Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Int J Mol Sci ; 25(11)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38892325

RESUMEN

Mitochondria-targeted antioxidants (MTAs) have been studied quite intensively in recent years as potential therapeutic agents and vectors for the delivery of other active substances to mitochondria and bacteria. Their most studied representatives are MitoQ and SkQ1, with its fluorescent rhodamine analog SkQR1, a decyl ester of rhodamine 19 carrying plastoquinone. In the present work, we observed a pronounced antibacterial action of SkQR1 against Gram-positive bacteria, but virtually no effect on Gram-negative bacteria. The MDR pump AcrAB-TolC, known to expel SkQ1, did not recognize and did not pump out SkQR1 and dodecyl ester of rhodamine 19 (C12R1). Rhodamine 19 butyl (C4R1) and ethyl (C2R1) esters more effectively suppressed the growth of ΔtolC Escherichia coli, but lost their potency with the wild-type E. coli pumping them out. The mechanism of the antibacterial action of SkQR1 may differ from that of SkQ1. The rhodamine derivatives also proved to be effective antibacterial agents against various Gram-positive species, including Staphylococcus aureus and Mycobacterium smegmatis. By using fluorescence correlation spectroscopy and fluorescence microscopy, SkQR1 was shown to accumulate in the bacterial membrane. Thus, the presentation of SkQR1 as a fluorescent analogue of SkQ1 and its use for visualization should be performed with caution.


Asunto(s)
Antibacterianos , Ésteres , Pruebas de Sensibilidad Microbiana , Rodaminas , Antibacterianos/farmacología , Antibacterianos/química , Rodaminas/química , Rodaminas/farmacología , Ésteres/química , Ésteres/farmacología , Plastoquinona/análogos & derivados , Plastoquinona/farmacología , Plastoquinona/química , Bacterias Grampositivas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Staphylococcus aureus/efectos de los fármacos , Colorantes Fluorescentes/química
2.
Life Sci ; 348: 122700, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38724004

RESUMEN

AIMS: To elucidate the impact of 10-(6-plastoquinonyl) decyltriphenylphosphonium (SkQ1) as an anti-colitogenic agent for maintenance of colon epithelial tract in ulcerated mice through recovery of mitochondrial dysfunction and mitochondrial stress by virtue of its free radical scavenging properties. MAIN METHODS: DSS induced ulcerated BALB/c mice were treated with SkQ1 for 14 days @ 30 nmol/kg/body wt./day/mice. Post-treatment, isolated colonic mitochondria were utilized for spectrophotometric and spectrofluorometric biochemical analysis of various mitochondrial functional variables including individual mitochondrial respiratory enzyme complexes. Confocal microscopy was utilized for measuring mitochondrial membrane potential in vivo. ELISA technique was adapted for measuring colonic nitrite and 3-nitrotyrosine (3-NT) content. Finally in vitro cell line study was carried out to substantiate in vivo findings and elucidate the involvement of free radicals in UC using antioxidant/free radical scavenging regimen. KEY FINDINGS: Treatment with SkQ1 in vivo reduced histopathological severity of colitis, induced recovery of mitochondrial respiratory complex activities and associated functional variables, improved oxidative stress indices and normalized mitochondrial cardiolipin content. Importantly, SkQ1 lowered nitrite concentration and 3-nitrotyrosine formation in vivo. In vitro SkQ1 restored mitochondrial functions wherein the efficacy of SkQ1 proved equal or better compared to SOD and DMSO indicating predominant involvement of O2- and OH in UC. However, NO and ONOO- also seemed to play a secondary role as MEG and L-NAME provided lesser protection as compared to SOD and DMSO. SIGNIFICANCE: SkQ1 can be considered as a potent anti-colitogenic agent by virtue of its free radical scavenging properties in treating UC.


Asunto(s)
Colitis Ulcerosa , Colon , Ratones Endogámicos BALB C , Mitocondrias , Estrés Oxidativo , Plastoquinona , Animales , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Plastoquinona/análogos & derivados , Plastoquinona/farmacología , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Estrés Oxidativo/efectos de los fármacos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Tirosina/análogos & derivados , Tirosina/metabolismo , Tirosina/farmacología , Antioxidantes/farmacología , Depuradores de Radicales Libres/farmacología , Sulfato de Dextran
3.
Biochemistry (Mosc) ; 89(2): 212-222, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38622091

RESUMEN

Quinone derivatives of triphenylphosphonium have proven themselves to be effective geroprotectors and antioxidants that prevent oxidation of cell components with participation of active free radicals - peroxide (RO2·), alkoxy (RO·), and alkyl (R·) radicals, as well as reactive oxygen species (superoxide anion, singlet oxygen). Their most studied representatives are derivatives of plastoquinone (SkQ1) and ubiquinone (MitoQ), which in addition to antioxidant properties also have a strong antibacterial effect. In this study, we investigated antibacterial properties of other quinone derivatives based on decyltriphenylphosphonium (SkQ3, SkQT, and SkQThy). We have shown that they, just like SkQ1, inhibit growth of various Gram-positive bacteria at micromolar concentrations, while being less effective against Gram-negative bacteria, which is associated with recognition of the triphenylphosphonium derivatives by the main multidrug resistance (MDR) pump of Gram-negative bacteria, AcrAB-TolC. Antibacterial action of SkQ1 itself was found to be dependent on the number of bacterial cells. It is important to note that the cytotoxic effect of SkQ1 on mammalian cells was observed at higher concentrations than the antibacterial action, which can be explained by (i) the presence of a large number of membrane organelles, (ii) lower membrane potential, (iii) spatial separation of the processes of energy generation and transport, and (iv) differences in the composition of MDR pumps. Differences in the cytotoxic effects on different types of eukaryotic cells may be associated with the degree of membrane organelle development, energy status of the cell, and level of the MDR pump expression.


Asunto(s)
Antineoplásicos , Benzoquinonas , Mitocondrias , Animales , Mitocondrias/metabolismo , Antioxidantes/farmacología , Compuestos Organofosforados/farmacología , Plastoquinona/farmacología , Antibacterianos/farmacología , Antibacterianos/metabolismo , Antineoplásicos/farmacología , Mamíferos/metabolismo
4.
ISME J ; 17(11): 1979-1992, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37679430

RESUMEN

Algae and bacteria have complex and intimate interactions in the ocean. Besides mutualism, bacteria have evolved a variety of molecular-based anti-algal strategies. However, limited by the unknown mechanism of synthesis and action of these molecules, these strategies and their global prevalence remain unknown. Here we identify a novel strategy through which a marine representative of the Gammaproteobacteria produced 3,3',5,5'-tetrabromo-2,2'-biphenyldiol (4-BP), that kills or inhibits diverse phytoplankton by inhibiting plastoquinone synthesis and its effect cascades to many other key metabolic processes of the algae. Through comparative genomic analysis between the 4-BP-producing bacterium and its algicidally inactive mutant, combined with gene function verification, we identified the gene cluster responsible for 4-BP synthesis, which contains genes encoding chorismate lyase, flavin-dependent halogenase and cytochrome P450. We demonstrated that in near in situ simulated algal blooming seawater, even low concentrations of 4-BP can cause changes in overall phytoplankton community structure with a decline in dinoflagellates and diatoms. Further analyses of the gene sequences from the Tara Oceans expeditions and 2750 whole genome sequences confirmed the ubiquitous presence of 4-BP synthetic genes in diverse bacterial members in the global ocean, suggesting that it is a bacterial tool potentially widely used in global oceans to mediate bacteria-algae antagonistic relationships.


Asunto(s)
Bacterias , Plastoquinona , Plastoquinona/metabolismo , Plastoquinona/farmacología , Bacterias/genética , Bacterias/metabolismo , Océanos y Mares , Agua de Mar/microbiología , Fitoplancton/metabolismo
5.
Sci Rep ; 13(1): 4326, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922552

RESUMEN

The response to stress involves the activation of pathways leading either to protection from the stress origin, eventually resulting in development of stress resistance, or activation of the rapid death of the organism. Here we hypothesize that mitochondrial reactive oxygen species (mtROS) play a key role in stress-induced programmed death of the organism, which we called "phenoptosis" in 1997. We demonstrate that the synthetic mitochondria-targeted antioxidant SkQ1 (which specifically abolishes mtROS) prevents rapid death of mice caused by four mechanistically very different shocks: (a) bacterial lipopolysaccharide (LPS) shock, (b) shock in response to intravenous mitochondrial injection, (c) cold shock, and (d) toxic shock caused by the penetrating cation C12TPP. Importantly, under all these stresses mortality was associated with a strong elevation of the levels of pro-inflammatory cytokines and administration of SkQ1 was able to switch off the cytokine storms. Since the main effect of SkQ1 is the neutralization of mtROS, this study provides evidence for the role of mtROS in the activation of innate immune responses mediating stress-induced death of the organism. We propose that SkQ1 may be used clinically to support patients in critical conditions, such as septic shock, extensive trauma, cooling, and severe infection by bacteria or viruses.


Asunto(s)
Antioxidantes , Mitocondrias , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Mitocondrias/metabolismo , Citocinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Plastoquinona/farmacología , Plastoquinona/metabolismo
6.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835320

RESUMEN

The purpose of this study is to test the effects of whole-body animal exposure to airborne particulate matter (PM) with an aerodynamic diameter of <10 µm (PM10) in the mouse cornea and in vitro. C57BL/6 mice were exposed to control or 500 µg/m3 PM10 for 2 weeks. In vivo, reduced glutathione (GSH) and malondialdehyde (MDA) were analyzed. RT-PCR and ELISA evaluated levels of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling and inflammatory markers. SKQ1, a novel mitochondrial antioxidant, was applied topically and GSH, MDA and Nrf2 levels were tested. In vitro, cells were treated with PM10 ± SKQ1 and cell viability, MDA, mitochondrial ROS, ATP and Nrf2 protein were tested. In vivo, PM10 vs. control exposure significantly reduced GSH, corneal thickness and increased MDA levels. PM10-exposed corneas showed significantly higher mRNA levels for downstream targets, pro-inflammatory molecules and reduced Nrf2 protein. In PM10-exposed corneas, SKQ1 restored GSH and Nrf2 levels and lowered MDA. In vitro, PM10 reduced cell viability, Nrf2 protein, and ATP, and increased MDA, and mitochondrial ROS; while SKQ1 reversed these effects. Whole-body PM10 exposure triggers oxidative stress, disrupting the Nrf2 pathway. SKQ1 reverses these deleterious effects in vivo and in vitro, suggesting applicability to humans.


Asunto(s)
Antioxidantes , Córnea , Exposición a Riesgos Ambientales , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Material Particulado , Plastoquinona , Animales , Humanos , Ratones , Adenosina Trifosfato/metabolismo , Antioxidantes/farmacología , Córnea/efectos de los fármacos , Córnea/metabolismo , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Material Particulado/antagonistas & inhibidores , Material Particulado/toxicidad , Plastoquinona/farmacología
7.
Biochemistry (Mosc) ; 87(10): 1098-1108, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36273878

RESUMEN

Light-dependent hydrogen production by microalgae attracts attention of researchers because of the potential practical application. It is generally recognized that Calvin-Benson-Bassham cycle competes with hydrogen production process for electrons, and substrate (CO2) limitation of the cycle can increase hydrogen production rate. Furthermore, photosystem II is not destroyed by CO2 deficiency. We studied photoautotrophic cultures of Chlamydomonas reimhardtii under CO2 deficiency. Under the flow of air with removed CO2 the cultures reached stationary phase of growth and the photosystem II was downregulated due to overreduction of plastoquinone pool followed by degradation of the entire photosynthetic machinery. Under the Ar flow in the absence of CO2 the cultures were brought to microaerobic conditions producing small amounts of hydrogen (5 ml H2 day-1 liter-1 culture). Similar to the case of incubation under air atmosphere, prolonged incubation of cultures under microaerobic conditions resulted in down-regulation of photosystem II due to overreduction of plastoquinone pool with following degradation of whole photosynthetic machinery. Following removal of CO2, transfer of cultures into dark anaerobic conditions (2.5 h), and illumination with low-intensity light resulted in the cultures producing H2 with high initial rate. Total microalgal hydrogen production under these conditions was 56 ml H2 liter-1 culture. Thus, the CO2-deprived photoautotrophic cultures produce hydrogen. Hydrogen production was limited by the toxic effect of oxygen on hydrogenase but not by the Calvin-Benson-Bassham cycle competition with hydrogen production process.


Asunto(s)
Chlamydomonas reinhardtii , Hidrogenasas , Chlamydomonas reinhardtii/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Dióxido de Carbono/metabolismo , Hidrogenasas/metabolismo , Hidrogenasas/farmacología , Plastoquinona/farmacología , Azufre/metabolismo , Azufre/farmacología , Fotosíntesis/fisiología , Hidrógeno , Oxígeno/metabolismo
8.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35163053

RESUMEN

Astrocytes and microglia are the first cells to react to neurodegeneration, e.g., in Alzheimer's disease (AD); however, the data on changes in glial support during the most common (sporadic) type of the disease are sparse. Using senescence-accelerated OXYS rats, which simulate key characteristics of sporadic AD, and Wistar rats (parental normal strain, control), we investigated hippocampal neurogenesis and glial changes during AD-like pathology. Using immunohistochemistry, we showed that the early stage of the pathology is accompanied by a lower intensity of neurogenesis and decreased astrocyte density in the dentate gyrus. The progressive stage is concurrent with reactive astrogliosis and microglia activation, as confirmed by increased cell densities and by the acquisition of cell-specific gene expression profiles, according to transcriptome sequencing data. Besides, here, we continued to analyze the anti-AD effects of prolonged supplementation with mitochondria-targeted antioxidant SkQ1. The antioxidant did not affect neurogenesis, partly normalized the gene expression profile of astrocytes and microglia, and shifted the resting/activated microglia ratio toward a decrease in the activated-cell density. In summary, both astrocytes and microglia are more vulnerable to AD-associated neurodegeneration in the CA3 area than in other hippocampal areas; SkQ1 had an anti-inflammatory effect and is a promising modality for AD prevention and treatment.


Asunto(s)
Enfermedad de Alzheimer/dietoterapia , Enfermedad de Alzheimer/patología , Giro Dentado/patología , Plastoquinona/análogos & derivados , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/genética , Animales , Astrocitos/química , Astrocitos/efectos de los fármacos , Astrocitos/patología , Giro Dentado/química , Giro Dentado/efectos de los fármacos , Suplementos Dietéticos , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Plastoquinona/administración & dosificación , Plastoquinona/farmacología , Ratas , Ratas Wistar
9.
Molecules ; 27(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35163957

RESUMEN

Plants have paved the way for the attainment of molecules with a wide-range of biological activities. However, plant products occasionally show low biological activities and/or poor pharmacokinetic properties. In that case, development of their derivatives as drugs from the plant world has been actively performed. As plant products, plastoquinones (PQs) have been of high importance in anticancer drug design and discovery; we have previously evaluated and reported the potential cytotoxic effects of a series of PQ analogs. Among these analogs, PQ2, PQ3 and PQ10 were selected for National Cancer Institute (NCI) for in vitro screening of anticancer activity against a wide range of cancer cell lines. The apparent superior anticancer potency of PQ2 on the HCT-116 colorectal cancer cell line than that of PQ3 and PQ10 compared to other tested cell lines has encouraged us to perform further mechanistic studies to enlighten the mode of anti-colorectal cancer action of PQ2. For this purpose, its apoptotic effects on the HCT-116 cell line, DNA binding capacity and several crucial pharmacokinetic properties were investigated. Initially, MTT assay was conducted for PQ2 at different concentrations against HCT-116 cells. Results indicated that PQ2 exhibited significant cytotoxicity in HCT-116 cells with an IC50 value of 4.97 ± 1.93 µM compared to cisplatin (IC50 = 26.65 ± 7.85 µM). Moreover, apoptotic effects of PQ2 on HCT-116 cells were investigated by the annexin V/ethidium homodimer III staining method and PQ2 significantly induced apoptosis in HCT-116 cells compared to cisplatin. Based on the potent DNA cleavage capacity of PQ2, molecular docking studies were conducted in the minor groove of the double helix of DNA and PQ2 presented a key hydrogen bonding through its methoxy moiety. Overall, both in vitro and in silico studies indicated that effective, orally bioavailable drug-like PQ2 attracted attention for colorectal cancer treatment. The most important point to emerge from this study is that appropriate derivatization of a plant product leads to unique biologically active compounds.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Plastoquinona/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Simulación por Computador , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Plastoquinona/metabolismo , Relación Estructura-Actividad
10.
Life Sci ; 288: 120174, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34826439

RESUMEN

AIMS: FcεRI-dependent activation and degranulation of mast cells (MC) play an important role in allergic diseases. We have previously demonstrated that triphenylphosphonium (TPP)-based antioxidant SkQ1 inhibits mast cell degranulation, but the exact mechanism of this inhibition is still unknown. This study focused on investigating the influence of TPP-based compounds SkQ1 and C12TPP on FcεRI-dependent mitochondrial dysfunction and signaling during MC degranulation. MAIN METHODS: MC were sensitized by anti-dinitrophenyl IgE and stimulated by BSA-conjugated dinitrophenyl. The degranulation of MC was estimated by ß-hexosaminidase release. The effect of TPP-based compounds on FcεRI-dependent signaling was determined by Western blot analysis for adapter molecule LAT, kinases Syk, PI3K, Erk1/2, and p38. Fluorescent microscopy was used to evaluate mitochondrial parameters such as morphology, membrane potential, reactive oxygen species and ATP level. KEY FINDINGS: Pretreatment with TPP-based compounds significantly decreased FcεRI-dependent degranulation of MC. TPP-based compounds also prevented mitochondrial dysfunction (drop in mitochondrial ATP level and mitochondrial fission), and decreased Erk1/2 kinase phosphorylation. Selective Erk1/2 inhibition by U0126 also reduced ß-hexosaminidase release and prevented mitochondrial fragmentation during FcεRI-dependent degranulation of MC. SIGNIFICANCE: These findings expand the fundamental understanding of the role of mitochondria in the activation of MC. It also contributes to the rationale for the development of mitochondrial-targeted drugs for the treatment of allergic diseases.


Asunto(s)
Degranulación de la Célula , Mastocitos/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Plastoquinona/análogos & derivados , Receptores de IgE/metabolismo , Animales , Regulación de la Expresión Génica , Mastocitos/inmunología , Mastocitos/metabolismo , Mastocitos/patología , Mitocondrias/inmunología , Mitocondrias/metabolismo , Mitocondrias/patología , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Plastoquinona/farmacología , Ratas , Receptores de IgE/genética
11.
Chem Biol Interact ; 349: 109673, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34560069

RESUMEN

2,3-Dimethyl-1,4-benzoquinones named as Plastoquinone (PQ) analogs have antiproliferative activity and are promising new members of molecules that can be used to cope with cancer. In an attempt to develop effective and potentially safe antiproliferative agents, previously reported twelve Plastoquinone analogs (PQ1-12) have been obtained to understand their antiproliferative profile. All PQ analogs have been selected by the National Cancer Institute (NCI) of Bethesda based on the NCI Developmental Therapeutics Program and tested against the panel of 60 cancer cell lines. Based on those studies, the cytotoxicity of the selected PQ analogs (PQ8, PQ9, PQ11, and PQ12) was determined using four breast cancer cell lines (MCF7, UACC-2087, MDA-MB-231, and MDA-MB-435) and a normal cell line (HaCaT). For better understanding, apoptosis induction, changes in cell proliferation, cell migration, and reactive oxygen species (ROS) generation were investigated for the selected PQ analog (PQ11) on MCF7 and UACC-2087 cell lines. According to the study results, PQ11 showed the most promising anticancer activity against MCF7 cell line through increased oxidative stress and apoptosis and suppression of cell proliferation. Based on the biological activity profile, we hypothesize that PQ11 could be a modulator of the cannabinoid 2 (CB2) receptor. Accordingly, we analyzed molecular level interaction of PQ11 with CB2 receptor through molecular docking simulation and it was also predicted to have a favorable ADMET profile. Overall, our findings suggest that integration of the N-phenylpiperazine moiety can be a good strategy for the structural optimization of PQ analogs as anticancer agents, especially in breast cancer.


Asunto(s)
Neoplasias de la Mama/patología , Piperazinas/química , Plastoquinona/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Femenino , Humanos , Plastoquinona/química , Relación Estructura-Actividad
12.
Bioorg Chem ; 116: 105316, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34509796

RESUMEN

In the fight with the antimicrobial resistance, our continuous effort to find quinone analogs with higher inhibitory activity has previously led us to the promising Plastoquinone analogs. The 1,4-quinone moiety substituted with alkoxy substituent(s) plays an important role in the field of antimicrobial and anticancer drug discovery and development. Thus, an extensive series of 1,4-quinones, substituted in different positions with a variety of alkoxy substituents, has been designed, synthesized, and evaluated for their antimicrobial activity. Here, we describe the synthesis of brominated Plastoquinone analogs (BrPQ1-15) based on the dimethyl-1,4-quinone scaffold by employing two different paths. We also present here the in vitro antimicrobial activity of these analogs (BrPQ1-15) against a panel of pathogenic organisms. These studies resulted in several new selective antibacterial inhibitors and gave valuable insights into the structure-activity relationships. Among all the analogs studied, two analogs BrPQ1 with a methoxy substituent and BrPQ14 with a cyclic dioxy stand out as the most promising antibacterial molecules against Staphylococcus aureus and Staphylococcus epidermidis. Afterwards, two analogs were selected for a further investigation for biofilm evaluation. Finally, molecular docking studies for BrPQ1 and BrPQ14 with probable target S. aureus PNPase (5XEX) and predictive ADMET studies were also carried out.


Asunto(s)
Antibacterianos/farmacología , Descubrimiento de Drogas , Plastoquinona/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Biopelículas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Halogenación , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Plastoquinona/síntesis química , Plastoquinona/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
13.
Biochemistry (Mosc) ; 86(3): 382-388, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33838637

RESUMEN

Diseases of the cornea are a frequent cause of blindness worldwide. Keratoplasty is an efficient method for treating severely damaged cornea. The functional competence of corneal endothelial cells is crucial for successful grafting, which requires improving the media for the hypothermic cornea preservation, as well as developing the methods for the evaluation of the corneal functional properties. The transport of water and ions by the corneal endothelium is important for the viability and optic properties of the cornea. We studied the impact of SkQ1 on the equilibrium sodium concentration in the endothelial cells after hypothermic preservation of pig cornea at 4°C for 1, 5, and 10 days in standard Eusol-C solution. The intracellular sodium concentration in the endothelial cells was assayed using the fluorescent dye Sodium Green; the images were analyzed with the custom-designed CytoDynamics computer program. The concentrations of sodium in the pig corneal endothelium significantly increased after 10 days of hypothermic preservation, while addition of 1.0 nM SkQ1 to the preservation medium decreased the equilibrium concentration of intracellular sodium (at 37°C). After 10 days of hypothermic preservation, the permeability of the plasma membrane for sodium decreased in the control cells, but not in the cells preserved in the presence of 1 nM SkQ1. Therefore, SkQ1 increased the ability of endothelial cells to restore the intracellular sodium concentration, which makes SkQ1 a promising agent for facilitating retention of the functional competence of endothelial cells during cold preservation.


Asunto(s)
Endotelio Corneal/metabolismo , Hipotermia Inducida , Plastoquinona/análogos & derivados , Sodio/análisis , Conservación de Tejido/métodos , Animales , Frío , Córnea/química , Córnea/efectos de los fármacos , Córnea/metabolismo , Endotelio Corneal/química , Endotelio Corneal/efectos de los fármacos , Plastoquinona/farmacología , Sodio/metabolismo , Sus scrofa/metabolismo , Sus scrofa/fisiología
14.
Exp Hematol ; 86: 67-77.e2, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32422231

RESUMEN

There exists an urgent need for the development of new drugs for the treatment of lymphoid neoplasms. The aim of this study was to evaluate the cytotoxic effect of the marine plastoquinone 9'-hydroxysargaquinone (9'-HSQ), focusing on investigation of the mechanism by which it causes death in lymphoid neoplastic cells. This particular plastoquinone reduced the cell viability of different hematological tumor cell lines in a time-dependent and concentration-dependent manner. Intrinsic apoptosis occurred with time-dependent reduction of mitochondrial membrane potential (42.3 ± 1.1% of Daudi cells and 18.6 ± 5.6% of Jurkat cells maintained mitochondrial membrane integrity) and apoptosis-inducing factor release (Daudi: 133.3 ± 8.1%, Jurkat: 125.7 ± 6.9%). Extrinsic apoptosis also occurred, as reflected by increased FasR expression (Daudi: 139.5 ± 7.1%, Jurkat: 126.0 ± 1.0%). Decreases were observed in the expression of Ki-67 proliferation marker (Daudi: 67.5 ± 2.5%, Jurkat: 84.3 ± 3.8%), survivin (Daudi: 66.0 ± 9.9%, Jurkat: 63.1 ± 6.0%), and NF-κB (0.7 ± 0.04% in Jurkat cells). Finally, 9'-HSQ was cytotoxic to neoplastic cells from patients with different lymphoid neoplasms (IC50: 4.9 ± 0.6 to 34.2 ± 0.4 µmol/L). These results provide new information on the apoptotic mechanisms of 9'-HSQ and suggest that it might be a promising alternative for the treatment of lymphoid neoplasms.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Organismos Acuáticos/química , Neoplasias Hematológicas/tratamiento farmacológico , Trastornos Linfoproliferativos/tratamiento farmacológico , Phaeophyceae/química , Plastoquinona/farmacología , Antineoplásicos/química , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patología , Humanos , Células Jurkat , Células K562 , Trastornos Linfoproliferativos/metabolismo , Trastornos Linfoproliferativos/patología , Plastoquinona/química
15.
Folia Microbiol (Praha) ; 65(5): 785-795, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32458315

RESUMEN

Infectious diseases are the significant global health problem because of drug resistance to most classes of antimicrobials. Interest is growing in the development of new antimicrobials in pharmaceutical discovery. For that reason, the urgency for scientists to find and/or develop new important molecules is needed. Many natural active molecules that exhibit various biological activities have been isolated from the nature. For the present research, a new selected set of aminobenzoquinones, denoted as plastoquinone analogs (PQ1-24), was employed for their in vitro antimicrobial potential in a panel of seven bacterial strains (three Gram-positive and four Gram-negative bacteria) and three fungi. The results revealed PQ analogs with specific activity against bacteria including Staphylococcus epidermidis and pathogenic fungi, including Candida albicans. PQ8 containing methoxy group at the ortho position on the phenylamino moiety exhibited the highest growth inhibition against S. epidermidis with a minimum inhibitory concentration of 9.76 µg/mL. The antifungal profile of all PQ analogs indicated that five analogs (while PQ1, PQ8, PQ9, PQ11, and PQ18 were effective against Candida albicans, PQ1 and PQ18 were effective against Candida tropicalis) have potent antifungal activity. Selected analogs, PQ1 and PQ18, were studied for biofilm evaluation and time-kill kinetic study for better understanding.


Asunto(s)
Antiinfecciosos/farmacología , Candida albicans/efectos de los fármacos , Plastoquinona/análogos & derivados , Plastoquinona/farmacología , Staphylococcus epidermidis/efectos de los fármacos , Antiinfecciosos/química , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Candida albicans/crecimiento & desarrollo , Halogenación , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Plastoquinona/química , Staphylococcus epidermidis/crecimiento & desarrollo , Relación Estructura-Actividad
16.
Oxid Med Cell Longev ; 2020: 3631272, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32104531

RESUMEN

A new mitochondria-targeted probe MitoCLox was designed as a starting compound for a series of probes sensitive to cardiolipin (CL) peroxidation. Fluorescence microscopy reported selective accumulation of MitoCLox in mitochondria of diverse living cell cultures and its oxidation under stress conditions, particularly those known to cause a selective cardiolipin oxidation. Ratiometric fluorescence measurements using flow cytometry showed a remarkable dependence of the MitoCLox dynamic range on the oxidation of the sample. Specifically, MitoCLox oxidation was induced by low doses of hydrogen peroxide or organic hydroperoxide. The mitochondria-targeted antioxidant 10-(6'-plastoquinonyl)decyltriphenyl-phosphonium (SkQ1), which was shown earlier to selectively protect cardiolipin from oxidation, prevented hydrogen peroxide-induced MitoCLox oxidation in the cells. Concurrent tracing of MitoCLox oxidation and membrane potential changes in response to hydrogen peroxide addition showed that the oxidation of MitoCLox started without a delay and was complete during the first hour, whereas the membrane potential started to decay after 40 minutes of incubation. Hence, MitoCLox could be used for splitting the cell response to oxidative stress into separate steps. Application of MitoCLox revealed heterogeneity of the mitochondrial population; in living endothelial cells, a fraction of small, rounded mitochondria with an increased level of lipid peroxidation were detected near the nucleus. In addition, the MitoCLox staining revealed a specific fraction of cells with an increased level of oxidized lipids also in the culture of human myoblasts. The fraction of such cells increased in high-density cultures. These specific conditions correspond to the initiation of spontaneous myogenesis in vitro, which indicates that oxidation may precede the onset of myogenic differentiation. These data point to a possible participation of oxidized CL in cell signalling and differentiation.


Asunto(s)
Peroxidación de Lípido/fisiología , Microscopía Fluorescente/métodos , Mitocondrias/metabolismo , Animales , Cardiolipinas/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Desarrollo de Músculos/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Plastoquinona/análogos & derivados , Plastoquinona/farmacología
17.
Oxid Med Cell Longev ; 2020: 8956504, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32104543

RESUMEN

Benzalkonium chloride (BAC) is currently the most commonly used antimicrobial preservative in ophthalmic solutions, nasal sprays, and cosmetics. However, a large number of clinical and experimental investigations showed that the topical administration of BAC-containing eye drops could cause a variety of ocular surface changes, from ocular discomfort to potential risk for future glaucoma surgery. BAC-containing albuterol may increase the risk of albuterol-related systemic adverse effects. BAC, commonly present in personal care products, in cosmetic products can induce irritation and dose-dependent changes in the cell morphology. The cationic nature of BAC (it is a quaternary ammonium) suggests that one of the major targets of BAC in the cell may be mitochondria, the only intracellular compartment charged negatively. However, the influence of BAC on mitochondria has not been clearly understood. Here, the effects of BAC on energy parameters of rat liver mitochondria as well as on yeast cells were examined. BAC, being a "weaker" uncoupler, potently inhibited respiration in state 3, diminished the mitochondrial membrane potential, caused opening of the Ca2+/Pi-dependent pore, blocked ATP synthesis, and promoted H2O2 production by mitochondria. BAC triggered oxidative stress and mitochondrial fragmentation in yeast cells. BAC-induced oxidative stress in mitochondria and yeast cells was almost totally prevented by the mitochondria-targeted antioxidant SkQ1; the protective effect of SkQ1 on mitochondrial fragmentation was only partial. Collectively, these data showed that BAC acts adversely on cell bioenergetics (especially on ATP synthesis) and mitochondrial dynamics and that its prooxidant effect can be partially prevented by the mitochondria-targeted antioxidant SkQ1.


Asunto(s)
Compuestos de Benzalconio/farmacología , Mitocondrias Hepáticas/metabolismo , Animales , Antioxidantes/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Plastoquinona/análogos & derivados , Plastoquinona/farmacología , Ratas , Especies Reactivas de Oxígeno/metabolismo
18.
Int J Mol Sci ; 21(3)2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31973128

RESUMEN

Ocular inflammation contributes to the pathogenesis of blind-causing retinal degenerative diseases, such as age-related macular degeneration (AMD) or photic maculopathy. Here, we report on inflammatory mechanisms that are associated with retinal degeneration induced by bright visible light, which were revealed while using a rabbit model. Histologically and electrophysiologically noticeable degeneration of the retina is preceded and accompanied by oxidative stress and inflammation, as evidenced by granulocyte infiltration and edema in this tissue, as well as the upregulation of total protein, pro-inflammatory cytokines, and oxidative stress markers in aqueous humor (AH). Consistently, quantitative lipidomic studies of AH elucidated increase in the concentration of arachidonic (AA) and docosahexaenoic (DHA) acids and lyso-platelet activating factor (lyso-PAF), together with pronounced oxidative and inflammatory alterations in content of lipid mediators oxylipins. These alterations include long-term elevation of prostaglandins, which are synthesized from AA via cyclooxygenase-dependent pathways, as well as a short burst of linoleic acid derivatives that can be produced by both enzymatic and non-enzymatic free radical-dependent mechanisms. The upregulation of all oxylipins is inhibited by the premedication of the eyes while using mitochondria-targeted antioxidant SkQ1, whereas the accumulation of prostaglandins and lyso-PAF can be specifically suppressed by topical treatment with cyclooxygenase inhibitor Nepafenac. Interestingly, the most prominent antioxidant and anti-inflammatory benefits and overall retinal protective effects are achieved by simultaneous administrating of both drugs indicating their synergistic action. Taken together, these findings provide a rationale for using a combination of mitochondria-targeted antioxidant and cyclooxygenase inhibitor for the treatment of inflammatory components of retinal degenerative diseases.


Asunto(s)
Humor Acuoso/metabolismo , Inflamación/tratamiento farmacológico , Luz/efectos adversos , Retina/metabolismo , Degeneración Retiniana/tratamiento farmacológico , Degeneración Retiniana/metabolismo , Animales , Antioxidantes/farmacología , Ácido Araquidónico/metabolismo , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/metabolismo , Edema/patología , Inflamación/patología , Peroxidación de Lípido , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/metabolismo , Masculino , Mitocondrias/metabolismo , Estrés Oxidativo , Oxilipinas/metabolismo , Plastoquinona/análogos & derivados , Plastoquinona/farmacología , Factor de Activación Plaquetaria/análogos & derivados , Factor de Activación Plaquetaria/metabolismo , Conejos , Retina/efectos de los fármacos , Retina/patología , Retina/efectos de la radiación , Degeneración Retiniana/inducido químicamente , Degeneración Retiniana/patología
19.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165664, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31926265

RESUMEN

Neutrophils release neutrophil extracellular traps (NETs) in response to numerous pathogenic microbes as the last suicidal resource (NETosis) in the fight against infection. Apart from the host defense function, NETs play an essential role in the pathogenesis of various autoimmune and inflammatory diseases. Therefore, understanding the molecular mechanisms of NETosis is important for regulating aberrant NET release. The initiation of NETosis after the recognition of pathogens by specific receptors is mediated by an increase in intracellular Ca2+ concentration, therefore, the use of Ca2+ ionophore A23187 can be considered a semi-physiological model of NETosis. Induction of NETosis by various stimuli depends on reactive oxygen species (ROS) produced by NADPH oxidase, however, NETosis induced by Ca2+ ionophores was suggested to be mediated by ROS produced in mitochondria (mtROS). Using the mitochondria-targeted antioxidant SkQ1 and specific inhibitors of NADPH oxidase, we showed that both sources of ROS, mitochondria and NADPH oxidase, are involved in NETosis induced by A23187 in human neutrophils. In support of the critical role of mtROS, SkQ1-sensitive NETosis was demonstrated to be induced by A23187 in neutrophils from patients with chronic granulomatous disease (CGD). We assume that Ca2+-triggered mtROS production contributes to NETosis either directly (CGD neutrophils) or by stimulating NADPH oxidase. The opening of the mitochondrial permeability transition pore (mPTP) in neutrophils treated by A23187 was revealed using the electron transmission microscopy as a swelling of the mitochondrial matrix. Using specific inhibitors, we demonstrated that the mPTP is involved in mtROS production, NETosis, and the oxidative burst induced by A23187.


Asunto(s)
Trampas Extracelulares/metabolismo , Enfermedad Granulomatosa Crónica/patología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , NADPH Oxidasa 2/metabolismo , Neutrófilos/metabolismo , Estallido Respiratorio/fisiología , Adolescente , Calcimicina/farmacología , Calcio/metabolismo , Cationes Bivalentes/metabolismo , Células Cultivadas , Niño , Transporte de Electrón , Depuradores de Radicales Libres/farmacología , Enfermedad Granulomatosa Crónica/sangre , Voluntarios Sanos , Humanos , Mutación con Pérdida de Función , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/ultraestructura , Poro de Transición de la Permeabilidad Mitocondrial , NADPH Oxidasa 2/antagonistas & inhibidores , NADPH Oxidasa 2/genética , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Neutrófilos/ultraestructura , Oxidación-Reducción/efectos de los fármacos , Plastoquinona/análogos & derivados , Plastoquinona/farmacología , Cultivo Primario de Células , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Estallido Respiratorio/efectos de los fármacos
20.
Chem Biol Drug Des ; 95(3): 343-354, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31785034

RESUMEN

Herein, we report the synthesis and cytotoxic effects of novel chlorinated plastoquinone analogs (ABQ1-17) against different leukemic cells. Compounds ABQ3, ABQ11, and ABQ12 demonstrated a pronounced antiproliferative effect against chronic myelogenous leukemia (CML) K562 cell line with IC50 values of 0.82 ± 0.07, 0.28 ± 0.03, and 0.98 ± 0.22 µM, respectively. Among them, ABQ11 showed approximately three times higher selectivity than imatinib on CML. ABQ11-treated CML cells induced significant apoptosis at low concentration. Inhibitory effect of ABQ11 against eight different tyrosine kinases, including ABL1, was investigated. ABQ11 inhibited ABL1 with IC50 value of 13.12 ± 1.71 µM, indicating that the moderate inhibition of ABL1 kinase is just an in-part mechanism of its outstanding cellular activity. Molecular docking of ABQ11 into ABL1 kinase ATP-binding pocket revealed the formation of some key interactions. Furthermore, DNA cleavage assay showed that ABQ11 strongly disintegrated DNA at 1 µM concentration in the presence of iron (II) complex system, assuming that the major mechanism for the anticancer effects of ABQ11 is DNA cleavage. In silico ADMET prediction revealed that ABQ11 is a drug-like small molecule with a favorable safety profile. Taken together, ABQ11 is a potential antiproliferative hit compound that exhibits unique cytotoxic activity distinct from imatinib.


Asunto(s)
Antineoplásicos/síntesis química , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Plastoquinona/síntesis química , Inhibidores de Proteínas Quinasas/síntesis química , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , División del ADN/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Halogenación , Humanos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/normas , Plastoquinona/metabolismo , Plastoquinona/farmacología , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA