 3T3-L1 cells. Notably, PPA1 overexpression can restore inhibited adipogenesis in preadipocytes isolated from db/db mice and type 2 diabetes patients. Mechanistic studies have revealed that PPA1 acts as a positive regulator of early adipocyte differentiation by promoting CCAAT/enhancer-binding proteinß and δ (C/EBPß and δ) protein stability. Moreover, the function of PPA1 in adipogenesis is independent of its PPi catalytic activity. Collectively, our in vivo and in vitro findings demonstrated that PPA1 is a novel critical upstream regulator of adipogenesis, controlling adipose tissue development and whole-body metabolic homeostasis.


Asunto(s)
Células 3T3-L1 , Adipogénesis , Proteínas Potenciadoras de Unión a CCAAT , Animales , Ratones , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Humanos , Ratones Noqueados , Adipocitos/metabolismo , Adipocitos/citología , Diferenciación Celular , Ratones Endogámicos C57BL , Masculino , Pirofosfatasas/metabolismo , Pirofosfatasas/genética , Resistencia a la Insulina , Obesidad/metabolismo , Obesidad/patología , Estabilidad Proteica
15.
Bone ; 186: 117136, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38806089

RESUMEN

Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) codes for a type 2 transmembrane glycoprotein which hydrolyzes extracellular phosphoanhydrides into bio-active molecules that regulate, inter alia, ectopic mineralization, bone formation, vascular endothelial proliferation, and the innate immune response. The clinical phenotypes produced by ENPP1 deficiency are disparate, ranging from life-threatening arterial calcifications to cutaneous hypopigmentation. To investigate associations between disease phenotype and enzyme activity we quantified the enzyme velocities of 29 unique ENPP1 pathogenic variants in 41 patients enrolled in an NIH study along with 33 other variants reported in literature. We correlated the relative enzyme velocities with the presenting clinical diagnoses, performing the catalytic velocity measurements simultaneously in triplicate using a high-throughput assay to reduce experimental variation. We found that ENPP1 variants associated with autosomal dominant phenotypes reduced enzyme velocities by 50 % or more, whereas variants associated with insulin resistance had non-significant effects on enzyme velocity. In Cole disease the catalytic velocities of ENPP1 variants associated with AD forms trended to lower values than those associated with autosomal recessive forms - 8-32 % vs. 33 % of WT, respectively. Additionally, ENPP1 variants leading to life-threatening vascular calcifications in GACI patients had widely variable enzyme activities, ranging from no significant differences compared to WT to the complete abolishment of enzyme velocity. Finally, disease severity in GACI did not correlate with the mean enzyme velocity of the variants present in affected compound heterozygotes but did correlate with the more severely damaging variant. In summary, correlation of ENPP1 enzyme velocity with disease phenotypes demonstrate that enzyme velocities below 50 % of WT levels are likely to occur in the context of autosomal dominant disease (due to a monoallelic variant), and that disease severity in GACI infants correlates with the more severely damaging ENPP1 variant in compound heterozygotes, not the mean velocity of the pathogenic variants present.


Asunto(s)
Fenotipo , Hidrolasas Diéster Fosfóricas , Pirofosfatasas , Pirofosfatasas/genética , Humanos , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Femenino , Variación Genética , Masculino , Mutación/genética
16.
Expert Rev Mol Diagn ; 24(5): 459-466, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38756100

RESUMEN

BACKGROUND: Breast cancer (BC) is the leading cause of cancer death among women worldwide. The nudix hydrolase 17 (NUDT17) may play notable roles in cancer growth and metastasis. In this study, we explored the importance of NUDT17 gene polymorphism in patients with BC. METHODS: In our study, 563 BC patients and 552 healthy controls participated. We used logistic regression analysis to calculate odds ratios (OR) and 95% confidence intervals (CI), and multifactor dimension reduction (MDR) analysis of SNP-SNP interactions. Finally, UALCAN and THPA databases were used for bioinformatics analysis. RESULTS: The rs9286836 G allele was associated with a decreased the BC risk (p = 0.022), and the carriers of rs2004659 G allele had a 32% decreased risk of BC than individuals with allele A (p = 0.004). In the four genetic models, rs9286836 and rs2004659 reduced the risk of BC. Additionally, we found that the NUDT17 SNPs were associated with BC risk under age, tumor size, and clinical stage stratification. The MDR analysis showed that the five-locus interaction model was the best in the multi-locus model. CONCLUSION: Our study found that NUDT17 single nucleotide polymorphisms are associated with BC susceptibility in Chinese Han population.


Asunto(s)
Neoplasias de la Mama , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Pirofosfatasas , Humanos , Neoplasias de la Mama/genética , Femenino , Persona de Mediana Edad , Pirofosfatasas/genética , Alelos , Adulto , Estudios de Casos y Controles , Genotipo , Oportunidad Relativa , Estudios de Asociación Genética , Anciano , Factores de Riesgo
17.
Nucleic Acids Res ; 52(11): 6532-6542, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38738661

RESUMEN

Cancer cells produce vast quantities of reactive oxygen species, leading to the accumulation of toxic nucleotides as 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP). The human MTH1 protein catalyzes the hydrolysis of 8-oxo-dGTP, and cancer cells are dependent on MTH1 for their survival. MTH1 inhibitors are possible candidates for a class of anticancer drugs; however, a reliable screening system using live cells has not been developed. Here we report a visualization method for 8-oxo-dGTP and its related nucleotides in living cells. Escherichia coli MutT, a functional homologue of MTH1, is divided into the N-terminal (1-95) and C-terminal (96-129) parts (Mu95 and 96tT, respectively). Mu95 and 96tT were fused to Ash (assembly helper tag) and hAG (Azami Green), respectively, to visualize the nucleotides as fluorescent foci formed upon the Ash-hAG association. The foci were highly increased when human cells expressing Ash-Mu95 and hAG-96tT were treated with 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) and 8-oxo-dGTP. The foci formation by 8-oxo-dG(TP) was strikingly enhanced by the MTH1 knockdown. Moreover, known MTH1 inhibitors and oxidizing reagents also increased foci. This is the first system that visualizes damaged nucleotides in living cells, provides an excellent detection method for the oxidized nucleotides and oxidative stress, and enables high throughput screening for MTH1 inhibitors.


Asunto(s)
Nucleótidos de Desoxiguanina , Pirofosfatasas , Humanos , Nucleótidos de Desoxiguanina/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Nucleótidos de Guanina/metabolismo , Oxidación-Reducción , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores
18.
DNA Repair (Amst) ; 139: 103693, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38776712

RESUMEN

MutT proteins belong to the Nudix hydrolase superfamily that includes a diverse group of Mg2+ requiring enzymes. These proteins use a generalized substrate, nucleoside diphosphate linked to a chemical group X (NDP-X), to produce nucleoside monophosphate (NMP) and the moiety X linked with phosphate (XP). E. coli MutT (EcoMutT) and mycobacterial MutT1 (MsmMutT1) belong to the Nudix hydrolase superfamily that utilize 8-oxo-(d)GTP (referring to both 8-oxo-GTP or 8-oxo-dGTP). However, predominant products of their activities are different. While EcoMutT produces 8-oxo-(d)GMP, MsmMutT1 gives rise to 8-oxo-(d)GDP. Here, we show that the altered cleavage specificities of the two proteins are largely a consequence of the variation at the equivalent of Gly37 (G37) in EcoMutT to Lys (K65) in the MsmMutT1. Remarkably, mutations of G37K (EcoMutT) and K65G (MsmMutT1) switch their cleavage specificities to produce 8-oxo-(d)GDP, and 8-oxo-(d)GMP, respectively. Further, a time course analysis using 8-oxo-GTP suggests that MsmMutT1(K65G) hydrolyses 8-oxo-(d)GTP to 8-oxo-(d)GMP in a two-step reaction via 8-oxo-(d)GDP intermediate. Expectedly, unlike EcoMutT (G37K) and MsmMutT1, EcoMutT and MsmMutT1 (K65G) rescue an E. coli ΔmutT strain, better by decreasing A to C mutations.


Asunto(s)
Nucleótidos de Desoxiguanina , Proteínas de Escherichia coli , Escherichia coli , Mycobacterium smegmatis , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Especificidad por Sustrato , Nucleótidos de Desoxiguanina/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Sustitución de Aminoácidos , Pirofosfatasas/metabolismo , Pirofosfatasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/análogos & derivados
19.
BMC Med Genomics ; 17(1): 143, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789983

RESUMEN

BACKGROUND: Therapy with anti-cancer drugs remain the cornerstone of treating cancer. The effectiveness and safety of anti-cancer drugs vary significantly among individuals due to genetic factors influencing the drug response and metabolism. Data on the pharmacogenomic variations in Sri Lankans related to anti-cancer therapy is sparse. As current treatment guidelines in Sri Lanka often do not consider local pharmacogenomic variants, this study aimed to explore the diversity of pharmacogenomic variants in the Sri Lankan population to pave the way for personalized treatment approaches and improve patient outcomes. METHODS: Pharmacogenomic data regarding variant-drug pairs of genes CYP2D6, DPYD, NUDT15, EPAS1, and XRCC1 with clinical annotations labelled as evidence levels 1A-2B were obtained from the Pharmacogenomics Knowledgebase database. Their frequencies in Sri Lankans were obtained from an anonymized database that was derived from 541 Sri Lankans who underwent exome sequencing at the Human Genetics Unit, Faculty of Medicine, University of Colombo. Variations in DPYD, NUDT15, and EPAS1 genes are related to increased toxicity to fluoropyrimidines, mercaptopurines, and sorafenib respectively. Variations in CYP2D6 and XRCC1 genes are related to changes in efficacy of tamoxifen and platinum compounds, respectively. Minor allele frequencies of these variants were calculated and compared with other populations. RESULTS: MAFs of rs1065852 c.100 C > T (CYP2D6), rs3918290 c.1905 + 1G > A (DPYD), rs56038477 c.1236G > A (DPYD), rs7557402 c.1035-7 C > G (EPAS1), rs116855232 c.415 C > T (NUDT15*3), and rs25487 c.1196 A > G (XRCC1) were: 12.9% [95%CI:10.9-14.9], 1.5% [95%CI:0.8-2.2], 1.2% [95%CI:0.5-1.8], 37.7% [95%CI:34.8-40.6], 8.3% [95%CI:6.7-10.0], and 64.0% [95%CI:61.1-66.8], respectively. Frequencies of rs1065852 c.100 C > T (CYP2D6), rs7557402 c.1035-7 C > G (EPAS1), and rs25487 (XRCC1) were significantly lower in Sri Lankans, while frequencies of rs116855232 c.415 C > T (NUDT15*3) and rs56038477 c.1236G > A (DPYD) were significantly higher in Sri Lankans when compared to some Western and Asian populations. CONCLUSION: Sri Lankans are likely to show lower toxicity risk with sorafenib (rs7557402 c.84,131 C > G) and, higher toxicity risk with fluoropyrimidines (rs56038477 c.1236G > A) and mercaptopurine (rs116855232 c.415 C > T), and reduced effectiveness with tamoxifen (rs1065852 c.100 C > T) and platinum compounds (rs25487). These findings highlight the potential contribution of these genetic variations to the individual variability in anti-cancer dosage requirements among Sri Lankans.


Asunto(s)
Antineoplásicos , Variantes Farmacogenómicas , Humanos , Sri Lanka , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética , Pirofosfatasas/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Citocromo P-450 CYP2D6/genética , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Pueblo Asiatico/genética , Farmacogenética , Frecuencia de los Genes , Hidrolasas Nudix
20.
Int J Biol Macromol ; 267(Pt 2): 131327, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574903

RESUMEN

The emergence of multidrug resistance has provided a great challenge to treat nosocomial infections, which have become a major health threat around the globe. Lipid A (an active endotoxin component), the final product of the Raetz lipid A metabolism pathway, is a membrane anchor of lipopolysaccharide (LPS) of the gram-negative bacterial outer membrane. It shields bacterial cells and serves as a protective barrier from antibiotics, thereby eliciting host response and making it difficult to destroy. UDP-2,3-diacylglucosamine pyrophosphate hydrolase (LpxH), a crucial peripheral membrane enzyme of the Raetz pathway, turned out to be the potential target to inhibit the production of Lipid A. This review provides a comprehensive compilation of information regarding the structural and functional aspects of LpxH, as well as its analogous LpxI and LpxG. In addition, apart from by providing a broader understanding of the enzyme-inhibitor mechanism, this review facilitates the development of novel drug candidates that can inhibit the pathogenicity of the lethal bacterium.


Asunto(s)
Bacterias Gramnegativas , Bacterias Gramnegativas/enzimología , Bacterias Gramnegativas/efectos de los fármacos , Pirofosfatasas/metabolismo , Pirofosfatasas/química , Lípido A/química , Lípido A/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA