Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.919
Filtrar
1.
Expert Rev Mol Diagn ; 24(5): 459-466, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38756100

RESUMEN

BACKGROUND: Breast cancer (BC) is the leading cause of cancer death among women worldwide. The nudix hydrolase 17 (NUDT17) may play notable roles in cancer growth and metastasis. In this study, we explored the importance of NUDT17 gene polymorphism in patients with BC. METHODS: In our study, 563 BC patients and 552 healthy controls participated. We used logistic regression analysis to calculate odds ratios (OR) and 95% confidence intervals (CI), and multifactor dimension reduction (MDR) analysis of SNP-SNP interactions. Finally, UALCAN and THPA databases were used for bioinformatics analysis. RESULTS: The rs9286836 G allele was associated with a decreased the BC risk (p = 0.022), and the carriers of rs2004659 G allele had a 32% decreased risk of BC than individuals with allele A (p = 0.004). In the four genetic models, rs9286836 and rs2004659 reduced the risk of BC. Additionally, we found that the NUDT17 SNPs were associated with BC risk under age, tumor size, and clinical stage stratification. The MDR analysis showed that the five-locus interaction model was the best in the multi-locus model. CONCLUSION: Our study found that NUDT17 single nucleotide polymorphisms are associated with BC susceptibility in Chinese Han population.


Asunto(s)
Neoplasias de la Mama , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Pirofosfatasas , Humanos , Neoplasias de la Mama/genética , Femenino , Persona de Mediana Edad , Pirofosfatasas/genética , Alelos , Adulto , Estudios de Casos y Controles , Genotipo , Oportunidad Relativa , Estudios de Asociación Genética , Anciano , Factores de Riesgo
2.
Free Radic Biol Med ; 218: 166-177, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582229

RESUMEN

BACKGROUND: Dysregulated ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP) family occurs in metabolic reprogramming pathological processes. Nonetheless, the epigenetic mechanisms by which ENPP family impacts NAFLD, also known as metabolic dysfunction-associated steatotic liver disease (MASLD), is poorly appreciated. METHODS: We investigated the causes and consequences of ENPP1 promoter hypomethylation may boost NAFLD using NAFLD clinical samples, as well as revealed the underlying mechanisms using high-fat diet (HFD) + carbon tetrachloride (CCl4) induced mouse model of NAFLD and FFA treatment of cultured hepatocyte. RESULTS: Herein, we report that the expression level of ENPP1 are increased in patients with NAFLD liver tissue and in mouse model of NAFLD. Hypomethylation of ENPP1, is associated with the perpetuation of hepatocyte autophagy and liver fibrosis in the NAFLD. ENPP1 hypomethylation is mediated by the DNA demethylase TET3 in NAFLD liver fibrosis and hepatocyte autophagy. Additionally, knockdown of TET3 methylated ENPP1 promoter, reduced the ENPP1 expression, ameliorated the experimental NAFLD. Mechanistically, TET3 epigenetically promoted ENPP1 expression via hypomethylation of the promoter. Knocking down TET3 can inhibit the hepatocyte autophagy but an overexpression of ENPP1 showing rescue effect. CONCLUSIONS: We describe a novel epigenetic mechanism wherein TET3 promoted ENPP1 expression through promoter hypomethylation is a critical mediator of NAFLD. Our findings provide new insight into the development of preventative measures for NAFLD.


Asunto(s)
Autofagia , Metilación de ADN , Dioxigenasas , Modelos Animales de Enfermedad , Epigénesis Genética , Hepatocitos , Enfermedad del Hígado Graso no Alcohólico , Hidrolasas Diéster Fosfóricas , Regiones Promotoras Genéticas , Pirofosfatasas , Animales , Humanos , Masculino , Ratones , Autofagia/genética , Tetracloruro de Carbono/toxicidad , Dieta Alta en Grasa/efectos adversos , Dioxigenasas/genética , Dioxigenasas/metabolismo , Hepatocitos/metabolismo , Hepatocitos/patología , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Pirofosfatasas/genética , Pirofosfatasas/metabolismo
3.
Sci Rep ; 14(1): 9798, 2024 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684784

RESUMEN

Aging-related sarcopenia is a degenerative loss of strength and skeletal muscle mass that impairs quality of life. Evaluating NUDT3 gene and myogenin expression as new diagnostic tools in sarcopenia. Also, comparing the concomitant treatment of resistance exercise (EX) and creatine monohydrate (CrM) versus single therapy by EX, coenzyme Q10 (CoQ10), and CrM using aged rats. Sixty male rats were equally divided into groups. The control group, aging group, EX-treated group, the CoQ10 group were administered (500 mg/kg) of CoQ10, the CrM group supplied (0.3 mg/kg of CrM), and a group of CrM concomitant with resistance exercise. Serum lipid profiles, certain antioxidant markers, electromyography (EMG), nudix hydrolase 3 (NUDT3) expression, creatine kinase (CK), and sarcopenic index markers were measured after 12 weeks. The gastrocnemius muscle was stained with hematoxylin-eosin (H&E) and myogenin. The EX-CrM combination showed significant improvement in serum lipid profile, antioxidant markers, EMG, NUDT3 gene, myogenin expression, CK, and sarcopenic index markers from other groups. The NUDT3 gene and myogenin expression have proven efficient as diagnostic tools for sarcopenia. Concomitant treatment of CrM and EX is preferable to individual therapy because it reduces inflammation, improves the lipid serum profile, promotes muscle regeneration, and thus has the potential to improve sarcopenia.


Asunto(s)
Envejecimiento , Creatina , Músculo Esquelético , Entrenamiento de Fuerza , Sarcopenia , Ubiquinona/análogos & derivados , Sarcopenia/tratamiento farmacológico , Sarcopenia/metabolismo , Animales , Masculino , Ratas , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/efectos de los fármacos , Condicionamiento Físico Animal , Miogenina/metabolismo , Miogenina/genética , Ubiquinona/farmacología , Ubiquinona/uso terapéutico , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Antioxidantes/metabolismo , Creatina Quinasa/sangre , Ratas Wistar
4.
J Cell Mol Med ; 28(9): e18371, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38686496

RESUMEN

Cisplatin (DDP) resistance is a major challenge in treating ovarian cancer patients. A recently discovered enzyme called dCTP pyrophosphatase 1 (DCTPP1) has been implicated in regulating cancer characteristics, including drug responses. In this study, we aimed to understand the role of DCTPP1 in cancer progression and cisplatin response. Using publicly available databases, we analysed the expression and clinical significance of DCTPP1 in ovarian cancer. Our bioinformatics analysis confirmed that DCTPP1 is significantly overexpressed in ovarian cancer and is closely associated with tumour progression and poor prognosis after cisplatin treatment. We also found that DCTPP1 located in oxidoreductase complex and may be involved in various biological processes related to cisplatin resistance, including pyrimidine nucleotide metabolism, the P53 signalling pathway and cell cycle signalling pathways. We observed higher expression of DCTPP1 in cisplatin-resistant cells (SKOV3/DDP) and samples compared to their sensitive counterparts. Additionally, we found that DCTPP1 expression was only enhanced in SKOV3/S cells when treated with cisplatin, indicating different expression patterns of DCTPP1 in cisplatin-sensitive and cisplatin-resistant cancer cells. Our study further supports the notion that cisplatin induces intracellular reactive oxygen species (ROS) and triggers cancer cell death through excessive oxidative stress. Knocking out DCTPP1 reversed the drug resistance of ovarian cancer cells by enhancing the intracellular antioxidant stress response and accumulating ROS. Based on our research findings, we conclude that DCTPP1 has prognostic value for ovarian cancer patients, and targeting DCTPP1 may be clinically significant in overcoming cisplatin resistance in ovarian cancer.


Asunto(s)
Cisplatino , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas , Pirofosfatasas , Humanos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Pronóstico , Transducción de Señal/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
5.
Biochim Biophys Acta Gen Subj ; 1868(5): 130594, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38428647

RESUMEN

Inorganic pyrophosphatases (PPases) are enzymes that catalyze the conversion of inorganic pyrophosphate (PPi) into phosphate (Pi). Human inorganic pyrophosphatase 1 (Hu-PPase) exhibits high expression levels in a variety of tumors and plays roles in cell proliferation, apoptosis, invasion and metastasis, making it a promising prognostic biomarker and a target for cancer therapy. Despite its widespread presence, the catalytic mechanism of Hu-PPase in humans remains inadequately understood. The signature motif amino acid sequence (DXDPXD) within the active sites of PPases is preserved across different species. In this research, an enzymatic activity assay revealed that mutations led to a notable reduction in enzymatic function, although the impact of the four amino acids on the activity of the pocket varied. To investigate the influence of these residues on the substrate binding and enzymatic function of PPase, the crystal structure of the Hu-PPase-ED quadruple mutant (D116A/D118A/P119A/D121A) was determined at 1.69 Å resolution. The resulting structure maintained a barrel-like shape similar to that of the wild-type, albeit lacking Mg2+ ions. Molecular docking analysis demonstrated a decreased ability of Hu-PPase-ED to bind to PPi. Further, molecular dynamics simulation analysis indicated that the mutation rendered the loop of Mg2+ ion-binding residues less stable. Therefore, the effect on enzyme activity did not result from a change in the gross protein structure but rather from a mutation that abolished the Mg2+-coordinating groups, thereby eliminating Mg2+ binding and leading to the loss of enzyme activity.


Asunto(s)
Pirofosfatasa Inorgánica , Pirofosfatasas , Humanos , Secuencia de Aminoácidos , Dominio Catalítico , Pirofosfatasa Inorgánica/química , Pirofosfatasa Inorgánica/genética , Simulación del Acoplamiento Molecular , Pirofosfatasas/química , Pirofosfatasas/genética
6.
BMC Infect Dis ; 24(1): 301, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38468199

RESUMEN

BACKGROUND: Globally, 80 million people are suffering from chronic Hepatitis C virus (HCV) infection. Sofosbuvir ribavirin-based anti-HCV therapy is associated with anemia and other adverse effects. Polymorphisms of Inosine triphosphatase (ITPA) gene may cause functional impairment in the Inosine triphosphate pyrophosphatase enzyme, resulting in enhanced sustained viral response (SVR) and protection from ribavirin-associated anemia in patients on therapy. The study objective was to investigate the effect of Inosine triphosphatase gene polymorphism on SVR achievement, hemoglobin decline and ribavirin dose reduction in patients on therapy. METHODS: This prospective cohort study was of 170 hepatitis C infected patients received 6-month sofosbuvir ribavirin therapy. Patient viral load, reduction in ribavirin amount, liver function test, and complete blood count were noted monthly. Inosine triphosphatase variants rs1127354 and rs7270101 were assessed through the restriction fragment length polymorphism and confirmed using Sanger sequencing. The impact of polymorphism on cumulative reduction of ribavirin, and anti-HCV therapy outcome were studied. RESULTS: A total of 74.3% of patients had ITPA rs1127354 CC genotype, 25.7% were CA and AA 0%. The frequency of ITPA genotype rs7270101-AA was 95%, AC 5%, and CC was 0%. ITPA rs1127354-CA had a notably positive impact on SVR achievement with a zero-relapse rate. ITPA rs1127354-CA genotype was significantly (P ˂0.05) protective against ≥ 2 g/dl Hb reduction from baseline to 1st, 2nd and 6th months of therapy. During treatment, Hb reduction ≥ 10 g/dl was frequently observed in rs1127354-CC genotype and rs7270101-AA genotype patients. Ribavirin dose reduction was significantly (P ˂0.05) high in rs1127354-CC genotype as compared to genotype CA whereas no significant difference was observed in ribavirin dose reduction in rs7270101 AA and non-AA genotype. Patient baseline characteristics such as age, body mass index, rs1127354-CC genotype, and baseline Hb were significantly associated with significant Hb reduction. CONCLUSION: Pretreatment evaluation of ITPA polymorphism can be a diagnostic tool to find out patients at risk of anemia and improve treatment adherence. ITPA genotype rs1127354-CA contributes to improved compliance with ribavirin dose and protects against hemoglobin decline in HCV patients while taking ribavirin-based therapy. However, ITPA rs1127354, rs7270101 polymorphism have no significant impact on SVR achievement.


Asunto(s)
Anemia , Hepatitis C Crónica , Hepatitis C , Humanos , Ribavirina/efectos adversos , Sofosbuvir/efectos adversos , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/genética , Antivirales/efectos adversos , Inosina Trifosfatasa , Hepacivirus/genética , Estudios Prospectivos , Polimorfismo de Nucleótido Simple , Pirofosfatasas/genética , Pirofosfatasas/uso terapéutico , Anemia/inducido químicamente , Anemia/genética , Hepatitis C/tratamiento farmacológico , Genotipo , Hemoglobinas/genética , Resultado del Tratamiento
7.
Plant J ; 118(4): 1218-1231, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38323895

RESUMEN

Borneol, camphor, and bornyl acetate are highly promising monoterpenoids widely used in medicine, flavor, food, and chemical applications. Bornyl diphosphate (BPP) serves as a common precursor for the biosynthesis of these monoterpenoids. Although bornyl diphosphate synthase (BPPS) that catalyzes the cyclization of geranyl diphosphate (GPP) to BPP has been identified in multiple plants, the enzyme responsible for the hydrolysis of BPP to produce borneol has not been reported. Here, we conducted in vitro and in vivo functional characterization to identify the Nudix hydrolase WvNUDX24 from W. villosa, which specifically catalyzes the hydrolysis of BPP to generate bornyl phosphate (BP), and then BP forms borneol under the action of phosphatase. Subcellular localization experiments indicated that the hydrolysis of BPP likely occurs in the cytoplasm. Furthermore, site-directed mutagenesis experiments revealed that four critical residues (R84, S96, P98, and G99) for the hydrolysis activity of WvNUDX24. Additionally, the functional identification of phosphatidic acid phosphatase (PAP) demonstrated that WvPAP5 and WvPAP10 were able to hydrolyze geranylgeranyl diphosphate (GGPP) and farnesyl diphosphate (FPP) to generate geranylgeranyl phosphate (GGP) and farnesyl phosphate (FP), respectively, but could not hydrolyze BPP, GPP, and neryl diphosphate (NPP) to produce corresponding monophosphate products. These findings highlight the essential role of WvNUDX24 in the first step of BPP hydrolysis to produce borneol and provide genetic elements for the production of BPP-related terpenoids through plant metabolic engineering and synthetic biology.


Asunto(s)
Canfanos , Hidrolasas Nudix , Proteínas de Plantas , Pirofosfatasas , Pirofosfatasas/metabolismo , Pirofosfatasas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Canfanos/metabolismo , Brassicaceae/genética , Brassicaceae/enzimología , Brassicaceae/metabolismo , Fosfatos de Poliisoprenilo/metabolismo
8.
Plant Cell ; 36(5): 1868-1891, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299382

RESUMEN

Carotenoids are essential for photosynthesis and photoprotection. Plants must evolve multifaceted regulatory mechanisms to control carotenoid biosynthesis. However, the regulatory mechanisms and the regulators conserved among plant species remain elusive. Phytoene synthase (PSY) catalyzes the highly regulated step of carotenogenesis and geranylgeranyl diphosphate synthase (GGPPS) acts as a hub to interact with GGPP-utilizing enzymes for the synthesis of specific downstream isoprenoids. Here, we report a function of Nudix hydrolase 23 (NUDX23), a Nudix domain-containing protein, in post-translational regulation of PSY and GGPPS for carotenoid biosynthesis. NUDX23 expresses highly in Arabidopsis (Arabidopsis thaliana) leaves. Overexpression of NUDX23 significantly increases PSY and GGPPS protein levels and carotenoid production, whereas knockout of NUDX23 dramatically reduces their abundances and carotenoid accumulation in Arabidopsis. NUDX23 regulates carotenoid biosynthesis via direct interactions with PSY and GGPPS in chloroplasts, which enhances PSY and GGPPS protein stability in a large PSY-GGPPS enzyme complex. NUDX23 was found to co-migrate with PSY and GGPPS proteins and to be required for the enzyme complex assembly. Our findings uncover a regulatory mechanism underlying carotenoid biosynthesis in plants and offer promising genetic tools for developing carotenoid-enriched food crops.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Carotenoides , Regulación de la Expresión Génica de las Plantas , Carotenoides/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Hidrolasas Nudix , Cloroplastos/metabolismo , Geranilgeranil-Difosfato Geranilgeraniltransferasa/metabolismo , Geranilgeranil-Difosfato Geranilgeraniltransferasa/genética , Farnesiltransferasa/metabolismo , Farnesiltransferasa/genética , Pirofosfatasas/metabolismo , Pirofosfatasas/genética , Procesamiento Proteico-Postraduccional , Plantas Modificadas Genéticamente , Hojas de la Planta/metabolismo , Hojas de la Planta/genética
9.
Breast Cancer Res ; 26(1): 23, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317231

RESUMEN

BACKGROUND: The most aggressive form of breast cancer is triple-negative breast cancer (TNBC), which lacks expression of the estrogen receptor (ER) and progesterone receptor (PR), and does not have overexpression of the human epidermal growth factor receptor 2 (HER2). Treatment options for women with TNBC tumors are limited, unlike those with ER-positive tumors that can be treated with hormone therapy, or those with HER2-positive tumors that can be treated with anti-HER2 therapy. Therefore, we have sought to identify novel targeted therapies for TNBC. In this study, we investigated the potential of a novel phosphatase, NUDT5, as a potential therapeutic target for TNBC. METHODS: The mRNA expression levels of NUDT5 in breast cancers were investigated using TCGA and METABRIC (Curtis) datasets. NUDT5 ablation was achieved through siRNA targeting and NUDT5 inhibition with the small molecule inhibitor TH5427. Xenograft TNBC animal models were employed to assess the effect of NUDT5 inhibition on in vivo tumor growth. Proliferation, death, and DNA replication assays were conducted to investigate the cellular biological effects of NUDT5 loss or inhibition. The accumulation of 8-oxo-guanine (8-oxoG) and the induction of γH2AX after NUDT5 loss was determined by immunofluorescence staining. The impact of NUDT5 loss on replication fork was assessed by measuring DNA fiber length. RESULTS: In this study, we demonstrated the significant role of an overexpressed phosphatase, NUDT5, in regulating oxidative DNA damage in TNBCs. Our findings indicate that loss of NUDT5 results in suppressed growth of TNBC both in vitro and in vivo. This growth inhibition is not attributed to cell death, but rather to the suppression of proliferation. The loss or inhibition of NUDT5 led to an increase in the oxidative DNA lesion 8-oxoG, and triggered the DNA damage response in the nucleus. The interference with DNA replication ultimately inhibited proliferation. CONCLUSIONS: NUDT5 plays a crucial role in preventing oxidative DNA damage in TNBC cells. The loss or inhibition of NUDT5 significantly suppresses the growth of TNBCs. These biological and mechanistic studies provide the groundwork for future research and the potential development of NUDT5 inhibitors as a promising therapeutic approach for TNBC patients.


Asunto(s)
Pirofosfatasas , Neoplasias de la Mama Triple Negativas , Animales , Femenino , Humanos , Línea Celular Tumoral , Proliferación Celular , Pirofosfatasas/genética , Receptores de Estrógenos/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
10.
Nucleic Acids Res ; 52(7): 3761-3777, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38324469

RESUMEN

CtIP initiates DNA end resection and mediates homologous recombination (HR) repair. However, the underlying mechanisms of CtIP regulation and how the control of its regulation affects DNA repair remain incompletely characterized. In this study, NUDT16 loss decreases CtIP protein levels and impairs CtIP recruitment to double-strand breaks (DSBs). Furthermore, overexpression of a catalytically inactive NUDT16 mutant is unable to rescue decreased CtIP protein and impaired CtIP recruitment to DSBs. In addition, we identified a novel posttranslational modification of CtIP by ADP-ribosylation that is targeted by a PAR-binding E3 ubiquitin ligase, RNF146, leading to CtIP ubiquitination and degradation. These data suggest that the hydrolase activity of NUDT16 plays a major role in controlling CtIP protein levels. Notably, ADP-ribosylation of CtIP is required for its interaction with NUDT16, its localization at DSBs, and for HR repair. Interestingly, NUDT16 can also be ADP-ribosylated. The ADP-ribosylated NUDT16 is critical for CtIP protein stability, CtIP recruitment to DSBs, and HR repair in response to DNA damage. In summary, we demonstrate that NUDT16 and its PARylation regulate CtIP stability and CtIP recruitment to DSBs, providing new insights into our understanding of the regulation of CtIP-mediated DNA end resection in the HR repair pathway.


Asunto(s)
Endodesoxirribonucleasas , Pirofosfatasas , Reparación del ADN por Recombinación , Humanos , ADP-Ribosilación , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Roturas del ADN de Doble Cadena , Células HEK293 , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Procesamiento Proteico-Postraduccional , Pirofosfatasas/metabolismo , Pirofosfatasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
11.
J Natl Cancer Inst ; 116(5): 702-710, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38230823

RESUMEN

BACKGROUND: Thiopurines such as mercaptopurine (MP) are widely used to treat acute lymphoblastic leukemia (ALL). Thiopurine-S-methyltransferase (TPMT) and Nudix hydrolase 15 (NUDT15) inactivate thiopurines, and no-function variants are associated with drug-induced myelosuppression. Dose adjustment of MP is strongly recommended in patients with intermediate or complete loss of activity of TPMT and NUDT15. However, the extent of dosage reduction recommended for patients with intermediate activity in both enzymes is currently not clear. METHODS: MP dosages during maintenance were collected from 1768 patients with ALL in Singapore, Guatemala, India, and North America. Patients were genotyped for TPMT and NUDT15, and actionable variants defined by the Clinical Pharmacogenetics Implementation Consortium were used to classify patients as TPMT and NUDT15 normal metabolizers (TPMT/NUDT15 NM), TPMT or NUDT15 intermediate metabolizers (TPMT IM or NUDT15 IM), or TPMT and NUDT15 compound intermediate metabolizers (TPMT/NUDT15 IM/IM). In parallel, we evaluated MP toxicity, metabolism, and dose adjustment using a Tpmt/Nudt15 combined heterozygous mouse model (Tpmt+/-/Nudt15+/-). RESULTS: Twenty-two patients (1.2%) were TPMT/NUDT15 IM/IM in the cohort, with the majority self-reported as Hispanics (68.2%, 15/22). TPMT/NUDT15 IM/IM patients tolerated a median daily MP dose of 25.7 mg/m2 (interquartile range = 19.0-31.1 mg/m2), significantly lower than TPMT IM and NUDT15 IM dosage (P < .001). Similarly, Tpmt+/-/Nudt15+/- mice displayed excessive hematopoietic toxicity and accumulated more metabolite (DNA-TG) than wild-type or single heterozygous mice, which was effectively mitigated by a genotype-guided dose titration of MP. CONCLUSION: We recommend more substantial dose reductions to individualize MP therapy and mitigate toxicity in TPMT/NUDT15 IM/IM patients.


Asunto(s)
Mercaptopurina , Metiltransferasas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Pirofosfatasas , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Mercaptopurina/administración & dosificación , Mercaptopurina/efectos adversos , Niño , Masculino , Animales , Femenino , Ratones , Adolescente , Antimetabolitos Antineoplásicos/efectos adversos , Antimetabolitos Antineoplásicos/administración & dosificación , Preescolar , Genotipo , Hidrolasas Nudix
12.
J Biol Chem ; 300(3): 105671, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272222

RESUMEN

Poly(ADP-ribosyl)ation (PARylation) is a critical posttranslational modification that plays a vital role in maintaining genomic stability via a variety of molecular mechanisms, including activation of replication stress and the DNA damage response. The nudix hydrolase NUDT16 was recently identified as a phosphodiesterase that is responsible for removing ADP-ribose units and that plays an important role in DNA repair. However, the roles of NUDT16 in coordinating replication stress and cell cycle progression remain elusive. Here, we report that SETD3, which is a member of the SET-domain containing protein (SETD) family, is a novel substrate for NUDT16, that its protein levels fluctuate during cell cycle progression, and that its stability is strictly regulated by NUDT16-mediated dePARylation. Moreover, our data indicated that the E3 ligase CHFR is responsible for the recognition and degradation of endogenous SETD3 in a PARP1-mediated PARylation-dependent manner. Mechanistically, we revealed that SETD3 associates with BRCA2 and promotes its recruitment to stalled replication fork and DNA damage sites upon replication stress or DNA double-strand breaks, respectively. Importantly, depletion of SETD3 in NUDT16-deficient cells did not further exacerbate DNA breaks or enhance the sensitivity of cancer cells to IR exposure, suggesting that the NUDT16-SETD3 pathway may play critical roles in the induction of tolerance to radiotherapy. Collectively, these data showed that NUDT16 functions as a key upstream regulator of SETD3 protein stability by reversing the ADP-ribosylation of SETD3, and NUDT16 participates in the resolution of replication stress and facilitates HR repair.


Asunto(s)
ADP-Ribosilación , Neoplasias , Roturas del ADN de Doble Cadena , Daño del ADN , Reparación del ADN , Neoplasias/genética , Neoplasias/radioterapia , Poli(ADP-Ribosa) Polimerasa-1/genética , Procesamiento Proteico-Postraduccional , Humanos , Línea Celular , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Histona Metiltransferasas/genética , Histona Metiltransferasas/metabolismo
13.
Arch Virol ; 169(2): 36, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38265511

RESUMEN

Current therapies for hepatitis B virus (HBV) infection can slow disease progression but cannot cure the infection, as it is difficult to eliminate or permanently silence HBV covalently closed circular DNA (cccDNA). The interaction between host factors and cccDNA is essential for their formation, stability, and transcriptional activity. Here, we focused on the regulatory role of the host factor ENPP1 and its interacting transcription factor LMNB1 in HBV replication and transcription to better understand the network of host factors that regulate HBV, which may facilitate the development of new antiviral drugs. Overexpression of ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) in Huh7 cells decreased HBV pregenomic RNA (pgRNA) and hepatitis B core antigen (HBcAg) expression levels, whereas knockdown of ENPP1 increased them. A series of HBV promoter and mutant plasmids were constructed, and a luciferase reporter assay showed that overexpression of ENPP1 caused inhibition of the HBV promoter and its mutants. A DNA pull-down assay showed that lamin B1 (LMNB1), but not ENPP1, interacts directly with the HBV enhancer II/ basic core promoter (EnhII/BCP). ZDOCK and PyMOL software were used to predict the interaction of ENPP1 with LMNB1. Overexpression of LMNB1 inhibited the activity of the HBV promoter and its mutant. The acetylation levels at the amino acids 111K, 261K, and 483K of LMNB1 were reduced compared to the control, and an LMNB1 acetylation mutant containing 111R, 261Q, 261R, 483Q, and 483R showed increased promoter activity. In summary, ENPP1 together with LMNB1 increased the acetylation level at 111K and 261K, and LMNB1 inhibited the activity of HBV promoter and downregulated the expression of pregenomic RNA and HBcAg. Our follow-up studies will investigate the expression, clinical significance, and relevance of ENPP1 and LMNB1 in HBV patient tissues, explore the effect of LMNB1 on post-transcriptional progression, and examine whether ENPP1 can reduce cccDNA levels in the nucleus.


Asunto(s)
Virus de la Hepatitis B , Lamina Tipo B , Hidrolasas Diéster Fosfóricas , Pirofosfatasas , Humanos , Acetilación , Hepatitis B , Antígenos del Núcleo de la Hepatitis B , Virus de la Hepatitis B/genética , Lamina Tipo B/genética , Hidrolasas Diéster Fosfóricas/genética , Pirofosfatasas/genética , ARN
14.
Artículo en Inglés | MEDLINE | ID: mdl-38246006

RESUMEN

Thiopurine is metabolized to 6-thio-(deoxy) guanosine triphosphate (6-thio-(d) GTP), which is then incorporated into DNA or RNA and causes cytotoxicity. Nudix hydrolase 15 (NUDT15) reduces the cytotoxic effects of thiopurine by converting 6-thio-(d) GTP to 6-thio-(d) guanosine monophosphate (6-thio-(d) GMP). NUDT15 polymorphisms like the Arg139Cys variant are strongly linked to thiopurine-induced severe leukocytopenia and alopecia. Therefore, measurement of NUDT15 enzymatic activity in individual patients can help predict thiopurine tolerability and adjust the dosage. We aimed to develop a quantitative assay for NUDT15 enzymatic activity in human blood samples. Blood samples were collected from donors whose NUDT15 genetic status was determined. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to assess the 6-thio-GTP metabolic activity in cell extracts. Because 6-thio-guanosine diphosphate (6-thio-GDP) and 6-thio-GMP were generated upon incubation of 6-thio-GTP with human blood cell extracts, the method detecting 6-thio-GTP, 6-thio-GDP, and 6-thio-GMP was validated. All three metabolites were linearly detected, and the lower limit of quantification (LLOQ) of 6-thio-GTP, 6-thio-GDP, and 6-thio-GMP were 5 µM, 1 µM, and 2 µM, respectively. Matrix effects of human blood cell extracts to detect 6-thio-GTP, 6-thio-GDP, and 6-thio-GMP were 99.0 %, 100.5 %, and 101.4 %, respectively, relative to the signals in the absence of blood cell extracts. The accuracy and precision of the method and the stability of the samples were also assessed. Using this established method, the genotype-dependent differences in NUDT15 activities were successfully determined using cell extracts derived from human blood cells with NUDT15 wild-type (WT) or Arg139Cys variant and 6-thio-GTP (100 µM) as a substrate (18.1, 14.9, and 6.43 µM/h/106 cells for WT, Arg139Cys heterozygous, and homozygous variant, respectively). We developed a method for quantifying intracellular NUDT15 activity in peripheral blood mononuclear cells (PBMCs), which we defined as the conversion of 6-thio-GTP to 6-thio-GMP. Although PBMCs preparation takes some time, its reproducibility in experiments makes it a promising candidate for clinical application. This method can tell the difference between WT and Arg139Cys homozygous blood samples. Even in patients with WT NUDT15, WT samples showed variations in NUDT15 activity, which may correlate with variations in thiopurine dosage.


Asunto(s)
Leucocitos Mononucleares , Hidrolasas Nudix , Purinas , Compuestos de Sulfhidrilo , Humanos , Cromatografía Liquida , Extractos Celulares , Leucocitos Mononucleares/metabolismo , Reproducibilidad de los Resultados , Pirofosfatasas/genética , Pirofosfatasas/química , Pirofosfatasas/metabolismo , Espectrometría de Masas en Tándem , Guanosina Trifosfato , Mercaptopurina
15.
Protein J ; 43(1): 62-71, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38066288

RESUMEN

Recent clinical data have identified infant patients with lethal ITPA deficiencies. ITPA is known to modulate ITP concentrations in cells and has a critical function in neural development which is not understood. Polymorphism of the ITPA gene affects outcomes for both ribavirin and thiopurine based therapies and nearly one third of the human population is thought to harbor ITPA polymorphism. In a previous site-directed mutagenesis alanine screen of the ITPA substrate selectivity pocket, we identified the ITPA mutant, E22A, as a gain-of function mutant with enhanced ITP hydrolysis activity. Here we report a rational enzyme engineering experiment to investigate the biochemical properties of position 22 ITPA mutants and find that the E22D ITPA has two- and four-fold improved substrate selectivity for ITP over the canonical purine triphosphates ATP and GTP, respectively, while maintaining biological activity. The novel E22D ITPA should be considered as a platform for further development of ITPA therapies.


Asunto(s)
Inosina Trifosfatasa , Pirofosfatasas , Humanos , Pirofosfatasas/química , Pirofosfatasas/genética , Polimorfismo Genético , Genotipo
16.
J Anat ; 244(2): 333-342, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37814911

RESUMEN

During tibial tuberosity growth, superficial and deep portions can be observed; however, the deep portion is not observed after the growth period, as it develops into bone tissues. Calcification in vivo is known to be constitutively suppressed by ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1) but promoted by tissue-nonspecific alkaline phosphatase (TNAP). FGF23 promotes calcification of enthesis. Gene expression of FGF23 increased rapidly at 13W in this study. Therefore, the tibial tuberosity is speculated to develop via Enpp1 downregulation and Tnap upregulation; however, the understanding of these processes remains unclear. Hence, in the present study, we aimed to explore the age-related structural changes and underlying gene expression changes in the tibial tuberosity of rats. Male Wistar rats were divided into three groups (3-, 7-, and 13-week-old; eight each). The tibial tuberosity superficial and deep portions were clearly observed in 3- and 7-week-old rats, but the presence of the deep portion was not confirmed in 13-week-old rats. The extracellular matrix of hypertrophic chondrocytes was calcified. Furthermore, the Enpp1 expression was the highest in 3-week-old rats and decreased with growth. The TNAP expression did not differ significantly among the groups. The deep portion area was significantly lower in 3-week-old rats than in 7-week-old rats. Generally, the extracellular matrix of the immature chondrocytes is not calcified. Therefore, we speculated that the cartilaginous tibial tuberosity calcifies and ossifies with growth. The Enpp1 expression decreased with growth, whereas the Tnap expression remained unchanged. Thus, we surmise that the tibial tuberosity calcifies with growth and that this process involves Enpp1 downregulation and FGF23 upregulation. As Osgood-Schlatter disease is closely related to the calcification of the tibial tuberosity, these findings may help clarify the pathogenesis of this disease.


Asunto(s)
Hidrolasas Diéster Fosfóricas , Pirofosfatasas , Animales , Masculino , Ratas , Regulación hacia Abajo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Ratas Wistar , Regulación hacia Arriba
17.
Haematologica ; 109(4): 1053-1068, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37794799

RESUMEN

6-mercaptopurine (6-MP) serves as the backbone in the maintenance regimens of acute lymphoblastic leukemia (ALL). We aimed to evaluate the influence of NUDT15 gene polymorphism on the risk of myelosupression, hepatotoxicity and interruption of 6-MP, as well as treatment efficacy and dose of 6-MP in ALL patients. A total of 24 studies with 3,374 patients were included in this meta-analysis. We found 9-fold higher risk of 6-MP induced leukopenia (odds ratio [OR] =9.00, 95% confidence interval [CI]: 3.73-21.74) and 2.5-fold higher risk of 6-MP-induced neutropenia (OR=2.52, 95% CI: 1.72-3.69) for NUDT15 c.415C>T variant carriers in the dominant model. Moreover, we found that the dose intensity of 6-MP in ALL patients with one NUDT15 c.415C>T variant alleles (CT) was 19% less than that in wild-type patients (CC) (mean differences: 19.43%, 95% CI: -25.36 to -13.51). The tolerable dose intensity of 6-MP in NUDT15 c.415C>T homozygote variant (TT) and heterozygote variant (CT) carriers was 49% and 15% less than that in wild-type patients, respectively. The NUDT15 c.415C>T variant group (CT+TT) had seven times (OR=6.98, 95% CI: 2.83-17.22) higher risk of developing 6-MP intolerance than the CC group. However, NUDT15 c.415C>T polymorphism did not appear significantly associated with hepatotoxicity, treatment interruption or relapse incidence. We concluded that NUDT15 c.415C>T was a good predictor for 6-MP-induced myelosuppression in ALL patients. The dose intensity of 6-MP in ALL patients with NUDT15 c.415C>T variants was significantly lower than that in wild-type patients. This research provided a basis for further investigation into relations between NUDT15 gene and adverse reaction, treatment efficacy and dose intensity of 6-MP.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Neutropenia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Mercaptopurina/efectos adversos , Pirofosfatasas/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Polimorfismo Genético , Neutropenia/genética , Resultado del Tratamiento , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico
18.
J Biol Chem ; 300(1): 105512, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042486

RESUMEN

Aging presents fundamental health concerns worldwide; however, mechanisms underlying how aging is regulated are not fully understood. Here, we show that cartilage regulates aging by controlling phosphate metabolism via ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1). We newly established an Enpp1 reporter mouse, in which an EGFP-luciferase sequence was knocked-in at the Enpp1 gene start codon (Enpp1/EGFP-luciferase), enabling detection of Enpp1 expression in cartilage tissues of resultant mice. We then established a cartilage-specific Enpp1 conditional knockout mouse (Enpp1 cKO) by generating Enpp1 flox mice and crossing them with cartilage-specific type 2 collagen Cre mice. Relative to WT controls, Enpp1 cKO mice exhibited phenotypes resembling human aging, such as short life span, ectopic calcifications, and osteoporosis, as well as significantly lower serum pyrophosphate levels. We also observed significant weight loss and worsening of osteoporosis in Enpp1 cKO mice under phosphate overload conditions, similar to global Enpp1-deficient mice. Aging phenotypes seen in Enpp1 cKO mice under phosphate overload conditions were rescued by a low vitamin D diet, even under high phosphate conditions. These findings suggest overall that cartilage tissue plays an important role in regulating systemic aging via Enpp1.


Asunto(s)
Envejecimiento , Osteoporosis , Hidrolasas Diéster Fosfóricas , Pirofosfatasas , Animales , Humanos , Ratones , Envejecimiento/genética , Cartílago/metabolismo , Luciferasas , Ratones Noqueados , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/genética , Pirofosfatasas/metabolismo
19.
Annu Rev Pathol ; 19: 507-540, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-37871131

RESUMEN

The enzyme ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) codes for a type 2 transmembrane glycoprotein that hydrolyzes extracellular ATP to generate pyrophosphate (PPi) and adenosine monophosphate, thereby contributing to downstream purinergic signaling pathways. The clinical phenotypes induced by ENPP1 deficiency are seemingly contradictory and include early-onset osteoporosis in middle-aged adults and life-threatening vascular calcifications in the large arteries of infants with generalized arterial calcification of infancy. The progressive overmineralization of soft tissue and concurrent undermineralization of skeleton also occur in the general medical population, where it is referred to as paradoxical mineralization to highlight the confusing pathophysiology. This review summarizes the clinical presentation and pathophysiology of paradoxical mineralization unveiled by ENPP1 deficiency and the bench-to-bedside development of a novel ENPP1 biologics designed to treat mineralization disorders in the rare disease and general medical population.


Asunto(s)
Hidrolasas Diéster Fosfóricas , Calcificación Vascular , Adulto , Humanos , Persona de Mediana Edad , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Calcificación Vascular/tratamiento farmacológico , Calcificación Vascular/genética , Pirofosfatasas/genética , Pirofosfatasas/metabolismo
20.
mBio ; 15(2): e0306223, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38133430

RESUMEN

The inositol pyrophosphate signaling molecule 1,5-IP8 is an agonist of RNA 3'-processing and transcription termination in fission yeast that regulates the expression of phosphate acquisition genes pho1, pho84, and tgp1. IP8 is synthesized from 5-IP7 by the Asp1 N-terminal kinase domain and catabolized by the Asp1 C-terminal pyrophosphatase domain. asp1-STF mutations that delete or inactivate the Asp1 pyrophosphatase domain elicit growth defects in yeast extract with supplements (YES) medium ranging from severe sickness to lethality. We now find that the toxicity of asp1-STF mutants is caused by a titratable constituent of yeast extract. Via a genetic screen for spontaneous suppressors, we identified a null mutation of glycerophosphodiester transporter tgp1 that abolishes asp1-STF toxicity in YES medium. This result, and the fact that tgp1 mRNA expression is increased by >40-fold in asp1-STF cells, prompted discovery that: (i) glycerophosphocholine (GPC) recapitulates the toxicity of yeast extract to asp1-STF cells in a Tgp1-dependent manner, and (ii) induced overexpression of tgp1 in asp1+ cells also elicits toxicity dependent on GPC. asp1-STF suppressor screens yielded a suite of single missense mutations in the essential IP6 kinase Kcs1 that generates 5-IP7, the immediate precursor to IP8. Transcription profiling of the kcs1 mutants in an asp1+ background revealed the downregulation of the same phosphate acquisition genes that were upregulated in asp1-STF cells. The suppressor screen also returned single missense mutations in Plc1, the fission yeast phospholipase C enzyme that generates IP3, an upstream precursor for the synthesis of inositol pyrophosphates.IMPORTANCEThe inositol pyrophosphate metabolite 1,5-IP8 governs repression of fission yeast phosphate homeostasis genes pho1, pho84, and tgp1 by lncRNA-mediated transcriptional interference. Asp1 pyrophosphatase mutations that increase IP8 levels elicit precocious lncRNA termination, leading to derepression of the PHO genes. Deletions of the Asp1 pyrophosphatase domain result in growth impairment or lethality via IP8 agonism of transcription termination. It was assumed that IP8 toxicity ensues from dysregulation of essential genes. In this study, a suppressor screen revealed that IP8 toxicosis of Asp1 pyrophosphatase mutants is caused by: (i) a >40-fold increase in the expression of the inessential tgp1 gene encoding a glycerophosphodiester transporter and (ii) the presence of glycerophosphocholine in the growth medium. The suppressor screen yielded missense mutations in two upstream enzymes of inositol polyphosphate metabolism: the phospholipase C enzyme Plc1 that generates IP3 and the essential Kcs1 kinase that converts IP6 to 5-IP7, the immediate precursor of IP8.


Asunto(s)
Fragmentos de Péptidos , Fosfotransferasas (Aceptor del Grupo Fosfato) , ARN Largo no Codificante , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Tiroglobulina , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Inositol/metabolismo , Difosfatos/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , ARN Largo no Codificante/genética , Proteínas de Transporte de Membrana/metabolismo , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Fosfatos de Inositol/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA