Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.018
Filtrar
1.
Biosens Bioelectron ; 258: 116354, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38723331

RESUMEN

Real-time monitoring of biological markers in sweat is a valuable tool for health assessment. In this study, we have developed an innovative wearable biosensor for precise analysis of glucose in sweat during physical activities. The sensor is based on a single-atom catalyst of platinum (Pt) uniformly dispersed on tricobalt tetroxide (Co3O4) nanorods and reduced graphene oxide (rGO), featuring a unique three-dimensional nanostructure and excellent glucose electrocatalytic performance with a wide detection range of 1-800 µM. Additionally, density functional theory calculations have revealed the synergetic role of Pt active sites in the Pt single-atom catalyst (Co3O4/rGO/Pt) in glucose adsorption and electron transfer, thereby enhancing sensor performance. To enable application in wearable devices, we designed an S-shaped microfluidic chip and a point-of-care testing (POCT) device, both of which were validated for effectiveness through actual use by volunteers. This research provides valuable insights and innovative approaches for analyzing sweat glucose using wearable devices, contributing to the advancement of personalized healthcare.


Asunto(s)
Técnicas Biosensibles , Glucosa , Grafito , Platino (Metal) , Sudor , Dispositivos Electrónicos Vestibles , Técnicas Biosensibles/instrumentación , Sudor/química , Platino (Metal)/química , Humanos , Catálisis , Glucosa/análisis , Grafito/química , Técnicas Electroquímicas/instrumentación , Nanotubos/química , Límite de Detección , Diseño de Equipo , Óxidos/química
2.
Nat Commun ; 15(1): 4253, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762636

RESUMEN

Platinum-based chemotherapy is the cornerstone treatment for female high-grade serous ovarian carcinoma (HGSOC), but choosing an appropriate treatment for patients hinges on their responsiveness to it. Currently, no available biomarkers can promptly predict responses to platinum-based treatment. Therefore, we developed the Pathologic Risk Classifier for HGSOC (PathoRiCH), a histopathologic image-based classifier. PathoRiCH was trained on an in-house cohort (n = 394) and validated on two independent external cohorts (n = 284 and n = 136). The PathoRiCH-predicted favorable and poor response groups show significantly different platinum-free intervals in all three cohorts. Combining PathoRiCH with molecular biomarkers provides an even more powerful tool for the risk stratification of patients. The decisions of PathoRiCH are explained through visualization and a transcriptomic analysis, which bolster the reliability of our model's decisions. PathoRiCH exhibits better predictive performance than current molecular biomarkers. PathoRiCH will provide a solid foundation for developing an innovative tool to transform the current diagnostic pipeline for HGSOC.


Asunto(s)
Cistadenocarcinoma Seroso , Aprendizaje Profundo , Neoplasias Ováricas , Platino (Metal) , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/genética , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/diagnóstico por imagen , Cistadenocarcinoma Seroso/patología , Cistadenocarcinoma Seroso/genética , Platino (Metal)/uso terapéutico , Persona de Mediana Edad , Anciano , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Resultado del Tratamiento , Clasificación del Tumor , Estudios de Cohortes , Adulto , Reproducibilidad de los Resultados
3.
Technol Cancer Res Treat ; 23: 15330338241249692, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706262

RESUMEN

PURPOSE: PIWI-interacting RNAs (piRNAs) are a type of noncoding small RNA that can interact with PIWI-like RNA-mediated gene silencing (PIWIL) proteins to affect biological processes such as transposon silencing through epigenetic effects. Recent studies have found that piRNAs are widely dysregulated in tumors and associated with tumor progression and a poor prognosis. Therefore, this study aimed to investigate the effect of piR-1919609 on the proliferation, apoptosis, and drug resistance of ovarian cancer cells. METHODS: In this study, we used small RNA sequencing to screen and identify differentially expressed piRNAs in primary ovarian cancer, recurrent ovarian cancer, and normal ovaries. A large-scale verification study was performed to verify the expression of piR-1919609 in different types of ovarian tissue, including ovarian cancer tissue and normal ovaries, by RT-PCR and to analyze its association with the clinical prognosis of ovarian cancer. The expression of PIWILs in ovarian cancer was verified by RT-PCR, Western blotting and immunofluorescence. The effects of piR-1919609 on ovarian cancer cell proliferation, apoptosis and drug resistance were studied through in vitro and in vivo models. RESULTS: (1) piR-1919609 was highly expressed in platinum-resistant ovarian cancer tissues (p < 0.05), and this upregulation was significantly associated with a poor prognosis and a shorter recurrence time in ovarian cancer patients (p < 0.05). (2) PIWIL2 was strongly expressed in ovarian cancer tissues (p < 0.05). It was expressed both in the cytoplasm and nucleus of ovarian cancer cells. (3) Overexpression of piR-1919609 promoted ovarian cancer cell proliferation, inhibited apoptosis, and promoted tumor growth in nude mice. (4) Inhibition of piR-1919609 effectively reversed ovarian cancer drug resistance. CONCLUSION: In summary, we showed that piR-1919609 is involved in the regulation of drug resistance in ovarian cancer cells and might be an ideal potential target for reversing platinum resistance in ovarian cancer.


Asunto(s)
Apoptosis , Proliferación Celular , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas , ARN Interferente Pequeño , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino , Humanos , Resistencia a Antineoplásicos/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Animales , Ratones , Línea Celular Tumoral , ARN Interferente Pequeño/genética , Pronóstico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Modelos Animales de Enfermedad , Platino (Metal)/uso terapéutico , Platino (Metal)/farmacología
4.
Bioelectrochemistry ; 158: 108728, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38733721

RESUMEN

Herein, an aptasensor based on a signal amplification strategy was developed for the sensitive detection of procymidone (PCM). AgPd nanoparticles/Polenimine Graphite oxide (AgPdNPs/PEI-GO) was weaned as electrode modification material to facilitate electron transport and increase the active sites on the electrode surface. Besides, Pt@Ni-Co nanoboxes (Pt@Ni-CoHNBs) were utilized to be carriers for signaling tags, after hollowing ZIF-67 and growing Pt, the resulting Pt@Ni-CoHNBs has a tremendous amounts of folds occurred on the surface, enables it to carry a larger quantity of thionine, thus amplify the detectable electrochemical signal. In the presence of PCM, the binding of PCM to the signal probe would trigger a change in electrical signal. The aptasensor was demonstrated with excellent sensitivity and a low detection limit of 0.98 pg·mL-1, along with a wide linear range of 1 µg·mL-1 to 1 pg·mL-1. Meanwhile, the specificity, stability and reproducibility of the constructed aptasensor were proved to be satisfactory.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Electroquímicas , Grafito , Límite de Detección , Nanopartículas del Metal , Paladio , Platino (Metal) , Plata , Grafito/química , Aptámeros de Nucleótidos/química , Técnicas Electroquímicas/métodos , Platino (Metal)/química , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Paladio/química , Plata/química , Níquel/química , Polietileneimina/química , Cobalto/química , Reproducibilidad de los Resultados
5.
J Nanobiotechnology ; 22(1): 275, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778401

RESUMEN

BACKGROUND: Acute gouty is caused by the excessive accumulation of Monosodium Urate (MSU) crystals within various parts of the body, which leads to a deterioration of the local microenvironment. This degradation is marked by elevated levels of uric acid (UA), increased reactive oxygen species (ROS) production, hypoxic conditions, an upsurge in pro-inflammatory mediators, and mitochondrial dysfunction. RESULTS: In this study, we developed a multifunctional nanoparticle of polydopamine-platinum (PDA@Pt) to combat acute gout by leveraging mild hyperthermia to synergistically enhance UA degradation and anti-inflammatory effect. Herein, PDA acts as a foundational template that facilitates the growth of a Pt shell on the surface of its nanospheres, leading to the formation of the PDA@Pt nanomedicine. Within this therapeutic agent, the Pt nanoparticle catalyzes the decomposition of UA and actively breaks down endogenous hydrogen peroxide (H2O2) to produce O2, which helps to alleviate hypoxic conditions. Concurrently, the PDA component possesses exceptional capacity for ROS scavenging. Most significantly, Both PDA and Pt shell exhibit absorption in the Near-Infrared-II (NIR-II) region, which not only endow PDA@Pt with superior photothermal conversion efficiency for effective photothermal therapy (PTT) but also substantially enhances the nanomedicine's capacity for UA degradation, O2 production and ROS scavenging enzymatic activities. This photothermally-enhanced approach effectively facilitates the repair of mitochondrial damage and downregulates the NF-κB signaling pathway to inhibit the expression of pro-inflammatory cytokines. CONCLUSIONS: The multifunctional nanomedicine PDA@Pt exhibits exceptional efficacy in UA reduction and anti-inflammatory effects, presenting a promising potential therapeutic strategy for the management of acute gout.


Asunto(s)
Gota , Indoles , Polímeros , Especies Reactivas de Oxígeno , Ácido Úrico , Gota/tratamiento farmacológico , Gota/metabolismo , Gota/terapia , Especies Reactivas de Oxígeno/metabolismo , Animales , Ratones , Polímeros/química , Indoles/química , Indoles/farmacología , Nanopartículas/química , Platino (Metal)/química , Platino (Metal)/farmacología , Platino (Metal)/uso terapéutico , Humanos , Peróxido de Hidrógeno/metabolismo , Hipertermia Inducida/métodos , Células RAW 264.7 , Terapia Fototérmica/métodos , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Masculino
6.
Anal Chim Acta ; 1309: 342698, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38772661

RESUMEN

BACKGROUND: The lateral flow immunoassay (LFIA) is widely employed as a point-of-care testing (POCT) technique. However, its limited sensitivity hinders its application in detecting biomarkers with low abundance. Recently, the utilization of nanozymes has been implemented to enhance the sensitivity of LFIA by catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). The catalytic performance of nanozymes plays a crucial role in influencing the sensitivity of LFIA. RESULTS: The Cornus officinalis Sieb. et Zucc-Pd@Pt (CO-Pd@Pt) nanozyme with good peroxidase-like activity was synthesized herein through a facile one-pot method employing Cornus officinalis Sieb. et Zucc extract as a reducing agent. The morphology and composition of the CO-Pd@Pt nanozyme were characterized using TEM, SEM, XRD, and XPS. As a proof of concept, the as-synthesized CO-Pd@Pt nanozyme was utilized in LFIA (CO-Pd@Pt-LFIA) for the detection of human chorionic gonadotropin (hCG). Compared to conventional gold nanoparticles-based LFIA (AuNPs-LFIA), CO-Pd@Pt-LFIA demonstrated a significant enhancement in the limit of detection (LOD, 0.08 mIU/mL), which is approximately 160 times lower than that of AuNPs-LFIA. Furthermore, experiments evaluating accuracy, precision, selectivity, interference, and stability have confirmed the practical applicability of CO-Pd@Pt-LFIA for hCG content determination. SIGNIFICANCE: The present study presents a novel approach for the synthesis of bimetallic nanozymes through environmentally friendly methods, utilizing plant extracts as both protective and reducing agents. Additionally, an easily implementable technique is proposed to enhance signal detection in lateral flow immunoassays.


Asunto(s)
Paladio , Platino (Metal) , Paladio/química , Platino (Metal)/química , Inmunoensayo/métodos , Humanos , Nanopartículas del Metal/química , Límite de Detección , Peroxidasa/química , Peroxidasa/metabolismo , Bencidinas/química , Catálisis , Oxidación-Reducción
7.
ACS Appl Mater Interfaces ; 16(20): 25601-25609, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38727578

RESUMEN

We report an ultrasensitive sandwich-type electrochemical immunosensor to detect the breast cancer biomarker CA 15-3. Amine-functionalized composite of reduced graphene oxide and Fe3O4 nanoparticles (MRGO-NH2) was used as an electrochemical sensing platform material to modify the electrodes. The nanocomposite comprising Pt and Fe3O4 nanoparticles (NPs) anchored on multiwalled carbon nanotubes (Pt-Fe3O4-MWCNTs-NH2) was utilized as a pseudoenzymatic signal-amplifying label. Compared to reduced graphene oxide, the composite MRGO-NH2 platform material demonstrated a higher electrochemical signal. In the Pt-Fe3O4-MWCNTs-NH2 label, multiwalled carbon nanotubes provided the substratum to anchor abundant catalytic Pt and Fe3O4 NPs. The nanocomposites were thoroughly characterized using transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. An electroanalytical study and prevalidation of the immunosensor was carried out. The immunosensor exhibited exceptional capabilities in detecting CA 15-3, offering a wider linear range of 0.0005-100 U mL-1 and a lower detection limit of 0.00008 U mL-1. Moreover, the designed immunosensor showed good specificity, reproducibility, and acceptable stability. The sensor was successfully applied to analyze samples from breast cancer patients, yielding reliable results.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Técnicas Electroquímicas , Nanocompuestos , Nanotubos de Carbono , Platino (Metal) , Humanos , Nanotubos de Carbono/química , Neoplasias de la Mama/diagnóstico , Nanocompuestos/química , Técnicas Electroquímicas/métodos , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/sangre , Femenino , Platino (Metal)/química , Técnicas Biosensibles/métodos , Grafito/química , Aminas/química , Mucina-1/análisis , Mucina-1/sangre , Inmunoensayo/métodos , Límite de Detección
8.
PLoS One ; 19(5): e0301358, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38771804

RESUMEN

Drug-resistant bacteria arising from antibiotic abuse infections have always been a serious threat to human health. Killing bacteria with toxic reactive oxygen species (ROS) is an ideal antibacterial method for treating drug-resistant bacterial infections. Here, we prepared Pt-Ru bimetallic nanoclusters (Pt-Ru NCs) with higher peroxidase (POD)-like activity than Pt monometallic nanoclusters. Pt-Ru can easily catalyze the decomposition of H2O2 to produce ·OH, thereby catalyzing the transformation of 3,3',5,5'-tetramethylbiphenylamine (TMB) to blue oxidized TMB (oxTMB). We utilized the POD-like activity of the Pt-Ru NCs for antibacterial therapy. The results showed that at doses of 40 µg/mL and 16 µg/mL, the Pt-Ru NCs exhibited extraordinary antibacterial activity against E. coli and S. aureus, demonstrating the enormous potential of Pt-Ru NCs as antibacterial agents.


Asunto(s)
Antibacterianos , Escherichia coli , Nanopartículas del Metal , Platino (Metal) , Rutenio , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Platino (Metal)/química , Platino (Metal)/farmacología , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Rutenio/química , Rutenio/farmacología , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Peroxidasa/metabolismo , Peróxido de Hidrógeno/química , Catálisis , Humanos
9.
Mikrochim Acta ; 191(6): 330, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744738

RESUMEN

In view of a large number of people infected with Helicobacter pylori (H. pylori) with great harm followed, there is an urgent need to develop a non-invasive, easy-to-operate, and rapid detection method, and to identify effective sterilization strategies. In this study, highly specific nanoprobes with nanozyme activity, Ag@Pt nanoparticles (NPs) with the antibody, were utilized as a novel lateral flow immunoassay (LFIA). The optical label (Ag@Pt NPs) was enhanced by the introduction of the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) and compared with a gold nanoparticles (Au NPs) optical label. Under the optimal condition, Ag@Pt-LFIA and TMB-enhanced Ag@Pt-LFIA for H. pylori were successfully established, two of which were over twofold and 100-fold more sensitive than conventional visual Au NP-based LFIA, respectively. Furthermore, Ag@Pt NPs with the antibody irradiated with NIR laser (808 nm) at a power intensity of 550 mW/cm2 for 5 min exhibited a remarkable antibacterial effect. The nanoprobes could close to bacteria through effective interactions between antibodies and bacteria, thereby benefiting photothermal sterilization. Overall, Ag@Pt NPs provide promising applications in pathogen detection and therapeutic applications.


Asunto(s)
Aleaciones , Helicobacter pylori , Nanopartículas del Metal , Platino (Metal) , Plata , Helicobacter pylori/efectos de la radiación , Helicobacter pylori/efectos de los fármacos , Plata/química , Nanopartículas del Metal/química , Platino (Metal)/química , Aleaciones/química , Antibacterianos/farmacología , Antibacterianos/química , Inmunoensayo/métodos , Bencidinas/química , Oro/química , Humanos , Esterilización/métodos , Límite de Detección
10.
Cell Death Dis ; 15(5): 329, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740757

RESUMEN

Iron is crucial for cell DNA synthesis and repair, but an excess of free iron can lead to oxidative stress and subsequent cell death. Although several studies suggest that cancer cells display characteristics of 'Iron addiction', an ongoing debate surrounds the question of whether iron can influence the malignant properties of ovarian cancer. In the current study, we initially found iron levels increase during spheroid formation. Furthermore, iron supplementation can promote cancer cell survival, cancer spheroid growth, and migration; vice versa, iron chelators inhibit this process. Notably, iron reduces the sensitivity of ovarian cancer cells to platinum as well. Mechanistically, iron downregulates DNA homologous recombination (HR) inhibitor polymerase theta (POLQ) and relieves its antagonism against the HR repair enzyme RAD51, thereby promoting DNA damage repair to resist chemotherapy-induced damage. Additionally, iron tightly regulated by ferritin (FTH1/FTL) which is indispensable for iron-triggered DNA repair. Finally, we discovered that iron chelators combined with platinum exhibit a synergistic inhibitory effect on ovarian cancer in vitro and in vivo. Our findings affirm the pro-cancer role of iron in ovarian cancer and reveal that iron advances platinum resistance by promoting DNA damage repair through FTH1/FTL/POLQ/RAD51 pathway. Our findings highlight the significance of iron depletion therapy, revealing a promising avenue for advancing ovarian cancer treatment.


Asunto(s)
Reparación del ADN , Resistencia a Antineoplásicos , Hierro , Neoplasias Ováricas , Recombinasa Rad51 , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Hierro/metabolismo , Línea Celular Tumoral , Recombinasa Rad51/metabolismo , Animales , Ferritinas/metabolismo , Ratones , Platino (Metal)/farmacología , Platino (Metal)/uso terapéutico , Ratones Desnudos , Oxidorreductasas/metabolismo
11.
J Biomed Sci ; 31(1): 50, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741159

RESUMEN

BACKGROUND: G-quadruplex DNA (G4) is a non-canonical structure forming in guanine-rich regions, which play a vital role in cancer biology and are now being acknowledged in both nuclear and mitochondrial (mt) genome. However, the impact of G4-based targeted therapy on both nuclear and mt genome, affecting mt function and its underlying mechanisms remain largely unexplored. METHODS: The mechanisms of action and therapeutic effects of a G4-binding platinum(II) complex, Pt-ttpy, on mitochondria were conducted through a comprehensive approaches with in vitro and in vivo models, including ICP-MS for platinum measurement, PCR-based genetic analysis, western blotting (WB), confocal microscope for mt morphology study, extracellular flux analyzer, JC1 and Annexin V apoptosis assay, flow cytometry and high content microscope screening with single-cell quantification of both ROS and mt specific ROS, as well as click-chemistry for IF study of mt translation. Decipher Pt-ttpy effects on nuclear-encoded mt related genes expression were undertaken via RNA-seq, Chip-seq and CUT-RUN assays. RESULTS: Pt-ttpy, shows a highest accumulation in the mitochondria of A2780 cancer cells as compared with two other platinum(II) complexes with no/weak G4-binding properties, Pt-tpy and cisplatin. Pt-ttpy induces mtDNA deletion, copy reduction and transcription inhibition, hindering mt protein translation. Functional analysis reveals potent mt dysfunction without reactive oxygen species (ROS) induction. Mechanistic study provided first evidence that most of mt ribosome genes are highly enriched in G4 structures in their promoter regions, notably, Pt-ttpy impairs most nuclear-encoded mt ribosome genes' transcription through dampening the recruiting of transcription initiation and elongation factors of NELFB and TAF1 to their promoter with G4-enriched sequences. In vivo studies show Pt-ttpy's efficient anti-tumor effects, disrupting mt genome function with fewer side effects than cisplatin. CONCLUSION: This study underscores Pt-ttpy as a G4-binding platinum(II) complex, effectively targeting cancer mitochondria through dual action on mt and nuclear G4-enriched genomes without inducing ROS, offering promise for safer and effective platinum-based G4-targeted cancer therapy.


Asunto(s)
G-Cuádruplex , Mitocondrias , G-Cuádruplex/efectos de los fármacos , Humanos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Línea Celular Tumoral , Genoma Mitocondrial , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Platino (Metal)/farmacología , Animales
12.
Sci Rep ; 14(1): 11025, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744861

RESUMEN

Platinum-resistant phenomena in ovarian cancer is very dangerous for women suffering from this disease, because reduces the chances of complete recovery. Unfortunately, until now there are no methods to verify whether a woman with ovarian cancer is platinum-resistant. Importantly, histopathology images also were not shown differences in the ovarian cancer between platinum-resistant and platinum-sensitive tissues. Therefore, in this study, Fourier Transform InfraRed (FTIR) and FT-Raman spectroscopy techniques were used to find chemical differences between platinum-resistant and platinum-sensitive ovarian cancer tissues. Furthermore, Principal Component Analysis (PCA) and machine learning methods were performed to show if it possible to differentiate these two kind of tissues as well as to propose spectroscopy marker of platinum-resistant. Indeed, obtained results showed, that in platinum-resistant ovarian cancer tissues higher amount of phospholipids, proteins and lipids were visible, however when the ratio between intensities of peaks at 1637 cm-1 (FTIR) and at 2944 cm-1 (Raman) and every peaks in spectra was calculated, difference between groups of samples were not noticed. Moreover, structural changes visible as a shift of peaks were noticed for C-O-C, C-H bending and amide II bonds. PCA clearly showed, that PC1 can be used to differentiate platinum-resistant and platinum-sensitive ovarian cancer tissues, while two-trace two-dimensional correlation spectra (2T2D-COS) showed, that only in amide II, amide I and asymmetric CH lipids vibrations correlation between two analyzed types of tissues were noticed. Finally, machine learning algorithms showed, that values of accuracy, sensitivity and specificity were near to 100% for FTIR and around 95% for FT-Raman spectroscopy. Using decision tree peaks at 1777 cm-1, 2974 cm-1 (FTIR) and 1714 cm-1, 2817 cm-1 (FT-Raman) were proposed as spectroscopy marker of platinum-resistant.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias Ováricas , Análisis de Componente Principal , Espectrometría Raman , Femenino , Humanos , Espectrometría Raman/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Persona de Mediana Edad , Platino (Metal) , Biomarcadores de Tumor , Aprendizaje Automático , Anciano
13.
Biosensors (Basel) ; 14(5)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38785732

RESUMEN

Nitrites widely exist in human life and the natural environment, but excessive contents of nitrites will result in adverse effects on the environment and human health; hence, sensitive and stable nitrite detection systems are needed. In this study, we report the synthesis of Ti3C2 nanosheets functionalized with apoferritin (ApoF)-biomimetic platinum (Pt) nanoparticle (Pt@ApoF/Ti3C2) composite materials, which were formed by using ApoF as a template and protein-inspired biomineralization. The formed nanohybrid exhibits excellent electrochemical sensing performance towards nitrite (NaNO2). Specifically, the Pt@ApoF catalyzes the conversion of nitrites into nitrates, converting the chemical signal into an electrical signal. The prepared Pt@ApoF/Ti3C2-based electrochemical NaNO2 biosensors demonstrate a wide detection range of 0.001-9 mM with a low detection limit of 0.425 µM. Additionally, the biosensors possess high selectivity and sensitivity while maintaining a relatively stable electrochemical sensing performance within 7 days, enabling the monitoring of NaNO2 in complex environments. The successful preparation of the Pt@ApoF/Ti3C2 nanohybrid materials provides a new approach for constructing efficient electrochemical biosensors, offering a simple and rapid method for detecting NaNO2 in complex environments.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Ferritinas , Nanopartículas del Metal , Nitritos , Platino (Metal) , Platino (Metal)/química , Nitritos/análisis , Ferritinas/análisis , Nanopartículas del Metal/química , Titanio/química , Humanos , Materiales Biomiméticos/química , Límite de Detección
14.
ACS Sens ; 9(5): 2645-2652, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38709872

RESUMEN

In this work, we present the development of the first implantable aptamer-based platinum microelectrode for continuous measurement of a nonelectroactive molecule, neuropeptide Y (NPY). The aptamer immobilization was performed via conjugation chemistry and characterized using cyclic voltammetry before and after the surface modification. The redox label, methylene blue (MB), was attached at the end of the aptamer sequence and characterized using square wave voltammetry (SWV). NPY standard solutions in a three-electrode cell were used to test three aptamers in steady-state measurement using SWV for optimization. The aptamer with the best performance in the steady-state measurements was chosen, and continuous measurements were performed in a flow cell system using intermittent pulse amperometry. Dynamic measurements were compared against confounding and similar peptides such as pancreatic polypeptide and peptide YY, as well as somatostatin to determine the selectivity in the same modified microelectrode. Our Pt-microelectrode aptamer-based NPY biosensor provides signals 10 times higher for NPY compared to the confounding molecules. This proof-of-concept shows the first potential implantable microelectrode that is selectively sensitive to NPY concentration changes.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Microelectrodos , Neuropéptido Y , Platino (Metal) , Neuropéptido Y/análisis , Técnicas Biosensibles/métodos , Platino (Metal)/química , Aptámeros de Nucleótidos/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación
15.
Talanta ; 274: 125920, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38574532

RESUMEN

Herby, the interaction of metallothioneins with commonly used Pt-based anticancer drugs - cisplatin, carboplatin, and oxaliplatin - was investigated using the combined power of elemental (i.e. LA-ICP-MS, CE-ICP-MS) and molecular (i.e. MALDI-TOF-MS) analytical techniques providing not only required information about the interaction, but also the benefit of low sample consumption. The amount of Cd and Pt incorporated within the protein was determined for protein monomers and dimer/oligomers formed by non-oxidative dimerization. Moreover, fluorescence spectrometry using Zn2+-selective fluorescent indicator - FluoZin3 - was employed to monitor the ability of Pt drugs to release natively occurring Zn from the protein molecule. The investigation was carried out using two protein isoforms (i.e. MT2, MT3), and significant differences in behaviour of these two isoforms were observed. The main attention was paid to elucidating whether the protein dimerization/oligomerization may be the reason for the potential failure of the anticancer therapy based on these drugs. Based on the results, it was demonstrated that the interaction of MT2 (both monomers and dimers) interacted with Pt drugs significantly less compared to MT3 (both monomers and dimers). Also, a significant difference between monomeric and dimeric forms (both MT2 and MT3) was not observed. This may suggest that dimer formation is not the key factor leading to the inactivation of Pt drugs.


Asunto(s)
Metalotioneína , Espectrometría de Fluorescencia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Metalotioneína/metabolismo , Metalotioneína/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Fluorescencia/métodos , Carboplatino/farmacología , Oxaliplatino/farmacología , Cisplatino/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Compuestos Organoplatinos/farmacología , Compuestos Organoplatinos/química , Platino (Metal)/química , Metalotioneína 3 , Citostáticos/farmacología , Citostáticos/química , Espectrometría de Masas/métodos , Humanos
16.
Sci Rep ; 14(1): 7875, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570564

RESUMEN

This study examines the manufacturing, characterization, and biological evaluation of platinum nanoparticles, which were synthesized by Enterobacter cloacae and coated with Bovine Serum Albumin (BSA) and Resveratrol (RSV). The formation of PtNPs was confirmed with the change of color from dark yellow to black, which was due to the bioreduction of platinum chloride by E. cloacae. BSA and RSV functionalization enhanced these nanoparticles' biocompatibility and therapeutic potential. TGA, SEM, XRD, and FTIR were employed for characterization, where PtNPs and drug conjugation-related functional groups were studied by FTIR. XRD confirmed the crystalline nature of PtNPs and Pt-BSA-RSV NPs, while TGA and SEM showed thermal stability and post-drug coating morphological changes. Designed composite was also found to be biocompatible in nature in hemolytic testing, indicating their potential in Biomedical applications. After confirmation of PtNPs based nanocaompsite synthesis, they were examined for anti-bacterial, anti-oxidant, anti-inflammatory, and anti-cancer properties. Pt-BSA-RSV NPs showed higher concentration-dependent DPPH scavenging activity, which measured antioxidant capability. Enzyme inhibition tests demonstrated considerable anti-inflammatory activity against COX-2 and 15-LOX enzymes. In in vitro anticancer studies, Pt-BSA-RSV NPs effectively killed human ovarian cancer cells. This phenomenon was demonstrated to be facilitated by the acidic environment of cancer, as the drug release assay confirmed the release of RSV from the NP formulation in the acidic environment. Finally, Molecular docking also demonstrated that RSV has strong potential as an anti-oxidant, antibacterial, anti-inflammatory, and anticancer agent. Overall, in silico and in vitro investigations in the current study showed good medicinal applications for designed nanocomposites, however, further in-vivo experiments must be conducted to validate our findings.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Humanos , Albúmina Sérica Bovina/química , Nanopartículas del Metal/química , Resveratrol/farmacología , Platino (Metal)/farmacología , Platino (Metal)/química , Antioxidantes/farmacología , Simulación del Acoplamiento Molecular , Nanopartículas/química , Antiinflamatorios
17.
PLoS One ; 19(4): e0301271, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38573891

RESUMEN

OBJECTIVE: To assess the cost-effectiveness and budget impact of olaparib as a maintenance therapy in platinum-responsive, metastatic pancreatic cancer patients harboring a germline BRCA1/2 mutation, using the Swiss context as a model. METHODS: Based on data from the POLO trial, published literature and local cost data, we developed a partitioned survival model of olaparib maintenance including full costs for BRCA1/2 germline testing compared to FOLFIRI maintenance chemotherapy and watch-and-wait. We calculated the incremental cost-effectiveness ratio (ICER) for the base case and several scenario analyses and estimated 5-year budget impact. RESULTS: Comparing olaparib with watch-and wait and maintenance chemotherapy resulted in incremental cost-effectiveness ratios of CHF 2,711,716 and CHF 2,217,083 per QALY gained, respectively. The 5-year costs for the olaparib strategy in Switzerland would be CHF 22.4 million, of which CHF 11.4 million would be accounted for by germline BRCA1/2 screening of the potentially eligible population. This would amount to a budget impact of CHF 15.4 million (USD 16.9 million) versus watch-and-wait. CONCLUSIONS: Olaparib is not a cost-effective maintenance treatment option. Companion diagnostics are an equally important cost driver as the drug itself.


Asunto(s)
Neoplasias Ováricas , Neoplasias Pancreáticas , Piperazinas , Femenino , Humanos , Proteína BRCA1/genética , Neoplasias Ováricas/genética , Platino (Metal)/uso terapéutico , Proteína BRCA2/genética , Ftalazinas/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Células Germinativas/patología , Análisis Costo-Beneficio
18.
J Ovarian Res ; 17(1): 70, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561819

RESUMEN

OBJECTIVES: This retrospective study aims to evaluating the subsequent management and outcomes after first-line PARPi progression in Chinese ovarian cancer population. METHODS: Clinical and pathologic variables, treatment modalities, and outcomes were assessed. We investigated the subsequent management and outcomes after first-line PARPi progression. The objective response rate (ORR) and disease control rate (DCR) parameters were evaluated to determine the response to subsequent chemotherapy. For the survival analyses, progression-free survival 1 (PFS1), PFS2, overall survival (OS) and PFS2 - PFS1 were analysed. RESULTS: A total of 124 patients received PARPi maintenance treatment after first-line chemotherapy during the study period in our center. 44 of them (35.5%) experienced a recurrence. The median duration of PARPi in these patients was 11.1 months (range: 1.2-75.1 months). A total of 40 patients (40/44, 90.9%) received subsequent chemotherapy with 35 (35/44, 79.5%) and 5 (5/44, 11.4%) patients received platinum-based and non-platinum-based chemotherapy in our center. 2 patients (4.5%) received target therapy and other 2 patients (4.5%) received best supportive care. 27.3% (12/44) patients received secondary cytoreduction surgery (SCS). After subsequent chemotherapy, 14 patients received PARPi retreatment as maintenance therapy. In patients who received platinum-based regimens (n = 35), 23 of 35 patients (65.7%) had complete/partial response (CR/PR), 8 of 35 (22.9%) had stable disease (SD), and 4 of 35 (12.1%) had progressive disease (PD). The ORR and DCR of patients who received subsequent chemotherapy was 65.7% and 88.6%, respectively. 15 patients (57.7%, 15/26) were reported to be platinum resistant with a platinum-free interval (PFI) of < 6 months in patients whose platinum sensitivity of the second line platinum-based regimens was evaluable. Patients who received SCS after PARPi resistant associated with a borderline better PFS2 (median PFS2: 41.9 vs. 29.2 months, P = 0.051) and a non-significantly increased PFS2-PFS1 (median PFS2-PFS1: 12.2 vs. 9.8 months, P = 0.551). Patients with a PFI ≥ 12 months had a significantly better PFS2 (median PFS2: 37.0 vs. 25.3 months, P < 0.001) and a tendency towards a better PFS2-PFS1 than those with a PFI < 12 months (median PFS2-PFS1: 11.2 vs. 8.5 months, P = 0.334). A better PFS2 was observed in patients who received second PARPi maintenance therapy (median PFS2 of 35.4 vs. 28.8 months); however, the difference was not statistically significant (P = 0.200). A better PFS2-PFS1 was observed in patients who received second PARPi maintenance therapy (median PFS2-PFS1: 13.6 vs. 8.9 months, P = 0.002) than those without. CONCLUSIONS: In summary, some degree of resistance to standard subsequent platinum and non-platinum chemotherapy is noted in the entire cohort. A trend towards higher benefit from subsequent chemotherapy after first-line PARP inhibitors progression was observed in the PFI ≥ 12 months subgroup than those with PFI < 12 months. PARPi retreatment as maintenance therapy and SCS can be offered to some patients with PARPi resistance.


Asunto(s)
Neoplasias Ováricas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Femenino , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Estudios Retrospectivos , Neoplasias Ováricas/patología , Supervivencia sin Progresión , Análisis de Supervivencia , Platino (Metal)/farmacología , Platino (Metal)/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico
19.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38612862

RESUMEN

The nucleophilic addition of 3-(4-cyanopyridin-2-yl)-1,1-dimethylurea (1) to cis-[Pt(CNXyl)2Cl2] (2) gave a new cyclometallated compound 3. It was characterized by NMR spectroscopy (1H, 13C, 195Pt) and high-resolution mass spectrometry, as well as crystallized to obtain two crystalline forms (3 and 3·2MeCN), whose structures were determined by X-ray diffraction. In the crystalline structure of 3, two conformers (3A and 3B) were identified, while the structure 3·2MeCN had only one conformer 3A. The conformers differed by orientation of the N,N-dimethylcarbamoyl moiety relative to the metallacycle plane. In both crystals 3 and 3·2MeCN, the molecules of the Pt(II) complex are associated into supramolecular dimers, either {3A}2 or {3B}2, via stacking interactions between the planes of two metal centers, which are additionally supported by hydrogen bonding. The theoretical consideration, utilizing a number of computational approaches, demonstrates that the C···dz2(Pt) interaction makes a significant contribution in the total stacking forces in the geometrically optimized dimer [3A]2 and reveals the dz2(Pt)→π*(PyCN) charge transfer (CT). The presence of such CT process allowed for marking the C···Pt contact as a new example of a rare studied phenomenon, namely, tetrel bonding, in which the metal site acts as a Lewis base (an acceptor of noncovalent interaction).


Asunto(s)
Bases de Lewis , Platino (Metal) , Ligandos , Enlace de Hidrógeno , Polímeros , Urea
20.
Front Immunol ; 15: 1354613, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617840

RESUMEN

Metastatic colon cancer remains an incurable disease, and it is difficult for existing treatments to achieve the desired clinical outcome, especially for colon cancer patients who have received first-line treatment. Although immune checkpoint inhibitors (ICIs) have demonstrated durable clinical efficacy in a variety of solid tumors, their response requires an inflammatory tumor microenvironment. However, microsatellite-stable (MSS) colon cancer, which accounts for the majority of colorectal cancers, is a cold tumor that does not respond well to ICIs. Combination regimens open the door to the utility of ICIs in cold tumors. Although combination therapies have shown their advantage even for MSS colon cancer, it remains unclear whether combination therapies show their advantage in patients with pretreated metastatic colon cancer. We report a patient who has achieved complete remission and good tolerance with sintilimab plus bevacizumab and platinum-based chemotherapy after postoperative recurrence. The patient had KRAS mutation and MSS-type colon cancer, and his PD-1+CD8+ and CD3-CD19-CD14+CD16-HLA-DR were both positive. He has achieved a progression-free survival of 43 months and is still being followed up at our center. The above results suggest that this therapeutic regimen is a promising treatment modality for the management of pretreated, MSS-type and KRAS-mutated metastatic colorectal cancer although its application to the general public still needs to be validated in clinical trials.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Neoplasias del Colon , Proteínas Proto-Oncogénicas p21(ras) , Masculino , Humanos , Bevacizumab/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética , Respuesta Patológica Completa , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Platino (Metal) , Repeticiones de Microsatélite , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA