Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.391
Filtrar
1.
Plant Cell Rep ; 43(11): 263, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39412663

RESUMEN

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are critical for plant development as well as for its stress response. They can function as signaling molecules to orchestrate a well-defined response of plants to biotic stress. These responses are further fine-tuned by phytohormones, such as salicylic acid, jasmonic acid, and ethylene, to modulate immune response. In the past decades, the intricacies of redox and phytohormonal signaling have been uncovered during plant-pathogen interactions. This review explores the dynamic interplay of these components, elucidating their roles in perceiving biotic threats and shaping the plant's defense strategy. Molecular regulators and sites of oxidative burst have been explored during pathogen perception. Further, the interplay between various components of redox and phytohormonal signaling has been explored during bacterial, fungal, viral, and nematode infections as well as during insect pest infestation. Understanding these interactions highlights gaps in the current knowledge and provides insights into engineering crop varieties with enhanced resistance to pathogens and pests. This review also highlights potential applications of manipulating regulators of redox signaling to bolster plant immunity and ensure global food security. Future research should explore regulators of these signaling pathways as potential target to develop biotic stress-tolerant crops. Further insights are also needed into roles of endophytes and host microbiome modulating host ROS and RNS pool for exploiting them as biocontrol agents imparting resistance against pathogens in plants.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Plantas , Especies de Nitrógeno Reactivo , Especies Reactivas de Oxígeno , Estrés Fisiológico , Especies Reactivas de Oxígeno/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Plantas/metabolismo , Plantas/parasitología , Plantas/microbiología , Plantas/inmunología , Inmunidad de la Planta , Transducción de Señal , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/inmunología , Interacciones Huésped-Patógeno , Oxidación-Reducción
2.
BMC Plant Biol ; 24(1): 958, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39396978

RESUMEN

BACKGROUND: The NAC transcription factor family, which is recognized as one of the largest plant-specific transcription factor families, comprises numerous members that are widely distributed among various higher plant species and play crucial regulatory roles in plant immunity. RESULTS: In this paper, we provided a detailed summary of the roles that NAC transcription factors play in plant immunity via plant hormone pathways and reactive oxygen species pathways. In addition, we conducted in-depth investigations into the interactions between NAC transcription factors and pathogen effectors to summarize the mechanism through which they regulate the expression of defense-related genes and ultimately affect plant disease resistance. CONCLUSIONS: This paper presented a comprehensive overview of the crucial roles that NAC transcription factors play in regulating plant disease resistance through their involvement in diverse signaling pathways, acting as either positive or negative regulators, and thus provided references for further research on NAC transcription factors.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Factores de Transcripción , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Inmunidad de la Planta/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Plantas/microbiología , Plantas/genética , Plantas/metabolismo , Plantas/inmunología , Transducción de Señal , Especies Reactivas de Oxígeno/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo
3.
Annu Rev Phytopathol ; 62(1): 127-156, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39251211

RESUMEN

Arbuscular mycorrhizal (AM) symbiosis is the oldest and most widespread mutualistic association on Earth and involves plants and soil fungi belonging to Glomeromycotina. A complex molecular, cellular, and genetic developmental program enables partner recognition, fungal accommodation in plant tissues, and activation of symbiotic functions such as transfer of phosphorus in exchange for carbohydrates and lipids. AM fungi, as ancient obligate biotrophs, have evolved strategies to circumvent plant defense responses to guarantee an intimate and long-lasting mutualism. They are among those root-associated microorganisms able to boost plants' ability to cope with biotic stresses leading to mycorrhiza-induced resistance (MIR), which can be effective across diverse hosts and against different attackers. Here, we examine the molecular mechanisms underlying the modulation of plant immunity during colonization by AM fungi and at the onset and display of MIR against belowground and aboveground pests and pathogens. Understanding the MIR efficiency spectrum and its regulation is of great importance to optimizing the biotechnological application of these beneficial microbes for sustainable crop protection.


Asunto(s)
Micorrizas , Inmunidad de la Planta , Simbiosis , Micorrizas/fisiología , Plantas/inmunología , Plantas/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología
4.
Int J Mol Sci ; 25(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39273439

RESUMEN

Mycorrhizal fungi, a category of fungi that form symbiotic relationships with plant roots, can participate in the induction of plant disease resistance by secreting phosphatase enzymes. While extensive research exists on the mechanisms by which mycorrhizal fungi induce resistance, the specific contributions of phosphatases to these processes require further elucidation. This article reviews the spectrum of mycorrhizal fungi-induced resistance mechanisms and synthesizes a current understanding of how phosphatases mediate these effects, such as the induction of defense structures in plants, the negative regulation of plant immune responses, and the limitation of pathogen invasion and spread. It explores the role of phosphatases in the resistance induced by mycorrhizal fungi and provides prospective future research directions in this field.


Asunto(s)
Resistencia a la Enfermedad , Micorrizas , Enfermedades de las Plantas , Micorrizas/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Plantas/microbiología , Plantas/inmunología , Simbiosis , Raíces de Plantas/microbiología , Inmunidad de la Planta
6.
Philos Trans R Soc Lond B Biol Sci ; 379(1914): 20230370, 2024 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-39343011

RESUMEN

In the course of plant evolution from aquatic to terrestrial environments, land plants (embryophytes) acquired a diverse array of specialized metabolites, including phenylpropanoids, flavonoids and cuticle components, enabling adaptation to various environmental stresses. While embryophytes and their closest algal relatives share candidate enzymes responsible for producing some of these compounds, the complete genetic network for their biosynthesis emerged in embryophytes. In this review, we analysed genomic data from chlorophytes, charophytes and embryophytes to identify genes related to phenylpropanoid, flavonoid and cuticle biosynthesis. By integrating published research, transcriptomic data and metabolite studies, we provide a comprehensive overview on how these specialized metabolic pathways have contributed to plant defence responses to pathogens in non-vascular bryophytes and vascular plants throughout evolution. The evidence suggests that these biosynthetic pathways have provided land plants with a repertoire of conserved and lineage-specific compounds, which have shaped immunity against invading pathogens. The discovery of additional enzymes and metabolites involved in bryophyte responses to pathogen infection will provide evolutionary insights into these versatile pathways and their impact on environmental terrestrial challenges.This article is part of the theme issue 'The evolution of plant metabolism'.


Asunto(s)
Interacciones Huésped-Patógeno , Evolución Biológica , Embryophyta/metabolismo , Embryophyta/genética , Embryophyta/inmunología , Plantas/microbiología , Plantas/inmunología , Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología
7.
Int J Biol Macromol ; 279(Pt 3): 135419, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39245096

RESUMEN

This review article delves into the intricate relationship between levan, a versatile polysaccharide, and its role in enhancing plant resistance against pathogens. By exploring the potential applications of levan in agriculture and biotechnology, such as crop protection, stress tolerance enhancement, and biotechnological innovations, significant advancements in sustainable agriculture are uncovered. Despite challenges in optimizing application methods and addressing regulatory hurdles, understanding the mechanisms of levan-mediated plant immunity offers promising avenues for future research. This review underscores the implications of utilizing levan to develop eco-friendly solutions, reduce reliance on chemical pesticides, and promote sustainable agricultural practices. Ultimately, by unraveling the pivotal role of levan in plant-pathogen interactions, this review sets the stage for transformative innovations in agriculture and highlights the path towards a more resilient and sustainable agricultural future.


Asunto(s)
Fructanos , Inmunidad de la Planta , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/inmunología , Interacciones Huésped-Patógeno/inmunología , Plantas/inmunología , Plantas/microbiología
8.
Physiol Plant ; 176(5): e14495, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247988

RESUMEN

Plant-environment interactions, particularly biotic stress, are increasingly essential for global food security due to crop losses in the dynamic environment. Therefore, understanding plant responses to biotic stress is vital to mitigate damage. Beneficial microorganisms and their association with plants can reduce the damage associated with plant pathogens. One such group is PGPR (Plant growth-promoting rhizobacteria), which influences plant immunity significantly by interacting with biotic stress factors and plant signalling compounds. This review explores the types, metabolism, and mechanisms of action of PGPR, including their enzyme pathways and the signalling compounds secreted by PGPR that modulate gene and protein expression during plant defence. Furthermore, the review will delve into the crosstalk between PGPR and other plant growth regulators and signalling compounds, elucidating the physiological, biochemical, and molecular insights into PGPR's impact on plants under multiple biotic stresses, including interactions with fungi, bacteria, and viruses. Overall, the review comprehensively adds to our knowledge about PGPR's role in plant immunity and its application for agricultural resilience and food security.


Asunto(s)
Bacterias , Interacciones Microbiota-Huesped , Desarrollo de la Planta , Inmunidad de la Planta , Plantas , Bacterias/metabolismo , Interacciones Microbiota-Huesped/inmunología , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/inmunología , Plantas/microbiología , Plantas/virología , Transducción de Señal/inmunología , Estrés Fisiológico , Desarrollo de la Planta/inmunología
9.
Plant Sci ; 348: 112239, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39197534

RESUMEN

Pathogen attacks can cause significant damage to plants, posing a threaten to global food production. Plants have developed exquisite methods to rapidly store a key defensive hormone jasmonate (JA), which stimulates their entire evolutionary adaptive response to pathogen attack. However, understanding how plants initiate JA biosynthesis in response to pathogen attacks has remained elusive. In this review, we discuss the newly discovered JAV1-JAZ8-WRKY51 (JJW) complex, which plays a crucial role in regulating JA production to deter insect attacks. The JJW complex inhibits JA production in plants, maintaining a low baseline level of JA that promotes optimal plant development. However, when plants are attacked by insects, a rapid influx of calcium stimulates the JAV1 calcium-dependent protein phosphate, leading to the breakdown of the JJW complex and the activation of JA production. This surge in JA levels, initiates plant defense mechanisms against the invading insects. These findings shed light on the intricate defense system that plants have evolved to combat diseases.


Asunto(s)
Calcio , Ciclopentanos , Oxilipinas , Reguladores del Crecimiento de las Plantas , Inmunidad de la Planta , Transducción de Señal , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Calcio/metabolismo , Animales , Plantas/metabolismo , Plantas/inmunología
10.
Curr Opin Plant Biol ; 81: 102610, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39106787

RESUMEN

In order to discriminate between detrimental, commensal, and beneficial microbes, plants rely on polysaccharides such as ß-glucans, which are integral components of microbial and plant cell walls. The conversion of cell wall-associated ß-glucan polymers into a specific outcome that affects plant-microbe interactions is mediated by hydrolytic and non-hydrolytic ß-glucan-binding proteins. These proteins play crucial roles during microbial colonization: they influence the composition and resilience of host and microbial cell walls, regulate the homeostasis of apoplastic concentrations of ß-glucan oligomers, and mediate ß-glucan perception and signaling. This review outlines the dual roles of ß-glucans and their binding proteins in plant immunity and symbiosis, highlighting recent discoveries on the role of ß-glucan-binding proteins as modulators of immunity and as symbiosis receptors involved in the fine-tuning of microbial accommodation.


Asunto(s)
Inmunidad de la Planta , Simbiosis , beta-Glucanos/metabolismo , Plantas/microbiología , Plantas/inmunología , Plantas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Plantas/metabolismo , Lectinas/metabolismo , Pared Celular/metabolismo
11.
Curr Opin Plant Biol ; 81: 102618, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39153327

RESUMEN

Plants produce diverse small molecules rapidly in response to localized pathogenic attack. Some of the molecules are able to migrate systemically as mobile signals, leading to the immune priming that protects the distal tissues against future infections by a broad-spectrum of invaders. Such form of defense is unique in plants and is known as systemic acquired resistance (SAR). There are many small molecules identified so far with important roles in the systemic immune signaling, some may have the potential to act as the mobile systemic signal in SAR establishment. Here, we summarize the recent advances in SAR research, with a focus on the role and mechanisms of different small molecules in systemic immune signaling.


Asunto(s)
Inmunidad de la Planta , Plantas , Transducción de Señal , Plantas/inmunología , Plantas/metabolismo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/inmunología
12.
Curr Opin Plant Biol ; 81: 102617, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39163783

RESUMEN

Reactive oxygen species (ROS) is a collective term for highly reactive oxygen derivatives, including singlet oxygen, hydroxyl radicals, superoxide anions, and hydrogen peroxide. In plants, ROS are produced in apoplasts, chloroplasts, mitochondria, and peroxisomes. Although ROS are toxic when their levels exceed a certain threshold, low-concentration ROS can serve as essential signaling molecules for plant growth and development, as well as plant responses to abiotic and biotic stresses. Various aspects of the role of ROS in plants have been discussed in previous reviews. In this review, we first summarize recent progress in the regulatory mechanisms of apoplastic ROS signaling and then propose its potential roles in plant defense against vascular pathogens to provide new ideas for the prevention and control of vascular diseases.


Asunto(s)
Especies Reactivas de Oxígeno , Transducción de Señal , Especies Reactivas de Oxígeno/metabolismo , Plantas/metabolismo , Plantas/microbiología , Plantas/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades Vasculares/metabolismo
13.
Plant Physiol Biochem ; 215: 109046, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39153391

RESUMEN

In the evolutionary arm race between plants and viral pathogens, the plant hormone abscisic acid (ABA) has surfaced as a crucial player. This review accumulates substantial evidence that portrays ABA as a crucial regulatory hub, coordinating the complex network of plant antiviral immunity. It is capable of synchronizing resistance pathways, yet it can also be exploited as a susceptibility factor by viral effectors. ABA fortifies multi-layered defenses on one hand, by activating RNA silencing mechanisms that precisely degrade viral genomes, strengthening plasmodesmal gateways with callose barriers, and priming the transcriptional programs of resistance genes. On the other hand, ABA can augment susceptibility by counteracting other defense hormones, dampening oxidative bursts, and inhibiting antiviral defence proteins. Interestingly, a variety of viruses have independently evolved strategies to manipulate ABA signalling pathways. This fascinating paradigm of hormonal conflicts unveils ABA as an important regulatory handle that determines infection trajectories. Future studies should carefully explore the multifaceted impacts of ABA modulation on plant immunity and susceptibility to diverse pathogens before considering practical applications in viral resistance strategies.


Asunto(s)
Ácido Abscísico , Enfermedades de las Plantas , Ácido Abscísico/metabolismo , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/inmunología , Virus de Plantas/fisiología , Inmunidad de la Planta , Interacciones Huésped-Patógeno , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/virología , Plantas/metabolismo , Plantas/inmunología , Transducción de Señal
14.
Curr Opin Microbiol ; 81: 102526, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39180827

RESUMEN

Fungal effector proteins function at the interfaces of diverse interactions between fungi and their plant and animal hosts, facilitating interactions that are pathogenic or mutualistic. Recent advancements in protein structure prediction have significantly accelerated the identification and functional predictions of these rapidly evolving effector proteins. This development enables scientists to generate testable hypotheses for functional validation using experimental approaches. Research frontiers in effector biology include understanding pathways through which effector proteins are secreted or translocated into host cells, their roles in manipulating host microbiomes, and their contribution to interacting with host immunity. Comparative effector repertoires among different fungal-host interactions can highlight unique adaptations, providing insights for the development of novel antifungal therapies and biocontrol strategies.


Asunto(s)
Proteínas Fúngicas , Hongos , Interacciones Huésped-Patógeno , Hongos/metabolismo , Hongos/genética , Hongos/patogenicidad , Hongos/fisiología , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Animales , Plantas/microbiología , Plantas/inmunología , Enfermedades de las Plantas/microbiología
15.
Cell Host Microbe ; 32(8): 1427-1443.e8, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39094584

RESUMEN

Prokaryotes have evolved a multitude of defense systems to protect against phage predation. Some of these resemble eukaryotic genes involved in antiviral responses. Here, we set out to systematically project the current knowledge of eukaryotic-like antiviral defense systems onto prokaryotic genomes, using Pseudomonas aeruginosa as a model organism. Searching for phage defense systems related to innate antiviral genes from vertebrates and plants, we uncovered over 450 candidates. We validated six of these phage defense systems, including factors preventing viral attachment, R-loop-acting enzymes, the inflammasome, ubiquitin pathway, and pathogen recognition signaling. Collectively, these defense systems support the concept of deep evolutionary links and shared antiviral mechanisms between prokaryotes and eukaryotes.


Asunto(s)
Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/inmunología , Pseudomonas aeruginosa/virología , Inmunidad Innata , Bacteriófagos/genética , Bacteriófagos/fisiología , Interacciones Huésped-Patógeno/inmunología , Interacciones Huésped-Patógeno/genética , Animales , Evolución Molecular , Inflamasomas/inmunología , Inflamasomas/genética , Eucariontes/virología , Eucariontes/genética , Eucariontes/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Evolución Biológica , Plantas/inmunología , Plantas/virología , Plantas/microbiología
16.
Methods Mol Biol ; 2843: 95-117, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39141296

RESUMEN

Bacterial extracellular vesicles (BEVs) are released from the surface of bacterial cells and contain a diverse molecular cargo. Studies conducted primarily with bacterial pathogens of mammals have shown that BEVs are involved in multiple processes such as cell-cell communication, the delivery of RNA, DNA, and proteins to target cells, protection from stresses, manipulation of host immunity, and other functions. Until a decade ago, the roles of BEVs in plant-bacteria interactions were barely investigated. However, recent studies have shown that BEVs of plant pathogens possess similar functions as their mammalian pathogen counterparts, and more research is now devoted to study their roles and interactions with plants. In the following methods chapter, we provide five well-validated assays to examine the interaction of BEVs with the plant immune system. These assays rely on different markers or immune outputs, which indicate the activation of plant immunity (defense marker gene expression, reactive oxygen species burst, seedling inhibition). Furthermore, we offer assays that directly evaluate the priming of the immune system following BEV challenge and the effectiveness of its response to subsequent local or systemic infection. Altogether, these assays provide a thorough examination to the interactions of BEVs and the plant immune system.


Asunto(s)
Vesículas Extracelulares , Inmunidad de la Planta , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Interacciones Huésped-Patógeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Bacterias/inmunología , Bacterias/metabolismo , Plantas/inmunología , Plantas/microbiología , Plantas/metabolismo
17.
Vaccine ; 42(25): 126115, 2024 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38987109

RESUMEN

Vaccines are one of the most important means to prevent and control the epidemic of infectious diseases. Commercial vaccines not only include corresponding antigens, but also need vaccine adjuvants. Immune adjuvants play an increasingly important role in the research, development and manufacture of vaccines. Adjuvants combined with antigens can improve the stability, safety and immune efficiency of vaccines. Some substances that can enhance the immune response have been found in nature(mainly plants) and used as adjuvants in vaccines to improve the immune effect of vaccines. These plant-derived immune adjuvants often have the advantages of low toxicity, high stability, low price, etc., providing more possibilities for vaccine development. We summarized and analyzed the advantages, application research, particulate delivery systems, existing problems and future research focus of botanical adjuvant. It is hoped to provide new ideas for the research and development of immune adjuvants in the future.


Asunto(s)
Adyuvantes Inmunológicos , Desarrollo de Vacunas , Humanos , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacología , Animales , Vacunas/inmunología , Vacunas/administración & dosificación , Adyuvantes de Vacunas , Plantas/inmunología
18.
Trends Plant Sci ; 29(10): 1062-1065, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38972784

RESUMEN

Beneficial microbes induce resistance in plants (MIR), imposing both lethal and sublethal effects on herbivorous insects. We argue that herbivores surviving MIR carry metabolic and immunological imprints of MIR with cascading effects across food webs. We propose that incorporating such cascading effects will strongly enhance the current MIR research framework.


Asunto(s)
Herbivoria , Insectos , Defensa de la Planta contra la Herbivoria , Plantas , Insectos/fisiología , Insectos/microbiología , Animales , Plantas/microbiología , Plantas/inmunología , Cadena Alimentaria
20.
Int J Mol Sci ; 25(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39000361

RESUMEN

Plant lipids are essential cell constituents with many structural, storage, signaling, and defensive functions. During plant-pathogen interactions, lipids play parts in both the preexisting passive defense mechanisms and the pathogen-induced immune responses at the local and systemic levels. They interact with various components of the plant immune network and can modulate plant defense both positively and negatively. Under biotic stress, lipid signaling is mostly associated with oxygenated natural products derived from unsaturated fatty acids, known as oxylipins; among these, jasmonic acid has been of great interest as a specific mediator of plant defense against necrotrophic pathogens. Although numerous studies have documented the contribution of oxylipins and other lipid-derived species in plant immunity, their specific roles in plant-pathogen interactions and their involvement in the signaling network require further elucidation. This review presents the most relevant and recent studies on lipids and lipid-derived signaling molecules involved in plant-pathogen interactions, with the aim of providing a deeper insight into the mechanisms underpinning lipid-mediated regulation of the plant immune system.


Asunto(s)
Interacciones Huésped-Patógeno , Metabolismo de los Lípidos , Plantas , Transducción de Señal , Plantas/metabolismo , Plantas/inmunología , Plantas/microbiología , Oxilipinas/metabolismo , Inmunidad de la Planta , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Lípidos , Ciclopentanos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA