Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32093159

RESUMEN

Late 19th-century cytologists observed tiny oil drops in shoot parenchyma and seeds, but it was discovered only in 1972 that they were bound by a half unit-membrane. Later, it was found that lipid bodies (LBs) arise from the endoplasmic reticulum. Seeds are known to be packed with static LBs, coated with the LB-specific protein OLEOSIN. As shown here, apices of Populus tremula x P. tremuloides also express OLEOSIN genes and produce potentially mobile LBs. In developing buds, PtOLEOSIN (PtOLE) genes were upregulated, especially PtOLE6, concomitant with LB accumulation. To investigate LB mobility and destinations, we transformed Arabidopsis with PtOLE6-eGFP. We found that PtOLE6-eGFP fusion protein co-localized with Nile Red-stained LBs in all cell types. Moreover, PtOLE6-eGFP-tagged LBs targeted plasmodesmata, identified by the callose marker aniline blue. Pharmacological experiments with brefeldin, cytochalasin D, and oryzalin showed that LB-trafficking requires F-actin, implying involvement of myosin motors. In a triple myosin-XI knockout (xi-k/1/2), transformed with PtOLE6-eGFP, trafficking of PtOLE6-eGFP-tagged LBs was severely impaired, confirming that they move on F-actin, motorized by myosin XIs. The data reveal that LBs and OLEOSINs both function in proliferating apices and buds, and that directional trafficking of LBs to plasmodesmata requires the actomyosin system.


Asunto(s)
Actinas/metabolismo , Gotas Lipídicas/metabolismo , Miosinas/metabolismo , Proteínas de Plantas/metabolismo , Plasmodesmos/metabolismo , Populus/metabolismo , Actinas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico Activo/fisiología , Miosinas/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plasmodesmos/genética , Populus/genética
2.
EMBO Rep ; 20(8): e47182, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31286648

RESUMEN

In eukaryotes, membrane contact sites (MCS) allow direct communication between organelles. Plants have evolved a unique type of MCS, inside intercellular pores, the plasmodesmata, where endoplasmic reticulum (ER)-plasma membrane (PM) contacts coincide with regulation of cell-to-cell signalling. The molecular mechanism and function of membrane tethering within plasmodesmata remain unknown. Here, we show that the multiple C2 domains and transmembrane region protein (MCTP) family, key regulators of cell-to-cell signalling in plants, act as ER-PM tethers specifically at plasmodesmata. We report that MCTPs are plasmodesmata proteins that insert into the ER via their transmembrane region while their C2 domains dock to the PM through interaction with anionic phospholipids. A Atmctp3/Atmctp4 loss of function mutant induces plant developmental defects, impaired plasmodesmata function and composition, while MCTP4 expression in a yeast Δtether mutant partially restores ER-PM tethering. Our data suggest that MCTPs are unique membrane tethers controlling both ER-PM contacts and cell-to-cell signalling.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Glicosiltransferasas/genética , Proteínas de la Membrana/genética , Plasmodesmos/genética , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Membrana Celular/metabolismo , Células Cultivadas , Retículo Endoplásmico/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Glicosiltransferasas/deficiencia , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/deficiencia , Fosfolípidos/metabolismo , Células Vegetales , Plantas Modificadas Genéticamente , Plasmodesmos/metabolismo , Plasmodesmos/ultraestructura , Dominios Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Nicotiana/genética , Nicotiana/metabolismo , Proteína Fluorescente Roja
3.
Methods Mol Biol ; 2014: 267-287, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31197803

RESUMEN

The sucrose carrier AtSUC2 of Arabidopsis thaliana is localized in the phloem, where it catalyzes the uptake of sucrose from the apoplast into companion cells. Imported sucrose moves passively via plasmodesmata from the companion cells into the neighboring sieve elements that distribute this disaccharide to the different sink organs. Phloem loading of sucrose by the AtSUC2 protein is an essential process, and mutants lacking this protein stay tiny, develop no or only few flowers, and have a strongly reduced root system. The promoter of the AtSUC2 gene is active exclusively in companion cells of the phloem. Moreover, it drives very strong expression not only in Arabidopsis, but also in all plant species tested so far, including monocot species. Due to these features, the AtSUC2 promoter has become an important tool in diverse areas of plant research during the last two decades. It was used to study phloem development and function including phloem loading and unloading. Furthermore, it was helpful in analyzing the pathways of posttranscriptional silencing by RNA interference, the regulation of flowering, mechanisms of nutrient withdrawal by phloem-feeding pathogens, and other physiological functions that are related to long distance transport. The present paper gives an overview of different approaches in plant research that utilized the strong and companion cell-specific expression of own or foreign genes driven by the AtSUC2 promoter.


Asunto(s)
Arabidopsis/fisiología , Proteínas de Transporte de Membrana/genética , Floema/fisiología , Desarrollo de la Planta/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Transporte Biológico , Biomarcadores , Productos Agrícolas , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Interacciones Huésped-Patógeno , Plasmodesmos/genética , Plasmodesmos/metabolismo , Interferencia de ARN , Transducción de Señal
4.
J Exp Bot ; 70(16): 4305-4317, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-30976798

RESUMEN

The phloem cap of Arabidopsis thaliana accumulates glucosinolates that yield toxic catabolites upon damage-induced hydrolysis. These defence compounds are stored in high concentrations in millimetre long S-cells. At early stages of development, S-cells initiate a process indicative of programmed cell death. How these cells are maintained in a highly turgescent state following this process is currently unknown. Here, we show that S-cells undergo substantial morphological changes during early differentiation. Vacuolar collapse and rapid clearance of the cytoplasm did not occur until senescence. Instead, smooth endoplasmic reticulum, Golgi bodies, vacuoles, and undifferentiated plastids were observed. Lack of chloroplasts indicates that S-cells depend on metabolite supply from neighbouring cells. Interestingly, TEM revealed numerous plasmodesmata between S-cells and neighbouring cells. Photoactivation of a symplasmic tracer showed coupling with neighbouring cells that are involved in glucosinolate synthesis. Hence, symplasmic transport might contribute to glucosinolate storage in S-cells. To investigate the fate of S-cells, we traced them in flower stalks from the earliest detectable stages to senescence. At late stages, S-cells were shown to deposit thick secondary cell walls and transform into phloem fibres. Thus, phloem fibres in the herbaceous plant Arabidopsis pass a pronounced phase of chemical defence during early stages of development.


Asunto(s)
Arabidopsis/metabolismo , Glucosinolatos/biosíntesis , Floema/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Floema/genética , Plasmodesmos/genética , Plasmodesmos/metabolismo
5.
Int J Mol Sci ; 19(12)2018 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-30477269

RESUMEN

Pepino mosaic virus (PepMV) is a mechanically-transmitted tomato pathogen of importance worldwide. Interactions between the PepMV coat protein and triple gene block protein (TGBp1) with the host heat shock cognate protein 70 and catalase 1 (CAT1), respectively, have been previously reported by our lab. In this study, a novel tomato interactor (SlTXND9) was shown to bind the PepMV TGBp1 in yeast-two-hybrid screening, in vitro pull-down and bimolecular fluorescent complementation (BiFC) assays. SlTXND9 possesses part of the conserved thioredoxin (TRX) active site sequence (W__PC vs. WCXPC), and TXND9 orthologues cluster within the TRX phylogenetic superfamily closest to phosducin-like protein-3. In PepMV-infected and healthy Nicotiana benthamiana plants, NbTXND9 mRNA levels were comparable, and expression levels remained stable in both local and systemic leaves for 10 days post inoculation (dpi), as was also the case for catalase 1 (CAT1). To localize the TXND9 in plant cells, a polyclonal antiserum was produced. Purified α-SlTXND9 immunoglobulin (IgG) consistently detected a set of three protein bands in the range of 27⁻35 kDa, in the 1000 and 30,000 g pellets, and the soluble fraction of extracts of healthy and PepMV-infected N. benthamiana leaves, but not in the cell wall. These bands likely consist of the homologous protein NbTXND9 and its post-translationally modified derivatives. On electron microscopy, immuno-gold labelling of ultrathin sections of PepMV-infected N. benthamiana leaves using α-SlTXND9 IgG revealed particle accumulation close to plasmodesmata, suggesting a role in virus movement. Taken together, this study highlights a novel tomato-PepMV protein interaction and provides data on its localization in planta. Currently, studies focusing on the biological function of this interaction during PepMV infection are in progress.


Asunto(s)
Interacciones Huésped-Patógeno , Hojas de la Planta/genética , Proteínas de Plantas/genética , Potexvirus/genética , Solanum lycopersicum/genética , Tiorredoxinas/genética , Proteínas Virales/genética , Secuencia de Aminoácidos , Anticuerpos/química , Expresión Génica , Sueros Inmunes/química , Inmunohistoquímica , Solanum lycopersicum/clasificación , Solanum lycopersicum/metabolismo , Solanum lycopersicum/virología , Filogenia , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Hojas de la Planta/virología , Proteínas de Plantas/metabolismo , Plasmodesmos/genética , Plasmodesmos/metabolismo , Plasmodesmos/virología , Potexvirus/metabolismo , Unión Proteica , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Tiorredoxinas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virología , Proteínas Virales/metabolismo
6.
Elife ; 72018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30113309

RESUMEN

Here, we demonstrate that Arabidopsis thaliana Formin 2 (AtFH2) localizes to plasmodesmata (PD) through its transmembrane domain and is required for normal intercellular trafficking. Although loss-of-function atfh2 mutants have no overt developmental defect, PD's permeability and sensitivity to virus infection are increased in atfh2 plants. Interestingly, AtFH2 functions in a partially redundant manner with its closest homolog AtFH1, which also contains a PD localization signal. Strikingly, targeting of Class I formins to PD was also confirmed in rice, suggesting that the involvement of Class I formins in regulating actin dynamics at PD may be evolutionarily conserved in plants. In vitro biochemical analysis showed that AtFH2 fails to nucleate actin assembly but caps and stabilizes actin filaments. We also demonstrate that the interaction between AtFH2 and actin filaments is crucial for its function in vivo. These data allow us to propose that AtFH2 regulates PD's permeability by anchoring actin filaments to PD.


Asunto(s)
Citoesqueleto de Actina/genética , Actinas/genética , Proteínas de Arabidopsis/genética , Proteínas de la Membrana/genética , Plasmodesmos/genética , Citoesqueleto de Actina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Movimiento Celular/genética , Movimiento Celular/fisiología , Forminas , Dominios Proteicos/genética , Transporte de Proteínas/genética
7.
J Virol ; 92(21)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30135122

RESUMEN

Plant virus cell-to-cell movement is an essential step in viral infections. This process is facilitated by specific virus-encoded movement proteins (MPs), which manipulate the cell wall channels between neighboring cells known as plasmodesmata (PD). Citrus psorosis virus (CPsV) infection in sweet orange involves the formation of tubule-like structures within PD, suggesting that CPsV belongs to "tubule-forming" viruses that encode MPs able to assemble a hollow tubule extending between cells to allow virus movement. Consistent with this hypothesis, we show that the MP of CPsV (MPCPsV) indeed forms tubule-like structures at PD upon transient expression in Nicotiana benthamiana leaves. Tubule formation by MPCPsV depends on its cleavage capacity, mediated by a specific aspartic protease motif present in its primary sequence. A single amino acid mutation in this motif abolishes MPCPsV cleavage, alters the subcellular localization of the protein, and negatively affects its activity in facilitating virus movement. The amino-terminal 34-kDa cleavage product (34KCPsV), but not the 20-kDa fragment (20KCPsV), supports virus movement. Moreover, similar to tubule-forming MPs of other viruses, MPCPsV (and also the 34KCPsV cleavage product) can homooligomerize, interact with PD-located protein 1 (PDLP1), and assemble tubule-like structures at PD by a mechanism dependent on the secretory pathway. 20KCPsV retains the protease activity and is able to cleave a cleavage-deficient MPCPsV in trans Altogether, these results demonstrate that CPsV movement depends on the autolytic cleavage of MPCPsV by an aspartic protease activity, which removes the 20KCPsV protease and thereby releases the 34KCPsV protein for PDLP1-dependent tubule formation at PD.IMPORTANCE Infection by citrus psorosis virus (CPsV) involves a self-cleaving aspartic protease activity within the viral movement protein (MP), which results in the production of two peptides, termed 34KCPsV and 20KCPsV, that carry the MP and viral protease activities, respectively. The underlying protease motif within the MP is also found in the MPs of other members of the Aspiviridae family, suggesting that protease-mediated protein processing represents a conserved mechanism of protein expression in this virus family. The results also demonstrate that CPsV and potentially other ophioviruses move by a tubule-guided mechanism. Although several viruses from different genera were shown to use this mechanism for cell-to-cell movement, our results also demonstrate that this mechanism is controlled by posttranslational protein cleavage. Moreover, given that tubule formation and virus movement could be inhibited by a mutation in the protease motif, targeting the protease activity for inactivation could represent an important approach for ophiovirus control.


Asunto(s)
Proteasas de Ácido Aspártico/metabolismo , Citrus sinensis/virología , Nicotiana/virología , Proteínas de Movimiento Viral en Plantas/metabolismo , Virus de Plantas/crecimiento & desarrollo , Plasmodesmos/fisiología , Aminoácidos/genética , Proteasas de Ácido Aspártico/genética , Microscopía Electrónica de Transmisión , Enfermedades de las Plantas/virología , Hojas de la Planta/virología , Proteínas de Movimiento Viral en Plantas/genética , Virus de Plantas/genética , Plasmodesmos/genética , Plasmodesmos/virología
8.
Plant Physiol ; 177(2): 604-614, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29581179

RESUMEN

Many plant mRNAs move from cell to cell or long distance to execute non-cell-autonomous functions. These mobile mRNAs traffic through the phloem to regulate many developmental processes, but despite the burgeoning discovery of mobile mRNAs, little is known about the mechanism underlying the intracellular sorting of these mRNAs. Here, we exploited a fluorescence-based mRNA labeling system, using the bacteriophage coat protein MS2, fused to GFP (MS2-GFP) and an MS2 recognition site in the RNA of interest, to visualize the intracellular trafficking of mobile mRNAs in living plant cells of Nicotiana benthamiana We first improved this system by using the nuclear localization sequence from FD, which substantially reduced the fluorescent background of MS2-GFP in the cytoplasm. The modified system allowed us to observe the cytoplasmic fluorescent foci dependent on MS2-binding sites. Coexpressing the MS2-GFP system with a virus movement protein, which is a plasmodesmata (PD)-localized nonspecific RNA-binding protein, targeted cytoplasmic fluorescent foci to the PD, suggesting that the cytoplasmic fluorescent foci contain mRNA and MS2-GFP. Our ex vivo RNA imaging revealed that mobile but not nonmobile mRNAs were selectively targeted to PD. Real-time images of intracellular translocation revealed that the translocation of mRNA and organelles in the transvacuolar strands may be governed by the same mechanism. Our study suggests that PD targeting of mRNA is a selective step in determining mRNA cell-to-cell movement of mRNAs.


Asunto(s)
Proteínas de Arabidopsis/genética , Plasmodesmos/genética , ARN Mensajero/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Transporte Biológico/genética , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Señales de Localización Nuclear/genética , Células Vegetales/fisiología , Plantas Modificadas Genéticamente , Plasmodesmos/metabolismo , ARN Mensajero/análisis , ARN Mensajero/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nicotiana/citología , Nicotiana/genética , Virus del Mosaico del Tabaco/genética , Virus del Mosaico del Tabaco/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
9.
Mol Plant Microbe Interact ; 30(6): 478-488, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28323529

RESUMEN

The chloroplast-resident RNA helicase ISE2 (INCREASED SIZE EXCLUSION LIMIT2) can modulate the formation and distribution of plasmodesmata and intercellular trafficking. We have determined that ISE2 expression is induced by viral infection. Therefore, the responses of Nicotiana benthamiana plants with varying levels of ISE2 expression to infection by Tobacco mosaic virus and Turnip mosaic virus were examined. Surprisingly, increased or decreased ISE2 expression led to faster viral systemic spread and, in some cases, enhanced systemic necrosis. The contributions of RNA silencing and hormone-mediated immune responses to the increased viral susceptibility of these plants were assessed. In addition, Arabidopsis thaliana plants with increased ISE2 expression were found to be more susceptible to infection by the beet cyst nematode Heterodera schachtii. Our analyses provide intriguing insights into unexpected functional roles of a chloroplast protein in mediating plant-pathogen interactions. The possible roles of plasmodesmata in determining the outcomes of these interactions are also discussed.


Asunto(s)
Arabidopsis/genética , Proteínas de Cloroplastos/genética , Regulación de la Expresión Génica de las Plantas , Nicotiana/genética , Enfermedades de las Plantas/genética , Animales , Arabidopsis/parasitología , Arabidopsis/virología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Silenciador del Gen , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/virología , Plantas Modificadas Genéticamente , Plasmodesmos/genética , Plasmodesmos/metabolismo , Potyvirus/fisiología , Transporte de Proteínas/genética , ARN Helicasas/genética , ARN Helicasas/metabolismo , Nicotiana/parasitología , Nicotiana/virología , Virus del Mosaico del Tabaco/fisiología , Tylenchoidea/fisiología
10.
Plant Signal Behav ; 12(4): e1300732, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28272988

RESUMEN

In plants, organogenesis and specification of cell layers and tissues rely on precise symplastic delivery of regulatory molecules via plasmodesmata. Accordingly, abundance and aperture of plasmodesmata at individual cell boundaries should be controlled by the plant. Recently, studies in Arabidopsis established reactive oxygen species as major regulators of plasmodesmata formation and gating. We show that in a barley mutant deficient in the synthesis of chlorophyll b, the numbers of plasmodesmata in leaves and in the shoot apical meristem are significantly higher than in the corresponding wild type, probably due to redox imbalance in the mutant. The resulting disturbance of symplasmic transport is likely to be the reason for the observed delayed floral transition in these mutants.


Asunto(s)
Flores/metabolismo , Hordeum/metabolismo , Proteínas de Plantas/metabolismo , Clorofila/genética , Clorofila/metabolismo , Flores/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Hordeum/genética , Meristema/genética , Meristema/metabolismo , Proteínas de Plantas/genética , Plasmodesmos/genética , Plasmodesmos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oxígeno Singlete/metabolismo
11.
Plant Physiol ; 172(2): 1061-1073, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27559035

RESUMEN

Plasmodesmata (Pd) are membranous channels that serve as a major conduit for cell-to-cell communication in plants. The Pd-associated ß-1,3-glucanase (BG_pap) and CALLOSE BINDING PROTEIN1 (PDCB1) were identified as key regulators of Pd conductivity. Both are predicted glycosylphosphatidylinositol-anchored proteins (GPI-APs) carrying a conserved GPI modification signal. However, the subcellular targeting mechanism of these proteins is unknown, particularly in the context of other GPI-APs not associated with Pd Here, we conducted a comparative analysis of the subcellular targeting of the two Pd-resident and two unrelated non-Pd GPI-APs in Arabidopsis (Arabidopsis thaliana). We show that GPI modification is necessary and sufficient for delivering both BG_pap and PDCB1 to Pd Moreover, the GPI modification signal from both Pd- and non-Pd GPI-APs is able to target a reporter protein to Pd, likely to plasma membrane microdomains enriched at Pd As such, the GPI modification serves as a primary Pd sorting signal in plant cells. Interestingly, the ectodomain, a region that carries the functional domain in GPI-APs, in Pd-resident proteins further enhances Pd accumulation. However, in non-Pd GPI-APs, the ectodomain overrides the Pd targeting function of the GPI signal and determines a specific GPI-dependent non-Pd localization of these proteins at the plasma membrane and cell wall. Domain-swap analysis showed that the non-Pd localization is also dominant over the Pd-enhancing function mediated by a Pd ectodomain. In conclusion, our results indicate that segregation between Pd- and non-Pd GPI-APs occurs prior to Pd targeting, providing, to our knowledge, the first evidence of the mechanism of GPI-AP sorting in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glucano Endo-1,3-beta-D-Glucosidasa/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Glicoproteínas de Membrana/metabolismo , Plasmodesmos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Pared Celular/metabolismo , Glucano Endo-1,3-beta-D-Glucosidasa/genética , Immunoblotting , Proteínas Ligadas a Lípidos/genética , Proteínas Ligadas a Lípidos/metabolismo , Glicoproteínas de Membrana/genética , Microdominios de Membrana/metabolismo , Microscopía Confocal , Modelos Biológicos , Plantas Modificadas Genéticamente , Plasmodesmos/genética , Transporte de Proteínas/genética
12.
Plant J ; 88(4): 620-632, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27464824

RESUMEN

The ovary of rice undergoes rapid expansion immediately after fertilization, and this process determines the final sink strength potential of caryopses. To date, work on rice grain development has mainly focused on endosperm filling, whereas information on the essential elements for ovary expansion remains limited. We report here a functional analysis of the ovary expansion retarded mutant crr1 in rice. Map-based cloning revealed that CRR1 encodes a protein homologous to the Arabidopsis callose synthases AtGSL8 and AtGSL10. Point mutation in crr1 resulted in alternative splicing, which led to the formation of the truncated crr1 protein without the ß-glucan synthase domain. Iodine staining showed that there were few starch granules and these were unevenly distributed in the pericarp of crr1, and a 5,6-carboxyfluorescein diacetate transport assay revealed that carbohydrates were less efficiently unloaded from the lateral vasculature into the developing caryopsis. CRR1 transcripts were detected in all plant organs, with the highest level found in receptacles, which are mainly composed of vascular tissues. Analysis of pCRR1::GUS transgenic plants showed that CRR1 was specifically expressed in vascular bundle cells. Consistently, loss of function of CRR1 led to disordered patterns of vascular cells in the ovaries and receptacles of the mutant. Furthermore, a small portion of cells in the vascular bundles of crr1 showed defective cell wall formation, and callose deposition was specifically reduced at the plasmodesmata (PD) of cells with aberrant walls. Our results suggest that CRR1 performs a pivotal role in determining initial ovary expansion in rice, possibly via the PD-mediated permeability of cell fate determinants for vascular cell differentiation.


Asunto(s)
Glucosiltransferasas/metabolismo , Oryza/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Glucosiltransferasas/genética , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plasmodesmos/genética , Plasmodesmos/metabolismo
13.
Cell Host Microbe ; 19(4): 541-9, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-27078071

RESUMEN

Systemic acquired resistance (SAR) in plants is mediated by the signaling molecules azelaic acid (AzA), glycerol-3-phosphate (G3P), and salicylic acid (SA). Here, we show that AzA and G3P transport occurs via the symplastic route, which is regulated by channels known as plasmodesmata (PD). In contrast, SA moves via the extracytosolic apoplast compartment. We found that PD localizing proteins (PDLP) 1 and 5 were required for SAR even though PD permeability in pdlp1 and 5 mutants was comparable to or higher than wild-type plants, respectively. Furthermore, PDLP function was required in the recipient cell, suggesting regulatory function in SAR. Interestingly, overexpression of PDLP5 drastically reduced PD permeability, yet also impaired SAR. PDLP1 interacted with AZI1 (lipid transfer-like protein required for AzA- and G3P-induced SAR) and contributed to its intracellular partitioning. Together, these results reveal the transport routes of SAR chemical signals and highlight the regulatory role of PD-localizing proteins in SAR.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Enfermedades de las Plantas/inmunología , Plasmodesmos/metabolismo , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Ácidos Dicarboxílicos/metabolismo , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Glicerofosfatos/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/genética , Enfermedades de las Plantas/microbiología , Plasmodesmos/genética , Transporte de Proteínas , Pseudomonas syringae/fisiología , Ácido Salicílico/metabolismo
14.
Trends Plant Sci ; 21(5): 450-459, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26655263

RESUMEN

Plant receptor kinases (RKs) and receptor proteins (RPs) are involved in a plethora of cellular processes, including developmental decisions and immune responses. There is increasing evidence that plasmodesmata (PD)-localized RKs and RPs act as nexuses that perceive extracellular signals and convey them into intra- and intercellular responses by regulating the exchange of molecules through PD. How RK/RP complexes regulate the specific and nonspecific traffic of molecules through PD, and how these receptors are specifically targeted to PD, have been elusive but underpin comprehensive understanding of the function and regulation of the symplast. In this review we gather the current knowledge of RK/RP complex function at PD and how they might regulate intercellular traffic.


Asunto(s)
Proteínas de Plantas/metabolismo , Plasmodesmos/metabolismo , Proteínas de Plantas/genética , Plasmodesmos/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
15.
Curr Opin Plant Biol ; 27: 133-40, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26247123

RESUMEN

Effective intercellular communication is crucial for the survival of plants. Because plant cells are encased in rigid cell walls, direct cell-to-cell exchange of cytoplasmic content is only possible through plasmodesmata (PD), membrane-lined nanotubes that connect the cytoplasm of adjacent cells. PD are highly dynamic communication channels that can undergo various structural and functional modifications. Recent findings in the field suggest that defense signaling pathways are tightly linked to the regulation of PD, and the restriction of PD-mediated cell-to-cell communication is an essential innate immune response to microbial pathogens. Moreover, several plasma membrane-bound signaling components, including receptor-like kinases that are known to have non-cell autonomous function or pathogen perception at the cell periphery, are found to also partition to PD. These findings hint at the novel role of PD as a signaling hub for both symplasmic and cross-membrane pathways.


Asunto(s)
Comunicación Celular , Plasmodesmos/genética , Transducción de Señal , Inmunidad Innata , Inmunidad de la Planta , Plasmodesmos/química , Plasmodesmos/metabolismo
16.
Plant Physiol ; 168(4): 1563-72, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26084919

RESUMEN

Primary plasmodesmata (PD) arise at cytokinesis when the new cell plate forms. During this process, fine strands of endoplasmic reticulum (ER) are laid down between enlarging Golgi-derived vesicles to form nascent PD, each pore containing a desmotubule, a membranous rod derived from the cortical ER. Little is known about the forces that model the ER during cell plate formation. Here, we show that members of the reticulon (RTNLB) family of ER-tubulating proteins in Arabidopsis (Arabidopsis thaliana) may play a role in the formation of the desmotubule. RTNLB3 and RTNLB6, two RTNLBs present in the PD proteome, are recruited to the cell plate at late telophase, when primary PD are formed, and remain associated with primary PD in the mature cell wall. Both RTNLBs showed significant colocalization at PD with the viral movement protein of Tobacco mosaic virus, while superresolution imaging (three-dimensional structured illumination microscopy) of primary PD revealed the central desmotubule to be labeled by RTNLB6. Fluorescence recovery after photobleaching studies showed that these RTNLBs are mobile at the edge of the developing cell plate, where new wall materials are being delivered, but significantly less mobile at its center, where PD are forming. A truncated RTNLB3, unable to constrict the ER, was not recruited to the cell plate at cytokinesis. We discuss the potential roles of RTNLBs in desmotubule formation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Citocinesis , Retículo Endoplásmico/metabolismo , Plasmodesmos/metabolismo , Proteínas de Arabidopsis/genética , Línea Celular , Pared Celular/genética , Recuperación de Fluorescencia tras Fotoblanqueo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Proteínas de Movimiento Viral en Plantas/genética , Proteínas de Movimiento Viral en Plantas/metabolismo , Plantas Modificadas Genéticamente , Plasmodesmos/genética , Transporte de Proteínas , Nicotiana/citología , Nicotiana/genética , Nicotiana/metabolismo , Virus del Mosaico del Tabaco/genética , Virus del Mosaico del Tabaco/metabolismo
17.
Methods Mol Biol ; 1217: 121-33, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25287200

RESUMEN

Plasmodesmata (PD) are intercellular communication channels that form long, membrane-lined cylinders across cellular junctions. A fluorescent-tagging approach is most commonly used for an initial assessment to address whether a protein of interest may localize or associate with PD domain. However, owing to the dimension of PD being at nanoscale, PD-associated fluorescent signals are detected only as small spots scattered at the cell periphery, hence requiring additional confirmatory evidence. Immunogold labeling provides such information, but suitable antibodies are not always available and morphological preservation is often compromised with this approach. Here we describe an alternative approach using a correlative light and electron microscopy (CLEM) technique, which combines fluorescent imaging and transmission electron microscopy. By employing this method, a clear correlation between fluorescent speckles and the presence of individual or clusters of PD is achieved.


Asunto(s)
Proteínas de Arabidopsis/análisis , Arabidopsis/ultraestructura , Pared Celular/ultraestructura , Proteínas Fluorescentes Verdes/análisis , Procesamiento de Imagen Asistido por Computador/métodos , Proteínas de la Membrana/análisis , Plasmodesmos/ultraestructura , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Pared Celular/genética , Fijadores/química , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas de la Membrana/genética , Microscopía Electrónica de Transmisión/estadística & datos numéricos , Microscopía Fluorescente/estadística & datos numéricos , Microtomía , Plantas Modificadas Genéticamente , Plasmodesmos/genética , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/genética , Plantones/genética , Plantones/ultraestructura , Fijación del Tejido
18.
Methods Mol Biol ; 1217: 185-98, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25287205

RESUMEN

Plasmodesmata (PD) are channels that connect the cytoplasm of adjacent plant cells, permitting intercellular transport and communication. PD function and formation are essential to plant growth and development, but we still know very little about the genetic pathways regulating PD transport. Here, we present a method for assaying changes in the rate of PD transport following genetic manipulation. Gene expression in leaves is modified by virus-induced gene silencing. Seven to ten days after infection with Tobacco rattle virus carrying a silencing trigger, the gene(s) of interest is silenced in newly arising leaves. In these new leaves, individual cells are then transformed with Agrobacterium to express GFP, and the rate of GFP diffusion via PD is measured. By measuring GFP diffusion both within the epidermis and between the epidermis and mesophyll, the assay can be used to study the effects of silencing a gene(s) on PD transport in general, or transport through secondary PD specifically. Plant biologists working in several fields will find this assay useful, since PD transport impacts plant physiology, development, and defense.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Nicotiana/genética , Hojas de la Planta/genética , Proteínas de Plantas/genética , Plasmodesmos/metabolismo , Agrobacterium/genética , Agrobacterium/metabolismo , Comunicación Celular , Ingeniería Genética , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Hojas de la Planta/virología , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/metabolismo , Virus de Plantas/genética , Virus de Plantas/metabolismo , Plasmodesmos/genética , Plasmodesmos/microbiología , Plasmodesmos/virología , Transporte de Proteínas , Transducción de Señal , Nicotiana/metabolismo , Nicotiana/microbiología , Nicotiana/virología
19.
Methods Mol Biol ; 1217: 231-43, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25287207

RESUMEN

Several plant proteins function as intercellular messenger to specify cell fate and coordinate plant development. Such intercellular communication can be achieved by direct, selective, or nonselective (diffusion-based) trafficking through plasmodesmata (PD), the symplasmic membrane-lined nanochannels adjoining two cells. A trichome rescue trafficking assay was reported to allow the detection of protein movement in Arabidopsis leaf tissue using transgenic gene expression. Here, we provide a protocol to dissect the mode of intercellular protein movement in Arabidopsis root. This assay system involves a root ground tissue-specific GAL4/UAS transactivation expression system in combination with fluorescent reporter proteins. In this system, mCherry, a red fluorescent protein, can move cell to cell via diffusion, while mCherry-H2B is tightly cell autonomous. Thus, a protein fused to mCherry-H2B that can move out from the site of synthesis likely contains a selective trafficking signal to impart a cell-to-cell gain-of-trafficking function to the cell-autonomous mCherry-H2B. This approach can be adapted to investigate the cell-to-cell trafficking properties of any protein of interest.


Asunto(s)
Arabidopsis/genética , Bioensayo , Regulación de la Expresión Génica de las Plantas , Plasmodesmos/genética , Plantones/genética , Factores de Transcripción/genética , Agrobacterium/genética , Arabidopsis/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Plantas Modificadas Genéticamente , Plásmidos/química , Plásmidos/metabolismo , Plasmodesmos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Plantones/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional , Transgenes , Proteína Fluorescente Roja
20.
Methods Mol Biol ; 1217: 245-58, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25287208
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA