Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.214
Filtrar
1.
Sci Rep ; 14(1): 15423, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965285

RESUMEN

Leaf mustard (Brassica juncea L.) is explored for its biofumigant properties, derived from its secondary metabolites, particularly allyl isothiocyanate (AITC), produced during the enzymatic breakdown of glucosinolates like sinigrin. The research examines eight leaf mustard cultivars developed in Yeosu city, South Korea, focusing on their genetic characteristics, AITC concentration and nitriles formation rates from glucosinolates. Results indicate that the allelopathic effects, largely dependent on AITC concentration and enzymatic activity, vary across cultivar. Sinigrin and AITC constitute 79% and 36%, respectively, of glucosinolate and its hydrolysis products. The cultivar 'Nuttongii' demonstrates significant potential for inhibiting weeds, exhibiting the highest AITC concentration at 27.47 ± 6.46 µmole g-1 These outcomes highlight the importance of selecting mustard cultivars for biofumigation based on their glucosinolate profiles and hydrolysis product yields. The study also identifies a significant genetic influence on AITC and nitrile formation, suggesting that epithiospecifier protein modulation could enhance both allelopathic and other beneficial effects. Collectively, the research underscores the promise of mustard as a sustainable, environmentally friendly alternative to traditional herbicides.


Asunto(s)
Glucosinolatos , Isotiocianatos , Planta de la Mostaza , Nitrilos , Glucosinolatos/metabolismo , Glucosinolatos/química , Isotiocianatos/farmacología , Isotiocianatos/metabolismo , Isotiocianatos/química , Nitrilos/metabolismo , Nitrilos/farmacología , Nitrilos/química , Planta de la Mostaza/metabolismo , Planta de la Mostaza/genética , República de Corea , Alelopatía
2.
PeerJ ; 12: e17661, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978758

RESUMEN

Leaf mustard (Brassica juncea L. Czern & Coss), an important vegetable crop, experiences pronounced adversity due to seasonal drought stress, particularly at the seed germination stage. Although there is partial comprehension of drought-responsive genes, the role of long non-coding RNAs (lncRNAs) in adjusting mustard's drought stress response is largely unexplored. In this study, we showed that the drought-tolerant cultivar 'Weiliang' manifested a markedly lower base water potential (-1.073 MPa vs -0.437 MPa) and higher germination percentage (41.2% vs 0%) than the drought-susceptible cultivar 'Shuidong' under drought conditions. High throughput RNA sequencing techniques revealed a significant repertoire of lncRNAs from both cultivars during germination under drought stress, resulting in the identification of 2,087 differentially expressed lncRNAs (DELs) and their correspondingly linked 12,433 target genes. It was noted that 84 genes targeted by DEL exhibited enrichment in the photosynthesis pathway. Gene network construction showed that MSTRG.150397, a regulatory lncRNA, was inferred to potentially modulate key photosynthetic genes (Psb27, PetC, PetH, and PsbW), whilst MSTRG.107159 was indicated as an inhibitory regulator of six drought-responsive PIP genes. Further, weighted gene co-expression network analysis (WGCNA) corroborated the involvement of light intensity and stress response genes targeted by the identified DELs. The precision and regulatory impact of lncRNA were verified through qPCR. This study extends our knowledge of the regulatory mechanisms governing drought stress responses in mustard, which will help strategies to augment drought tolerance in this crop.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Germinación , Planta de la Mostaza , ARN Largo no Codificante , Planta de la Mostaza/genética , Germinación/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Estrés Fisiológico/genética , Semillas/genética , Semillas/crecimiento & desarrollo , ARN de Planta/genética , ARN de Planta/metabolismo , Redes Reguladoras de Genes
3.
Sci Rep ; 14(1): 15643, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977722

RESUMEN

The wide gap between the demand and supply of edible mustard oil can be overcome to a certain extent by enhancing the oil-recovery during mechanical oil expression. It has been reported that microwave (MW) pre-treatment of mustard seeds can have a positive effect on the availability of mechanically expressible oil. Hyperspectral imaging (HSI) was used to understand the change in spatial spread of oil in the microwave (MW) treated seeds with bed thickness and time of exposure as variables, using visible near-infrared (Vis-NIR, 400-1000 nm) and short-wave infrared (SWIR, 1000-1700 nm) systems. The spectral data was analysed using chemometric techniques such as partial least square discriminant analysis (PLS-DA) and regression (PLSR) to develop prediction models. The PLS-DA model demonstrated a strong capability to classify the mustard seeds subjected to different MW pre-treatments from control samples with a high accuracy level of 96.6 and 99.5% for Vis-NIR and SWIR-HSI, respectively. PLSR model developed with SWIR-HSI spectral data predicted (R2 > 0.90) the oil content and fatty acid components such as oleic acid, erucic acid, saturated fatty acids, and PUFAs closest to the results obtained by analytical techniques. However, these predictions (R2 > 0.70) were less accurate while using the Vis-NIR spectral data.


Asunto(s)
Microondas , Planta de la Mostaza , Aceites de Plantas , Semillas , Espectroscopía Infrarroja Corta , Planta de la Mostaza/química , Semillas/química , Aceites de Plantas/química , Aceites de Plantas/análisis , Espectroscopía Infrarroja Corta/métodos , Imágenes Hiperespectrales/métodos , Quimiometría/métodos , Análisis de los Mínimos Cuadrados
4.
Sci Rep ; 14(1): 12705, 2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831025

RESUMEN

Fifty-nine diverse Brassica juncea (Indian mustard) genotypes were used to find an effective screening method to identify salt tolerance at the germination and seedling stages. Salinity stress limits crop productivity and is difficult to simulate on farms, hindering parental selection for hybridization programmes and the development of tolerant cultivars. To estimate an optimum salt concentration for screening, seeds of 15 genotypes were selected randomly and grown in vitro at 0 mM/L, 75 mM/L, 150 mM/L, 225 mM/L, and 300 mM/L concentrations of NaCl in 2 replications in a complete randomized design. Various morphological parameters, viz., length of seedling, root and shoot length, fresh weight, and dry weight, were observed to determine a single concentration using the Salt Injury Index. Then, this optimum concentration (225 mM/L) was used to assess the salt tolerance of all the 59 genotypes in 4 replications while observing the same morphological parameters. With the help of Mean Membership Function Value evaluation criteria, the genotypes were categorized into 5 grades: 4 highly salt-tolerant (HST), 6 salt-tolerant (ST), 19 moderately salt-tolerant (MST), 21 salt-sensitive (SS), and 9 highly salt-sensitive (HSS). Seedling fresh weight (SFW) at 225 mM/L was found to be an ideal trait, which demonstrates the extent to which B. juncea genotypes respond to saline conditions. This is the first report that establishes a highly efficient and reliable method for evaluating the salinity tolerance of Indian mustard at the seedling stage and will facilitate breeders in the development of salt-tolerant cultivars.


Asunto(s)
Genotipo , Planta de la Mostaza , Estrés Salino , Tolerancia a la Sal , Plantones , Planta de la Mostaza/genética , Planta de la Mostaza/crecimiento & desarrollo , Planta de la Mostaza/efectos de los fármacos , Planta de la Mostaza/fisiología , Plantones/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/genética , Tolerancia a la Sal/genética , Germinación/efectos de los fármacos , Cloruro de Sodio/farmacología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos
5.
Plant Physiol Biochem ; 213: 108867, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936069

RESUMEN

Understanding the heavy metals (HMs) tolerance mechanism is crucial for improving plant growth in metal-contaminated soil. In order to evaluate the lead (Pb) tolerance mechanism in Brassica species, a comparative proteomic study was used. Thirteen-day-old seedlings of B. juncea and B. napus were treated with different Pb(NO3)2 concentrations at 0, 3, 30, and 300 mg/L. Under 300 mg/L Pb(NO3)2 concentration, B. napus growth was significantly decreased, while B. juncea maintained normal growth similar to the control. The Pb accumulation was also higher in B. napus root and shoot compared to B. juncea. Gel-free proteomic analysis of roots revealed a total of 68 and 37 differentially abundant proteins (DAPs) in B. juncea and B. napus-specifically, after 300 mg/L Pb exposure. The majority of these proteins are associated with protein degradation, cellular respiration, and enzyme classification. The upregulated RPT2 and tetrapyrrole biosynthesis pathway-associated proteins maintain the cellular homeostasis and photosynthetic rate in B. juncea. Among the 55 common DAPs, S-adenosyl methionine and TCA cycle proteins were upregulated in B. juncea and down-regulated in B. napus after Pb exposure. Furthermore, higher oxidative stress also reduced the antioxidant enzyme activity in B. napus. The current finding suggests that B. juncea is more Pb tolerant than B. napus, possibly due to the upregulation of proteins involved in protein recycling, degradation, and tetrapyrrole biosynthesis pathway.


Asunto(s)
Plomo , Proteínas de Plantas , Proteómica , Tetrapirroles , Plomo/toxicidad , Plomo/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteómica/métodos , Tetrapirroles/metabolismo , Tetrapirroles/biosíntesis , Planta de la Mostaza/metabolismo , Planta de la Mostaza/efectos de los fármacos , Planta de la Mostaza/genética , Brassica/metabolismo , Brassica/efectos de los fármacos , Brassica/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos
6.
World J Microbiol Biotechnol ; 40(8): 245, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884883

RESUMEN

The addition of plant-growth-promoting bacteria (PGPB) to heavy-metal-contaminated soils can significantly improve plant growth and productivity. This study isolated heavy-metal-tolerant bacteria with growth-promoting traits and investigated their inoculation effects on the germination rates and growth of millet (Panicum miliaceum) and mustard (Brassica juncea) in Cd- and Zn-contaminated soil. Leifsonia sp. ZP3, which is resistant to Cd (0.5 mM) and Zn (1 mM), was isolated from forest soil. The ZP3 strain exhibited plant-growth-promoting activity, including indole-3-acetic acid production, phosphate solubilization, catalase activity, and 2,2-diphenyl-1-picrylhydrazyl radical scavenging. In soil contaminated with low concentrations of Cd (0.232 ± 0.006 mM) and Zn (6.376 ± 0.256 mM), ZP3 inoculation significantly increased the germination rates of millet and mustard 8.35- and 31.60-fold, respectively, compared to the non-inoculated control group, while the shoot and root lengths of millet increased 1.77- and 4.44-fold (p < 0.05). The chlorophyll content and seedling vigor index were also 4.40 and 18.78 times higher in the ZP3-treated group than in the control group (p < 0.05). The shoot length of mustard increased 1.89-fold, and the seedling vigor index improved 53.11-fold with the addition of ZP3 to the contaminated soil (p < 0.05). In soil contaminated with high concentrations of Cd and Zn (0.327 ± 0.016 and 8.448 ± 0.250 mM, respectively), ZP3 inoculation led to a 1.98-fold increase in the shoot length and a 2.07-fold improvement in the seedling vigor index compared to the control (p < 0.05). The heavy-metal-tolerant bacterium ZP3 isolated in this study thus represents a promising microbial resource for improving the efficiency of phytoremediation in Cd- and Zn-contaminated soil.


Asunto(s)
Biodegradación Ambiental , Cadmio , Germinación , Planta de la Mostaza , Panicum , Microbiología del Suelo , Contaminantes del Suelo , Zinc , Planta de la Mostaza/microbiología , Planta de la Mostaza/crecimiento & desarrollo , Contaminantes del Suelo/metabolismo , Cadmio/metabolismo , Zinc/metabolismo , Panicum/microbiología , Panicum/crecimiento & desarrollo , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Metales Pesados/metabolismo , Suelo/química , Ácidos Indolacéticos/metabolismo
7.
PLoS One ; 19(6): e0304206, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38905173

RESUMEN

Unremitting decline in crop productivity and nutrient recovery are resulted due to dearth of need based fertilizer recommendation over blanket application apart from nitrogen pollution in several means. An advance nutrient management tactic, GreenSeeker (GS) has developed and used in many field crops following the principle of four "R" (right source, right amount at right time, and place) nutrients stewardship technologies. But no studies have been conducted for evaluation of GS in mustard for improving productivity, profitability and nutrient use efficiency (NUE) while minimizing environmental risks. With this objective, a study was planned to conduct an experiment in rabi season of 2021-22 and 2022-23 to assess optical sensor based nitrogen management in mustard over blanket recommendation. The experiment was comprised of ten N treatments including control in randomized block design in triplicates. Research findings indicated that application of GreenSeeker based N significantly improved all growth traits and yield parameters in Brassica juncea L. Per cent enhancement in seed yield, net monetary returns and benefit-cost ratio was higher as 19.3 and 64.5%, 125.1 & 36.2% and 58.8 & 24.4%, respectively under GS based multi split N application over RDF and control. Further, real time N management with GS acquired higher crop production efficiency (CPE) (19.9 kg/day) with lesser cost/kg production (Rs 15.7/kg). Split application of N using GS increased oil yield by 79.9 and 26% over control and recommended dose of fertilizer (RDF) with maximum oil content (42.3%), and increases soil organic carbon (SOC) content by 16.1% from its initial value. Moreover, GS crop sensor could be the probable solution to minimize the crop nitrogen requirement by 15-20% with a yield enhancement of about 18.7% over RDF.


Asunto(s)
Fertilizantes , Planta de la Mostaza , Nitrógeno , Planta de la Mostaza/crecimiento & desarrollo , Planta de la Mostaza/efectos de los fármacos , Nitrógeno/metabolismo , Fertilizantes/análisis , Productos Agrícolas/crecimiento & desarrollo , Suelo/química , Agricultura/métodos , Agricultura/economía
8.
Sci Rep ; 14(1): 10528, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719861

RESUMEN

The current study aimed to assess the effect of the germination process of wild mustard seeds on the phenolic profile, antioxidant, antibacterial, and antidiabetic properties, and some relevant enzyme activities. The total phenolic and flavonoid contents increased 5- and 10-fold, respectively, and were maximized on 5-days sprouts. One new phenolic compound was identified on 5-days sprout extract using HPLC. The concentrations of the identified phenolic compounds increased 1.5-4.3 folds on 5-days sprouts compared with dry seeds. The total antioxidant activity multiplied 17- and 21-fold on 5-days sprouts using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assays, respectively. The activity of carbohydrate-cleaving, phenolic-synthesizing and antioxidant enzymes also increased during germination. On 5-days sprouts, there was a substantial correlation between the highest ß-glucosidase and peroxidase activities with highest phenolic and flavonoid levels and maximum antioxidant activity. The phenolic extract of 5-days sprouts exhibited antimicrobial activities against Escherichia coli and Staphylococcus aureus and showed potent antidiabetic activity established by its inhibitory effect against α-amylase and α-glucosidase compared to dry seeds.


Asunto(s)
Antioxidantes , Germinación , Planta de la Mostaza , Fenoles , Extractos Vegetales , Semillas , Fenoles/análisis , Fenoles/farmacología , Fenoles/química , Antioxidantes/farmacología , Antioxidantes/química , Germinación/efectos de los fármacos , Semillas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Planta de la Mostaza/química , Antibacterianos/farmacología , Antibacterianos/química , Flavonoides/análisis , Flavonoides/farmacología , Flavonoides/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Cromatografía Líquida de Alta Presión
9.
Plant Physiol Biochem ; 211: 108694, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38714131

RESUMEN

Using natural clinoptilolite (NCP) as a carrier and alginate (Alg)-calcium as an active species, the porous silicon calcium alginate nanocomposite (Alg-Ca-NCP) was successfully fabricated via adsorption-covalence-hydrogen bond. Its structural features and physicochemical properties were detailed investigated by various characterizations. The results indicated that Alg-Ca-NCP presented the disordered lamellar structures with approximately uniform particles in size of 300-500 nm. Specially, their surface fractal evolutions between the irregular roughness and dense structures were demonstrated via the SAXS patterns. The results elucidated that the abundant micropores of NCP were beneficial for unrestricted diffusing of Alg-Ca, which was conducive to facilitate a higher loading and sustainable releasing. The Ca content of leaf mustard treated with Alg-Ca-NCP-0.5 was 484.5 mg/100g on the 21st day, higher than that by water (CK) and CaCl2 solution treatments, respectively. Meanwhile, the prepared Alg-Ca-NCPs presented the obvious anti-aging effects on peroxidase drought stress of mustard leaves. These demonstrations provided a simple and effective method to synthesize Alg-Ca-NCPs as delivery nanocomposites, which is useful to improve the weak absorption and low utilization of calcium alginate by plants.


Asunto(s)
Alginatos , Planta de la Mostaza , Zeolitas , Alginatos/química , Alginatos/farmacología , Zeolitas/química , Zeolitas/farmacología , Planta de la Mostaza/metabolismo , Planta de la Mostaza/efectos de los fármacos , Planta de la Mostaza/química , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/química , Porosidad , Brassica/metabolismo , Brassica/efectos de los fármacos , Brassica/crecimiento & desarrollo , Ácido Glucurónico/química , Nanocompuestos/química , Difracción de Rayos X , Ácidos Hexurónicos/química , Ácidos Hexurónicos/metabolismo
10.
Plant J ; 119(2): 762-782, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38722594

RESUMEN

Brassica carinata (BBCC) commonly referred to as Ethiopian mustard is a natural allotetraploid containing the genomes of Brassica nigra (BB) and Brassica oleracea (CC). It is an oilseed crop endemic to the northeastern regions of Africa. Although it is under limited cultivation, B. carinata is valuable as it is resistant/highly tolerant to most of the pathogens affecting widely cultivated Brassica species of the U's triangle. We report a chromosome-scale genome assembly of B. carinata accession HC20 using long-read Oxford Nanopore sequencing and Bionano optical maps. The assembly has a scaffold N50 of ~39.8 Mb and covers ~1.11 Gb of the genome. We compared the long-read genome assemblies of the U's triangle species and found extensive gene collinearity between the diploids and allopolyploids with no evidence of major gene losses. Therefore, B. juncea (AABB), B. napus (AACC), and B. carinata can be regarded as strict allopolyploids. We cataloged the nucleotide-binding and leucine-rich repeat immune receptor (NLR) repertoire of B. carinata and, identified 465 NLRs, and compared these with the NLRs in the other Brassica species. We investigated the extent and nature of early-generation genomic interactions between the constituent genomes of B. carinata and B. juncea in interspecific crosses between the two species. Besides the expected recombination between the constituent B genomes, extensive homoeologous exchanges were observed between the A and C genomes. Interspecific crosses, therefore, can be used for transferring disease resistance from B. carinata to B. juncea and broadening the genetic base of the two allotetraploid species.


Asunto(s)
Brassica , Cromosomas de las Plantas , Resistencia a la Enfermedad , Genoma de Planta , Planta de la Mostaza , Enfermedades de las Plantas , Resistencia a la Enfermedad/genética , Planta de la Mostaza/genética , Planta de la Mostaza/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Genoma de Planta/genética , Brassica/genética , Brassica/microbiología , Cromosomas de las Plantas/genética , Introgresión Genética , Poliploidía
11.
Int J Mol Sci ; 25(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38791329

RESUMEN

The antibacterial and anti-inflammatory effect of thioglycosides has already been established. This study investigates the effects of thioglycosides extracted from white mustard, specifically the "Bamberka" variety, in the context of oral hygiene. The aim of the study is to clarify an evidence-based link between the documented antibacterial and anti-inflammatory effects attributed to thioglycosides and their practical application in oral care. A randomized, single-blinded (patient-blinded) clinical study was performed on 66 patients using mustard-based toothpaste for oral hygiene. The patients were examined at baseline and after 6 and 12 months. The values of the Approximal Plaque Index (API), the Plaque Index (PI), and Bleeding on probing (BOP) were taken into consideration. The results show a significant reduction in plaque accumulation, especially after 6 months of using mustard-based toothpaste in all examined parameters. This suggests that thioglycosides from mustard contribute to a considerable decrease in dental plaque accumulation, confirming their potential in natural oral care solutions, which is indicated in the main conclusions or interpretations.


Asunto(s)
Placa Dental , Gingivitis , Tioglicósidos , Humanos , Placa Dental/tratamiento farmacológico , Masculino , Femenino , Adulto , Persona de Mediana Edad , Gingivitis/tratamiento farmacológico , Tioglicósidos/uso terapéutico , Tioglicósidos/farmacología , Tioglicósidos/química , Método Simple Ciego , Planta de la Mostaza/química , Pastas de Dientes/uso terapéutico , Extractos Vegetales/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/química , Higiene Bucal/métodos
12.
Food Funct ; 15(12): 6488-6501, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38804660

RESUMEN

Mustard seeds belong to the food category of mandatory labelling due to the severe reactions they can trigger in allergic patients. However, the mechanisms underlying allergic sensitization to mustard seeds are poorly understood. The aim of this work is to study type 2 immune activation induced by the mustard seed major allergen Sin a1 via the intestinal mucosa, employing an in vitro model mimicking allergen exposure via the intestinal epithelial cells (IECs). Sin a1 was isolated from the total protein extract and exposed to IEC, monocyte derived dendritic cells (DCs) or IEC/DC co-cultures. A system of consecutive co-cultures was employed to study the generic capacity of Sin a1 to induce type 2 activation leading to sensitization: IEC/DC, DC/T-cell, T/B-cell and stem cell derived mast cells (MCs) derived from healthy donors. Immune profiles were determined by ELISA and flow cytometry. Sin a1 activated IEC and induced type-2 cytokine secretion in IEC/DC co-culture or DC alone (IL-15, IL-25 and TSLP), and primed DC induced type 2 T-cell skewing. IgG secretion in the T-cell/B-cell phase was enhanced in the presence of Sin a1 in the first stages of the co-culture. Anti-IgE did not induce degranulation but promoted IL-13 and IL-4 release by MC primed with the supernatant from B-cells co-cultured with Sin a1-IEC/DC or -DC primed T-cells. Sin a1 enhanced the release of type-2 inflammatory mediators by epithelial and dendritic cells; the latter instructed generic type-2 responses in T-cells that resulted in B-cell activation, and finally MC activation upon anti-IgE exposure. This indicates that via activation of IEC and/or DC, mustard seed allergen Sin a1 is capable of driving type 2 immunity which may lead to allergic sensitization.


Asunto(s)
Alérgenos , Células Dendríticas , Células Epiteliales , Planta de la Mostaza , Semillas , Células Dendríticas/inmunología , Células Dendríticas/efectos de los fármacos , Humanos , Semillas/química , Alérgenos/inmunología , Células Epiteliales/inmunología , Células Epiteliales/efectos de los fármacos , Mucosa Intestinal/inmunología , Técnicas de Cocultivo , Antígenos de Plantas/inmunología , Mastocitos/inmunología , Mastocitos/efectos de los fármacos , Inmunoglobulina E/inmunología , Citocinas/metabolismo , Proteínas de Plantas/inmunología , Proteínas de Plantas/farmacología
13.
Planta ; 259(6): 153, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744752

RESUMEN

MAIN CONCLUSION: The study evaluates the potential of Spray-Induced Gene Silencing and Host-Induced Gene Silencing for sustainable crop protection against the broad-spectrum necrotrophic fungus Sclerotinia sclerotiorum. Sclerotinia sclerotiorum (Lib.) de Bary, an aggressive ascomycete fungus causes white rot or cottony rot on a broad range of crops including Brassica juncea. The lack of sustainable control measures has necessitated biotechnological interventions such as RNA interference (RNAi) for effective pathogen control. Here we adopted two RNAi-based strategies-Spray-Induced Gene Silencing (SIGS) and Host-Induced Gene Silencing (HIGS) to control S. sclerotiorum. SIGS was successful in controlling white rot on Nicotiana benthamiana and B. juncea by targeting SsPac1, a pH-responsive transcription factor and SsSmk1, a MAP kinase involved in fungal development and pathogenesis. Topical application of dsRNA targeting SsPac1 and SsSmk1 delayed infection initiation and progression on B. juncea. Further, altered hyphal morphology and reduced radial growth were also observed following dsRNA application. We also explored the impact of stable dsRNA expression in A. thaliana against S. sclerotiorum. In this report, we highlight the utility of RNAi as a biofungicide and a tool for preliminary functional genomics.


Asunto(s)
Ascomicetos , Nicotiana , Enfermedades de las Plantas , Interferencia de ARN , Ascomicetos/fisiología , Ascomicetos/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Nicotiana/genética , Nicotiana/microbiología , Planta de la Mostaza/genética , Planta de la Mostaza/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , ARN Bicatenario/genética
14.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1017-1028, 2024 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-38658145

RESUMEN

Brassica juncea (mustard) is a vegetable crop of Brassica, which is widely planted in China. The yield and quality of stem mustard are greatly influenced by the transition from vegetative growth to reproductive growth, i.e., flowering. The WRKY transcription factor family is ubiquitous in higher plants, and its members are involved in the regulation of many growth and development processes, including biological/abiotic stress responses and flowering regulation. WRKY71 is an important member of the WRKY family. However, its function and mechanism in mustard have not been reported. In this study, the BjuWRKY71-1 gene was cloned from B. juncea. Bioinformatics analysis and phylogenetic tree analysis showed that the protein encoded by BjuWRKY71-1 has a conserved WRKY domain, belonging to class Ⅱ WRKY protein, which is closely related to BraWRKY71-1 in Brassica rapa. The expression abundance of BjuWRKY71-1 in leaves and flowers was significantly higher than that in roots and stems, and the expression level increased gradually along with plant development. The result of subcellular localization showed that BjuWRKY71-1 protein was located in nucleus. The flowering time of overexpressing BjuWRKY71-1 Arabidopsis plants was significantly earlier than that of the wild type. Yeast two-hybrid assay and dual-luciferase reporter assay showed that BjuWRKY71-1 interacted with the promoter of the flowering integrator BjuSOC1 and promoted the expression of its downstream genes. In conclusion, BjuWRKY71-1 protein can directly target BjuSOC1 to promote plant flowering. This discovery may facilitate further clarifying the molecular mechanism of BjuWRKY71-1 in flowering time control, and creating new germplasm with bolting and flowering tolerance in mustard.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Planta de la Mostaza , Proteínas de Plantas , Factores de Transcripción , Planta de la Mostaza/genética , Planta de la Mostaza/metabolismo , Planta de la Mostaza/crecimiento & desarrollo , Flores/genética , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Filogenia , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética
15.
Lasers Med Sci ; 39(1): 99, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602564

RESUMEN

In recent years, there has been a growing interest in traditional medicinal practices such as Ayurveda, which emphasizes the use of natural ingredients for various therapeutic purposes. Vegetable oils are an integral part of our diet and have several applications in the cosmetics and healthcare industries. These oils have also been prescribed in ancient Ayurveda texts to treat various health problems. Ayurveda prescribes a processing technique called 'Murchana' to improve the therapeutic nature of the oils. Spectroscopic techniques have been used for quality assessment in many fields. High sensitivity and a low detection rate make spectroscopy a formidable analytical technique. This study focusses on the spectroscopic analysis of sesame and mustard oils prepared using the ayurvedic processing method 'Murchana'. Spectroscopic analysis techniques including UV-Vis absorbance spectroscopy, fluorescence spectroscopy, and FTIR spectroscopy were employed to study the oils. Origin software was used to plot graphs of the spectra. The results indicated that the murchana process may reduce the components of the oil responsible for its oxidation, thereby increasing the shelf life of the oils. However, further investigations, including other spectroscopy and chromatography techniques, will prove beneficial in ascertaining the effects of the murchana process on vegetable oils. The study's findings also suggest that spectroscopic techniques can be used to supplement chemical techniques to investigate the characteristics of vegetable oils.


Asunto(s)
Planta de la Mostaza , Sesamum , Aceites de Plantas , Espectrometría de Fluorescencia , Espectroscopía Infrarroja por Transformada de Fourier
16.
Int J Biol Macromol ; 266(Pt 2): 131247, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565371

RESUMEN

Essential to plant adaptation, cell wall (CW) integrity is maintained by CW-biosynthesis genes. Cytoskeletal actin-(de)polymerizing, phospholipid-binding profilin (PRF) proteins play important roles in maintaining cellular homeostasis across kingdoms. However, evolutionary selection of PRF genes and their systematic characterization in family Brassicaceae, especially in Brassica juncea remain unexplored. Here, a comprehensive analysis of genome-wide identification of BjPRFs, their phylogenetic association, genomic localization, gene structure, and transcriptional profiling were performed in an evolutionary framework. Identification of 23 BjPRFs in B. juncea indicated an evolutionary conservation within Brassicaceae. The BjPRFs evolved through paralogous and orthologous gene formation in Brassica genomes. Evolutionary divergence of BjPRFs indicated purifying selection, with nonsynonymous (dN)/synonymous (dS) value of 0.090 for orthologous gene-pairs. Hybrid homology-modeling identified evolutionary distinct and conserved domains in BjPRFs which suggested that these proteins evolved following the divergence of monocot and eudicot plants. RNA-seq profiles of BjPRFs revealed their functional evolution in spatiotemporal manner during plant-development and stress-conditions in diploid/amphidiploid Brassica species. Real-Time PCR experiments in seedling, vegetative, floral and silique tissues of B. juncea suggested their essential roles in systematic plant development. These observations underscore the expansion of BjPRFs in B. juncea, and offer valuable evolutionary insights for exploring cellular mechanisms, and stress resilience.


Asunto(s)
Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Planta de la Mostaza , Filogenia , Proteínas de Plantas , Profilinas , Estrés Fisiológico , Planta de la Mostaza/genética , Estrés Fisiológico/genética , Profilinas/genética , Profilinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Familia de Multigenes , Genoma de Planta , Perfilación de la Expresión Génica
17.
J Agric Food Chem ; 72(17): 9587-9598, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38588384

RESUMEN

Far-red (FR) light influences plant development significantly through shade avoidance response and photosynthetic modulation, but there is limited knowledge on how FR treatments influence the growth and nutrition of vegetables at different maturity stages in controlled environment agriculture (CEA). Here, we comprehensively investigated the impacts of FR on the yield, morphology, and phytonutrients of ruby streaks mustard (RS) at microgreen, baby leaf, and flowering stages. Treatments including white control, white with supplementary FR, white followed by singularly applied FR, and enhanced white (WE) matching the extended daily light integral (eDLI) of FR were designed for separating the effects of light intensity and quality. Results showed that singular and supplemental FR affected plant development and nutrition similarly throughout the growth cycle, with light intensity and quality playing varying roles at different stages. Specifically, FR did not affect the fresh and dry weight of microgreens but increased those values for baby leaves, although not as effectively as WE. Meanwhile, FR caused significant morphological change and accelerated the development of leaves, flowers, and seedpods more dramatically than WE. With regard to phytonutrients, light treatments affected the metabolomic profiles for baby leaves more dramatically than microgreens and flowers. FR decreased the glucosinolate and anthocyanin contents in microgreens and baby leaves, while WE increased the contents of those compounds in baby leaves. This study illustrates the complex impacts of FR on RS and provides valuable information for selecting optimal lighting conditions in CEA.


Asunto(s)
Biomasa , Flores , Luz , Planta de la Mostaza , Fitoquímicos , Hojas de la Planta , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de la radiación , Planta de la Mostaza/metabolismo , Planta de la Mostaza/crecimiento & desarrollo , Planta de la Mostaza/química , Planta de la Mostaza/efectos de la radiación , Flores/crecimiento & desarrollo , Flores/metabolismo , Flores/química , Flores/efectos de la radiación , Fitoquímicos/metabolismo , Fitoquímicos/química , Fotosíntesis/efectos de la radiación , Antocianinas/metabolismo , Antocianinas/análisis , Luz Roja
18.
J Environ Manage ; 358: 120805, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599085

RESUMEN

Soil monitoring in abandoned mine areas is important from the perspective of ecological and human health risk. Arsenic (As) is a predominant metalloid contaminant in abandoned mine area and its behavior has been influenced by various soil characteristics. Bioindicator can be a useful tool in terms of testing the extent to which they are uptaken by plants bioavailability. Eighteen soils near the mine tailings dam were collected to investigate the effect of As contamination on As absorption by Brassica juncea. The pH range of the experimental soils was between 4.90 and 8.55, and the total As concentrations were between 34 mg kg-1 and 3017 mg kg-1. The bioavailability of As was evaluated by Olsen method, and B. juncea was cultivated in eighteen soils for 3 weeks. Principal component analysis, correlation, and multiple regression analysis were performed to estimate a significant factor affecting As uptake by B. juncea. All statistical results indicated that As bioavailability in soil is the main factor affecting As uptake in root and shoot of B. juncea. Although translocation process, the amount of As in shoot was exponentially explained by As bioavailability in soil. This result suggests that the contamination and bioavailability of As can be confirmed only by analyzing the shoot of B. juncea, which is be easily found in environmental ecosystem, and implies the applicability of B. juncea as a bioindicator for the monitoring of As contamination and its behavior in soil ecosystem.


Asunto(s)
Arsénico , Monitoreo del Ambiente , Minería , Planta de la Mostaza , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Planta de la Mostaza/metabolismo , Suelo/química , Arsénico/análisis , Arsénico/metabolismo , Monitoreo del Ambiente/métodos
19.
Sci Total Environ ; 930: 172810, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38679082

RESUMEN

Pot experiment was performed aimed to assess the comparative role of charcoal, biochar, hydrochar and thiourea-vegetable modified biochar at 1 and 2 % doses, and <1 mm particle size on the bioavailability of Cd, Pb, As, Ni, Cu and Zn, and enhance NPK, and mustard growth in a slightly alkaline polluted soil. Furthermore, machine learning method was used to examine the systematic evaluation of the impact of feature selection based on Pearson's correlation on the performance of the linear regression model. The results revealed that maximum fresh and dry biomass of mustard was observed by 26.38 and 38.18 % with hydrochar 1 %, whereas lemon biochar at 2 % reduced fresh and dry biomass up to 34.0 and 53.0 % than control. The immobilization of Cd and Pb was observed by 83.70 and 71.15 % with thiourea-vegetable modified biochar at 2 %, As 71.62 % with hydrochar 2 %, Ni 80.84 % with thiourea-vegetable modified biochar 2 %, Cu 66.32 % with and Zn 36.30 % with thiourea-vegetable modified biochar at 2 % than control. However, the maximum mobilization of Cu in soil was observed by 30.3 % with lemon biochar 2 %, similarly for Zn 37.36 % with hydrochar 2 % as compared with other treatments. The phyto-availability of Cd, Pb, As and Cu in the mustard shoot and root biomass was reduced except Ni and Zn in soil than control. It was observed that using the machine learning regression analysis approach, variability in treatments effectiveness is evident across different feature correlation thresholds. This study clearly shows that the beneficial role of studied amendments on mustard growth and reduced bioavailability of heavy metal(loid)s and enhance primary macronutrients in alkaline polluted soil. It is suggested that future studies may be conducted on combined application of studies amendments on plant growth, immobilization of heavy metal(loid)s in multi-metal polluted soil under different field conditions.


Asunto(s)
Carbón Orgánico , Aprendizaje Automático , Metales Pesados , Contaminantes del Suelo , Suelo , Carbón Orgánico/química , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Suelo/química , Disponibilidad Biológica , Restauración y Remediación Ambiental/métodos , Planta de la Mostaza
20.
PLoS One ; 19(4): e0302292, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626181

RESUMEN

Proteins containing domain of unknown function (DUF) are prevalent in eukaryotic genome. The DUF1216 proteins possess a conserved DUF1216 domain resembling to the mediator protein of Arabidopsis RNA polymerase II transcriptional subunit-like protein. The DUF1216 family are specifically existed in Brassicaceae, however, no comprehensive evolutionary analysis of DUF1216 genes have been performed. We performed a first comprehensive genome-wide analysis of DUF1216 proteins in Brassicaceae. Totally 284 DUF1216 genes were identified in 27 Brassicaceae species and classified into four subfamilies on the basis of phylogenetic analysis. The analysis of gene structure and conserved motifs revealed that DUF1216 genes within the same subfamily exhibited similar intron/exon patterns and motif composition. The majority members of DUF1216 genes contain a signal peptide in the N-terminal, and the ninth position of the signal peptide in most DUF1216 is cysteine. Synteny analysis revealed that segmental duplication is a major mechanism for expanding of DUF1216 genes in Brassica oleracea, Brassica juncea, Brassica napus, Lepidium meyneii, and Brassica carinata, while in Arabidopsis thaliana and Capsella rubella, tandem duplication plays a major role in the expansion of the DUF1216 gene family. The analysis of Ka/Ks (non-synonymous substitution rate/synonymous substitution rate) ratios for DUF1216 paralogous indicated that most of gene pairs underwent purifying selection. DUF1216 genes displayed a specifically high expression in reproductive tissues in most Brassicaceae species, while its expression in Brassica juncea was specifically high in root. Our studies offered new insights into the phylogenetic relationships, gene structures and expressional patterns of DUF1216 members in Brassicaceae, which provides a foundation for future functional analysis.


Asunto(s)
Arabidopsis , Brassicaceae , Brassicaceae/genética , Duplicación de Gen , Filogenia , Evolución Molecular , Genoma de Planta , Arabidopsis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/química , Planta de la Mostaza/genética , Señales de Clasificación de Proteína/genética , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA