Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.047
Filtrar
1.
Mol Biol Rep ; 51(1): 810, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001942

RESUMEN

Carotenoids, natural tetraterpenoids found abundantly in plants, contribute to the diverse colors of plant non-photosynthetic tissues and provide fragrance through their cleavage products, which also play crucial roles in plant growth and development. Understanding the synthesis, degradation, and storage pathways of carotenoids and identifying regulatory factors represents a significant strategy for enhancing plant quality. Chromoplasts serve as the primary plastids responsible for carotenoid accumulation, and their differentiation is linked to the levels of carotenoids, rendering them a subject of substantial research interest. The differentiation of chromoplasts involves alterations in plastid structure and protein import machinery. Additionally, this process is influenced by factors such as the ORANGE (OR) gene, Clp proteases, xanthophyll esterification, and environmental factors. This review shows the relationship between chromoplast and carotenoid accumulation by presenting recent advances in chromoplast structure, the differentiation process, and key regulatory factors, which can also provide a reference for rational exploitation of chromoplasts to enhance plant quality.


Asunto(s)
Carotenoides , Regulación de la Expresión Génica de las Plantas , Plastidios , Plastidios/metabolismo , Carotenoides/metabolismo , Plantas/metabolismo , Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Desarrollo de la Planta/genética , Diferenciación Celular
2.
Cells ; 13(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38891061

RESUMEN

Through the shikimate pathway, a massive metabolic flux connects the central carbon metabolism with the synthesis of chorismate, the common precursor of the aromatic amino acids phenylalanine, tyrosine, and tryptophan, as well as other compounds, including salicylate or folate. The alternative metabolic channeling of chorismate involves a key branch-point, finely regulated by aromatic amino acid levels. Chorismate mutase catalyzes the conversion of chorismate to prephenate, a precursor of phenylalanine and tyrosine and thus a vast repertoire of fundamental derived compounds, such as flavonoids or lignin. The regulation of this enzyme has been addressed in several plant species, but no study has included conifers or other gymnosperms, despite the importance of the phenolic metabolism for these plants in processes such as lignification and wood formation. Here, we show that maritime pine (Pinus pinaster Aiton) has two genes that encode for chorismate mutase, PpCM1 and PpCM2. Our investigations reveal that these genes encode plastidial isoenzymes displaying activities enhanced by tryptophan and repressed by phenylalanine and tyrosine. Using phylogenetic studies, we have provided new insights into the possible evolutionary origin of the cytosolic chorismate mutases in angiosperms involved in the synthesis of phenylalanine outside the plastid. Studies based on different platforms of gene expression and co-expression analysis have allowed us to propose that PpCM2 plays a central role in the phenylalanine synthesis pathway associated with lignification.


Asunto(s)
Corismato Mutasa , Filogenia , Pinus , Corismato Mutasa/metabolismo , Corismato Mutasa/genética , Pinus/enzimología , Pinus/genética , Pinus/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Fenilalanina/metabolismo , Plastidios/metabolismo , Plastidios/enzimología , Triptófano/metabolismo
4.
Plant Physiol Biochem ; 213: 108813, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38861821

RESUMEN

In land plants plastid type differentiation occurs concomitantly with cellular differentiation and the transition from one type to another is under developmental and environmental control. Plastid dynamism is based on a bilateral communication between plastids and nucleus through anterograde and retrograde signaling. Signaling occurs through the interaction with specific phytohormones (abscisic acid, strigolactones, jasmonates, gibberellins, brassinosteroids, ethylene, salicylic acid, cytokinin and auxin). The review is focused on the modulation of plastid capabilities at both transcriptional and post-translational levels at the crossroad between development and stress, with a particular attention to the chloroplast, because the most studied plastid type. The role of plastid-encoded and nuclear-encoded proteins for plastid development and stress responses, and the changes of plastid fate through the activity of stromules and plastoglobules, are discussed. Examples of plastid dynamism in response to soil stress agents (salinity, lead, cadmium, arsenic, and chromium) are described. Albinism and root greening are described based on the modulation activities of auxin and cytokinin. The physiological and functional responses of the sensory epidermal and vascular plastids to abiotic and biotic stresses along with their specific roles in stress sensing are described together with their potential modulation of retrograde signaling pathways. Future research perspectives include an in-depth study of sensory plastids to explore their potential for establishing a transgenerational memory to stress. Suggestions about anterograde and retrograde pathways acting at interspecific level and on the lipids of plastoglobules as a novel class of plastid morphogenic agents are provided.


Asunto(s)
Plastidios , Plastidios/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Estrés Fisiológico , Desarrollo de la Planta/fisiología
5.
Nat Commun ; 15(1): 5456, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937455

RESUMEN

Stramenopile algae contribute significantly to global primary productivity, and one class, Eustigmatophyceae, is increasingly studied for applications in high-value lipid production. Yet much about their basic biology remains unknown, including the nature of an enigmatic, pigmented globule found in vegetative cells. Here, we present an in-depth examination of this "red body," focusing on Nannochloropsis oceanica. During the cell cycle, the red body forms adjacent to the plastid, but unexpectedly it is secreted and released with the autosporangial wall following cell division. Shed red bodies contain antioxidant ketocarotenoids, and overexpression of a beta-carotene ketolase results in enlarged red bodies. Infrared spectroscopy indicates long-chain, aliphatic lipids in shed red bodies and cell walls, and UHPLC-HRMS detects a C32 alkyl diol, a potential precursor of algaenan, a recalcitrant cell wall polymer. We propose that the red body transports algaenan precursors from plastid to apoplast to be incorporated into daughter cell walls.


Asunto(s)
Pared Celular , Plastidios , Estramenopilos , Pared Celular/metabolismo , Estramenopilos/metabolismo , Plastidios/metabolismo
6.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38934796

RESUMEN

Plant cells harbor two membrane-bound organelles containing their own genetic material-plastids and mitochondria. Although the two organelles coexist and coevolve within the same plant cells, they differ in genome copy number, intracellular organization, and mode of segregation. How these attributes affect the time to fixation or, conversely, loss of neutral alleles is currently unresolved. Here, we show that mitochondria and plastids share the same mutation rate, yet plastid alleles remain in a heteroplasmic state significantly longer compared with mitochondrial alleles. By analyzing genetic variants across populations of the marine flowering plant Zostera marina and simulating organelle allele dynamics, we examine the determinants of allele segregation and allele fixation. Our results suggest that the bottlenecks on the cell population, e.g. during branching or seeding, and stratification of the meristematic tissue are important determinants of mitochondrial allele dynamics. Furthermore, we suggest that the prolonged plastid allele dynamics are due to a yet unknown active plastid partition mechanism. The dissimilarity between plastid and mitochondrial novel allele fixation at different levels of organization may manifest in differences in adaptation processes. Our study uncovers fundamental principles of organelle population genetics that are essential for further investigations of long-term evolution and molecular dating of divergence events.


Asunto(s)
Heteroplasmia , Mitocondrias , Tasa de Mutación , Plastidios , Plastidios/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Alelos
7.
Curr Biol ; 34(14): 3064-3076.e5, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38936366

RESUMEN

Dinophysis dinoflagellates are predators of Mesodinium ciliates, from which they retain only the plastids of cryptophyte origin. The absence of nuclear photosynthetic cryptophyte genes in Dinophysis raises intriguing physiological and evolutionary questions regarding the functional dynamics of these temporary kleptoplastids within a foreign cellular environment. In an experimental setup including two light conditions, the comparative analysis with Mesodinium rubrum and the cryptophyte Teleaulax amphioxeia revealed that Dinophysis acuminata possessed a smaller and less dynamic functional photosynthetic antenna for green light, a function performed by phycoerythrin. We showed that the lack of the cryptophyte nucleus prevented the synthesis of the phycoerythrin α subunit, thereby hindering the formation of a complete phycoerythrin in Dinophysis. In particular, biochemical analyses showed that Dinophysis acuminata synthesized a poorly stable, incomplete phycoerythrin composed of chromophorylated ß subunits, with impaired performance. We show that, consequently, a continuous supply of new plastids is crucial for growth and effective photoacclimation in this organism. Transcriptome analyses revealed that all examined strains of Dinophysis spp. have acquired the cryptophyte pebA and pebB genes through horizontal gene transfer, suggesting a potential ability to synthesize the phycobilin pigments bound to the cryptophyte phycoerythrin. By emphasizing that a potential long-term acquisition of the cryptophyte plastid relies on establishing genetic independence for essential functions such as light harvesting, this study highlights the intricate molecular challenges inherent in the enslavement of organelles and the processes involved in the diversification of photosynthetic organisms through endosymbiosis.


Asunto(s)
Dinoflagelados , Fotosíntesis , Plastidios , Simbiosis , Dinoflagelados/fisiología , Dinoflagelados/genética , Plastidios/genética , Plastidios/metabolismo , Ficoeritrina/metabolismo , Ficoeritrina/genética , Criptófitas/genética , Criptófitas/fisiología , Luz
9.
Curr Biol ; 34(13): 2957-2971.e8, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38917798

RESUMEN

The root endophytic fungus Serendipita indica establishes beneficial symbioses with a broad spectrum of plants and enhances host resilience against biotic and abiotic stresses. However, little is known about the mechanisms underlying S. indica-mediated plant protection. Here, we report S. indica effector (SIE) 141 and its host target CDSP32, a conserved thioredoxin-like protein, and underlying mechanisms for enhancing pathogen resistance and abiotic salt tolerance in Arabidopsis thaliana. SIE141 binding interfered with canonical targeting of CDSP32 to chloroplasts, leading to its re-location into the plant nucleus. This nuclear translocation is essential for both their interaction and resistance function. Furthermore, SIE141 enhanced oxidoreductase activity of CDSP32, leading to CDSP32-mediated monomerization and activation of NON-EXPRESSOR OF PATHOGENESIS-RELATED 1 (NPR1), a key regulator of systemic resistance. Our findings provide functional insights on how S. indica transfers well-known beneficial effects to host plants and indicate CDSP32 as a genetic resource to improve plant resilience to abiotic and biotic stresses.


Asunto(s)
Arabidopsis , Estrés Salino , Simbiosis , Arabidopsis/microbiología , Arabidopsis/fisiología , Arabidopsis/genética , Basidiomycota/fisiología , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Núcleo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Plastidios/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Enfermedades de las Plantas/microbiología
10.
Physiol Plant ; 176(3): e14374, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38837422

RESUMEN

Heat stress substantially reduces tomato (Solanum lycopersicum) growth and yield globally, thereby jeopardizing food security. DnaJ proteins, constituents of the heat shock protein system, protect cells from diverse environmental stresses as HSP-70 molecular co-chaperones. In this study, we demonstrated that AdDjSKI, a serine-rich DnaJ III protein induced by pathogens, plays an important role in stabilizing photosystem II (PSII) in response to heat stress. Our results revealed that transplastomic tomato plants expressing the AdDjSKI gene exhibited increased levels of total soluble proteins, improved growth and chlorophyll content, reduced malondialdehyde (MDA) accumulation, and diminished PSII photoinhibition under elevated temperatures when compared with wild-type (WT) plants. Intriguingly, these transplastomic plants maintained higher levels of D1 protein under elevated temperatures compared with the WT plants, suggesting that overexpression of AdDjSKI in plastids is crucial for PSII protection, likely due to its chaperone activity. Furthermore, the transplastomic plants displayed lower accumulation of superoxide radical (O2 •─) and H2O2, in comparison with the WT plants, plausibly attributed to higher superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities. This also coincides with an enhanced expression of corresponding genes, including SlCuZnSOD, SlFeSOD, SlAPX2, and SltAPX, under heat stress. Taken together, our findings reveal that chloroplastic expression of AdDjSKI in tomatoes plays a critical role in fruit yield, primarily through a combination of delayed senescence and stabilizing PSII under heat stress.


Asunto(s)
Frutas , Respuesta al Choque Térmico , Complejo de Proteína del Fotosistema II , Hojas de la Planta , Proteínas de Plantas , Plastidios , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/genética , Respuesta al Choque Térmico/genética , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/fisiología , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo , Plastidios/metabolismo , Plastidios/genética , Clorofila/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas del Choque Térmico HSP40/genética , Plantas Modificadas Genéticamente , Senescencia de la Planta/genética , Regulación de la Expresión Génica de las Plantas , Malondialdehído/metabolismo
11.
Mol Biol Evol ; 41(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38758976

RESUMEN

Mitochondria and plastids have both dramatically reduced their genomes since the endosymbiotic events that created them. The similarities and differences in the evolution of the two organelle genome types have been the target of discussion and investigation for decades. Ongoing work has suggested that similar mechanisms may modulate the reductive evolution of the two organelles in a given species, but quantitative data and statistical analyses exploring this picture remain limited outside of some specific cases like parasitism. Here, we use cross-eukaryote organelle genome data to explore evidence for coevolution of mitochondrial and plastid genome reduction. Controlling for differences between clades and pseudoreplication due to relatedness, we find that extents of mtDNA and ptDNA gene retention are related to each other across taxa, in a generally positive correlation that appears to differ quantitatively across eukaryotes, for example, between algal and nonalgal species. We find limited evidence for coevolution of specific mtDNA and ptDNA gene pairs, suggesting that the similarities between the two organelle types may be due mainly to independent responses to consistent evolutionary drivers.


Asunto(s)
Genoma Mitocondrial , Genoma de Plastidios , Plastidios , Plastidios/genética , ADN Mitocondrial/genética , Evolución Molecular , Mitocondrias/genética , Especificidad de la Especie , Evolución Biológica , Eucariontes/genética
12.
Micron ; 183: 103657, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38735105

RESUMEN

New data were obtained on specific bionanostructures, cutinsomes, which are involved in the formation of cuticles on the surface of leaf blades and pericarp of Malus domestica Borkh (Malus Mill., Rosaceae)introduced to the mountains at the altitudes of 1200 and 1700 m above sea level. Cutinsomes, which are electron-dense structures of spherical shape, have been identified by transmission electron microscopy. It was demonstrated that plastids can be involved in the synthesis of their constituent nanocomponents. The greatest number of nanoparticles was observed in the granal thylakoid lumen of the chloroplasts in palisade mesophyll cells and pericarp hypodermal cells. The transmembrane transport of cutinsomes into the cell wall cuticle proper by exocytosis has been visualized for the first time. The plasma membrane is directly involved in the excretion of nanostructures from the cell. Nanoparticles of cutinsomes in the form of necklace-like formations line up in a chain near cell walls, merge into larger conglomerates and are loaded into plasmalemma invaginations, and then, in membrane packing, they move into the cuticle, which covers both outer and inner cell walls of external tissues. The original materials obtained by us supplement the ideas about the non-enzymatic synthesis of cuticle components available in the literature and expand the cell compartment geography involved in this process.


Asunto(s)
Malus , Microscopía Electrónica de Transmisión , Hojas de la Planta , Hojas de la Planta/ultraestructura , Hojas de la Planta/metabolismo , Malus/ultraestructura , Malus/metabolismo , Transporte Biológico , Pared Celular/ultraestructura , Pared Celular/metabolismo , Cloroplastos/ultraestructura , Cloroplastos/metabolismo , Membrana Celular/ultraestructura , Membrana Celular/metabolismo , Plastidios/ultraestructura , Plastidios/metabolismo
13.
Nat Plants ; 10(6): 923-935, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38802561

RESUMEN

The chloroplast genomes of most plants and algae contain a large inverted repeat (IR) region that separates two single-copy regions and harbours the ribosomal RNA operon. We have addressed the functional importance of the IR region by removing an entire copy of the 25.3-kb IR from the tobacco plastid genome. Using plastid transformation and subsequent selectable marker gene elimination, we precisely excised the IR, thus generating plants with a substantially reduced plastid genome size. We show that the lack of the IR results in a mildly reduced plastid ribosome number, suggesting a gene dosage benefit from the duplicated presence of the ribosomal RNA operon. Moreover, the IR deletion plants contain an increased number of plastid genomes, suggesting that genome copy number is regulated by measuring total plastid DNA content rather than by counting genomes. Together, our findings (1) demonstrate that the IR can enhance the translation capacity of the plastid, (2) reveal the relationship between genome size and genome copy number, and (3) provide a simplified plastid genome structure that will facilitate future synthetic biology applications.


Asunto(s)
Dosificación de Gen , Genoma de Plastidios , Secuencias Invertidas Repetidas , Nicotiana , Nicotiana/genética , Secuencias Invertidas Repetidas/genética , Plastidios/genética , Tamaño del Genoma , Variaciones en el Número de Copia de ADN , Genoma de Planta
14.
Physiol Plant ; 176(3): e14340, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741259

RESUMEN

Malate dehydrogenases (MDHs) catalyze a reversible NAD(P)-dependent-oxidoreductase reaction that plays an important role in central metabolism and redox homeostasis of plant cells. Recent studies suggest a moonlighting function of plastidial NAD-dependent MDH (plNAD-MDH; EC 1.1.1.37) in plastid biogenesis, independent of its enzyme activity. In this study, redox effects on activity and conformation of recombinant plNAD-MDH from Arabidopsis thaliana were investigated. We show that reduced plNAD-MDH is active while it is inhibited upon oxidation. Interestingly, the presence of its cofactors NAD+ and NADH could prevent oxidative inhibition of plNAD-MDH. In addition, a conformational change upon oxidation could be observed via non-reducing SDS-PAGE. Both effects, its inhibition and conformational change, were reversible by re-reduction. Further investigation of single cysteine substitutions and mass spectrometry revealed that oxidation of plNAD-MDH leads to oxidation of all four cysteine residues. However, cysteine oxidation of C129 leads to inhibition of plNAD-MDH activity and oxidation of C147 induces its conformational change. In contrast, oxidation of C190 and C333 does not affect plNAD-MDH activity or structure. Our results demonstrate that plNAD-MDH activity can be reversibly inhibited, but not inactivated, by cysteine oxidation and might be co-regulated by the availability of its cofactors in vivo.


Asunto(s)
Arabidopsis , Cisteína , Malato Deshidrogenasa , Oxidación-Reducción , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cisteína/metabolismo , Malato Deshidrogenasa/metabolismo , Malato Deshidrogenasa/genética , NAD/metabolismo , Plastidios/metabolismo , Plastidios/enzimología , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética
15.
J Plant Res ; 137(4): 589-604, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38739241

RESUMEN

Reevesia is an eastern Asian-eastern North American disjunction genus in the family Malvaceae s.l. and comprises approximately 25 species. The relationships within the genus are not well understood. Here, 15 plastomes representing 12 Reevesia species were compared, with the aim of better understanding the species circumscription and phylogenetic relationships within the genus and among genera in the family Malvaceae s.l. The 11 newly sequenced plastomes range between 161,532 and 161, 945 bp in length. The genomes contain 114 unique genes, 18 of which are duplicated in the inverted repeats (IRs). Gene content of these plastomes is nearly identical. All the protein-coding genes are under purifying selection in the Reevesia plastomes compared. The top ten hypervariable regions, SSRs, and the long repeats identified are potential molecular markers for future population genetic and phylogenetic studies. Phylogenetic analysis based on the whole plastomes confirmed the monophyly of Reevesia and a close relationship with Durio (traditional Bombacaceae) in subfamily Helicteroideae, but not with the morphologically similar genera Pterospermum and Sterculia (both of traditional Sterculiaceae). Phylogenetic relationships within Reevesia suggested that two species, R. pubescens and R. thyrsoidea, as newly defined, are not monophyletic. Six taxa, R. membranacea, R. xuefengensis, R. botingensis, R. lofouensis, R. longipetiolata and R. pycnantha, are suggested to be recognized.


Asunto(s)
Evolución Molecular , Filogenia , Plastidios , Plastidios/genética , Genoma de Plastidios/genética , Genes de Plantas , Análisis de Secuencia de ADN
16.
Am J Bot ; 111(5): e16330, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38725388

RESUMEN

PREMISE: Increasingly complete phylogenies underpin studies in systematics, ecology, and evolution. Myrteae (Myrtaceae), with ~2700 species, is a key component of the exceptionally diverse Neotropical flora, but given its complicated taxonomy, automated assembling of molecular supermatrices from public databases often lead to unreliable topologies due to poor species identification. METHODS: Here, we build a taxonomically verified molecular supermatrix of Neotropical Myrteae by assembling 3909 published and 1004 unpublished sequences from two nuclear and seven plastid molecular markers. We infer a time-calibrated phylogenetic tree that covers 712 species of Myrteae (~28% of the total diversity in the clade) and evaluate geographic and taxonomic gaps in sampling. RESULTS: The tree inferred from the fully concatenated matrix mostly reflects the topology of the plastid data set and there is a moderate to strong incongruence between trees inferred from nuclear and plastid partitions. Large, species-rich genera are still the poorest sampled within the group. Eastern South America is the best-represented area in proportion to its species diversity, while Western Amazon, Mesoamerica, and the Caribbean are the least represented. CONCLUSIONS: We provide a time-calibrated tree that can be more reliably used to address finer-scale eco-evolutionary questions that involve this group in the Neotropics. Gaps to be filled by future studies include improving representation of taxa and areas that remain poorly sampled, investigating causes of conflict between nuclear and plastid partitions, and the role of hybridization and incomplete lineage sorting in relationships that are poorly supported.


Asunto(s)
Myrtaceae , Filogenia , Myrtaceae/genética , Myrtaceae/clasificación , América del Sur , Plastidios/genética
17.
Int J Mol Sci ; 25(10)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38791585

RESUMEN

ROS-dependent induction of oxidative damage can be used as a trigger initiating genetically determined non-specific protection in plant cells and tissues. Plants are potentially able to withstand various specific (toxic, osmotic) factors of abiotic effects, but do not have sufficient or specific sensitivity to form an adequate effective response. In this work, we demonstrate one of the possible approaches for successful cold acclimation through the formation of effective protection of photosynthetic structures due to the insertion of the heterologous FeSOD gene into the tobacco genome under the control of the constitutive promoter and equipped with a signal sequence targeting the protein to plastid. The increased enzymatic activity of superoxide dismutase in the plastid compartment of transgenic tobacco plants enables them to tolerate the oxidative factor of environmental stresses scavenging ROS. On the other hand, the cost of such resistance is quite high and, when grown under normal conditions, disturbs the arrangement of the intrachloroplastic subdomains leading to the modification of stromal thylakoids, probably significantly affecting the photosynthesis processes that regulate the efficiency of photosystem II. This is partially compensated for by the fact that, at the same time, under normal conditions, the production of peroxide induces the activation of ROS detoxification enzymes. However, a violation of a number of processes, such as the metabolism of accumulation, and utilization and transportation of sugars and starch, is significantly altered, which leads to a shift in metabolic chains. The expected step for further improvement of the applied technology could be both the use of inducible promoters in the expression cassette, and the addition of other genes encoding for hydrogen peroxide-scavenging enzymes in the genetic construct that are downstream in the metabolic chain.


Asunto(s)
Nicotiana , Estrés Oxidativo , Plantas Modificadas Genéticamente , Plastidios , Superóxido Dismutasa , Nicotiana/genética , Plastidios/metabolismo , Plastidios/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/genética , Especies Reactivas de Oxígeno/metabolismo , Frío , Fotosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
PLoS One ; 19(5): e0302365, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38768140

RESUMEN

In this study of evolutionary relationships in the subfamily Rubioideae (Rubiaceae), we take advantage of the off-target proportion of reads generated via previous target capture sequencing projects based on nuclear genomic data to build a plastome phylogeny and investigate cytonuclear discordance. The assembly of off-target reads resulted in a comprehensive plastome dataset and robust inference of phylogenetic relationships, where most intratribal and intertribal relationships are resolved with strong support. While the phylogenetic results were mostly in agreement with previous studies based on plastome data, novel relationships in the plastid perspective were also detected. For example, our analyses of plastome data provide strong support for the SCOUT clade and its sister relationship to the remaining members of the subfamily, which differs from previous results based on plastid data but agrees with recent results based on nuclear genomic data. However, several instances of highly supported cytonuclear discordance were identified across the Rubioideae phylogeny. Coalescent simulation analysis indicates that while ILS could, by itself, explain the majority of the discordant relationships, plastome introgression may be the better explanation in some cases. Our study further indicates that plastomes across the Rubioideae are, with few exceptions, highly conserved and mainly conform to the structure, gene content, and gene order present in the majority of the flowering plants.


Asunto(s)
Filogenia , Plastidios , Rubiaceae , Rubiaceae/genética , Rubiaceae/clasificación , Plastidios/genética , Núcleo Celular/genética , Genómica/métodos , Genoma de Plastidios , Evolución Molecular , Genoma de Planta
19.
BMC Plant Biol ; 24(1): 406, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38750463

RESUMEN

BACKGROUND: The lifestyle transition from autotrophy to heterotrophy often leads to extensive degradation of plastomes in parasitic plants, while the evolutionary trajectories of plastome degradation associated with parasitism in hemiparasitic plants remain poorly understood. In this study, phylogeny-oriented comparative analyses were conducted to investigate whether obligate Loranthaceae stem-parasites experienced higher degrees of plastome degradation than closely related facultative root-parasites and to explore the potential evolutionary events that triggered the 'domino effect' in plastome degradation of hemiparasitic plants. RESULTS: Through phylogeny-oriented comparative analyses, the results indicate that Loranthaceae hemiparasites have undergone varying degrees of plastome degradation as they evolved towards a heterotrophic lifestyle. Compared to closely related facultative root-parasites, all obligate stem-parasites exhibited an elevated degree plastome degradation, characterized by increased downsizing, gene loss, and pseudogenization, thereby providing empirical evidence supporting the theoretical expectation that evolution from facultative parasitism to obligate parasitism may result in a higher degree of plastome degradation in hemiparasites. Along with infra-familial divergence in Loranthaceae, several lineage-specific gene loss/pseudogenization events occurred at deep nodes, whereas further independent gene loss/pseudogenization events were observed in shallow branches. CONCLUSIONS: The findings suggest that in addition to the increasing levels of nutritional reliance on host plants, cladogenesis can be considered as another pivotal evolutionary event triggering the 'domino effect' in plastome degradation of hemiparasitic plants. These findings provide new insights into the evolutionary trajectory of plastome degradation in hemiparasitic plants.


Asunto(s)
Loranthaceae , Filogenia , Loranthaceae/genética , Loranthaceae/fisiología , Evolución Biológica , Plastidios/genética , Evolución Molecular
20.
BMC Plant Biol ; 24(1): 445, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38778277

RESUMEN

BACKGROUND: Acer is a taxonomically intractable and speciose genus that contains over 150 species. It is challenging to distinguish Acer species only by morphological method due to their abundant variations. Plastome and nuclear ribosomal DNA (nrDNA) sequences are recommended as powerful next-generation DNA barcodes for species discrimination. However, their efficacies were still poorly studied. The current study will evaluate the application of plastome and nrDNA in species identification and perform phylogenetic analyses for Acer. RESULT: Based on a collection of 83 individuals representing 55 species (c. 55% of Chinese species) from 13 sections, our barcoding analyses demonstrated that plastomes exhibited the highest (90.47%) species discriminatory power among all plastid DNA markers, such as the standard plastid barcodes matK + rbcL + trnH-psbA (61.90%) and ycf1 (76.19%). And the nrDNA (80.95%) revealed higher species resolution than ITS (71.43%). Acer plastomes show abundant interspecific variations, however, species identification failure may be due to the incomplete lineage sorting (ILS) and chloroplast capture resulting from hybridization. We found that the usage of nrDNA contributed to identifying those species that were unidentified by plastomes, implying its capability to some extent to mitigate the impact of hybridization and ILS on species discrimination. However, combining plastome and nrDNA is not recommended given the cytonuclear conflict caused by potential hybridization. Our phylogenetic analysis covering 19 sections (95% sections of Acer) and 128 species (over 80% species of this genus) revealed pervasive inter- and intra-section cytonuclear discordances, hinting that hybridization has played an important role in the evolution of Acer. CONCLUSION: Plastomes and nrDNA can significantly improve the species resolution in Acer. Our phylogenetic analysis uncovered the scope and depth of cytonuclear conflict in Acer, providing important insights into its evolution.


Asunto(s)
Acer , Código de Barras del ADN Taxonómico , ADN de Plantas , ADN Ribosómico , Filogenia , Acer/genética , Código de Barras del ADN Taxonómico/métodos , ADN Ribosómico/genética , ADN de Plantas/genética , Plastidios/genética , Especificidad de la Especie , Núcleo Celular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA