Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 716
Filtrar
1.
Commun Biol ; 7(1): 1148, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39278937

RESUMEN

The formation of nuclear biomolecular condensates is often associated with local accumulation of proteins at a site of DNA damage. The key role in the formation of DNA repair foci belongs to PARP1, which is a sensor of DNA damage and catalyzes the synthesis of poly(ADP-ribose) attracting repair factors. We show here that biogenic cations such as Mg2+, Ca2+, Mn2+, spermidine3+, or spermine4+ can induce liquid-like assembly of poly(ADP-ribosyl)ated [PARylated] PARP1 into multimolecular associates (hereafter: self-assembly). The self-assembly of PARylated PARP1 affects the level of its automodification and hydrolysis of poly(ADP-ribose) by poly(ADP-ribose) glycohydrolase (PARG). Furthermore, association of PARylated PARP1 with repair proteins strongly stimulates strand displacement DNA synthesis by DNA polymerase ß (Pol ß) but has no noticeable effect on DNA ligase III activity. Thus, liquid-like self-assembly of PARylated PARP1 may play a critical part in the regulation of i) its own activity, ii) PARG-dependent hydrolysis of poly(ADP-ribose), and iii) Pol ß-mediated DNA synthesis. The latter can be considered an additional factor influencing the choice between long-patch and short-patch DNA synthesis during repair.


Asunto(s)
Poli(ADP-Ribosa) Polimerasa-1 , Poli ADP Ribosilación , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Humanos , Poli Adenosina Difosfato Ribosa/metabolismo , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Cationes Bivalentes/metabolismo , Reparación del ADN , ADN Polimerasa beta/metabolismo , Cationes/metabolismo , Daño del ADN
2.
BMC Biol ; 22(1): 188, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218869

RESUMEN

BACKGROUND: The histone variant macroH2A (mH2A), the most deviant variant, is about threefold larger than the conventional histone H2A and consists of a histone H2A-like domain fused to a large Non-Histone Region responsible for recruiting PARP-1 to chromatin. The available data suggest that the histone variant mH2A participates in the regulation of transcription, maintenance of heterochromatin, NAD+ metabolism, and double-strand DNA repair. RESULTS: Here, we describe a novel function of mH2A, namely its implication in DNA oxidative damage repair through PARP-1. The depletion of mH2A affected both repair and cell survival after the induction of oxidative lesions in DNA. PARP-1 formed a specific complex with mH2A nucleosomes in vivo. The mH2A nucleosome-associated PARP-1 is inactive. Upon oxidative damage, mH2A is ubiquitinated, PARP-1 is released from the mH2A nucleosomal complex, and is activated. The in vivo-induced ubiquitination of mH2A, in the absence of any oxidative damage, was sufficient for the release of PARP-1. However, no release of PARP-1 was observed upon treatment of the cells with either the DNA alkylating agent MMS or doxorubicin. CONCLUSIONS: Our data identify a novel pathway for the repair of DNA oxidative lesions, requiring the ubiquitination of mH2A for the release of PARP-1 from chromatin and its activation.


Asunto(s)
Daño del ADN , Reparación del ADN , Histonas , Poli(ADP-Ribosa) Polimerasa-1 , Ubiquitinación , Histonas/metabolismo , Histonas/genética , Humanos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Estrés Oxidativo , Nucleosomas/metabolismo
3.
Nat Commun ; 15(1): 8047, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277621

RESUMEN

Magnaporthe oryzae is a devastating fungal pathogen that causes the rice blast disease worldwide. The post-translational modification of ADP-ribosylation holds significant importance in various fundamental biological processes. However, the specific function of this modification in M. oryzae remains unknown. This study revealed that Poly(ADP-ribosyl)ation (PARylation) executes a critical function in M. oryzae. M. oryzae Poly(ADP-ribose) polymerase 1 (PARP1) exhibits robust PARylation activity. Disruption of PARylation by PARP1 knock-out or chemical inhibition reveals its involvement in M. oryzae virulence, particularly in appressorium formation. Furthermore, we identified two M. oryzae 14-3-3 proteins, GRF1 and GRF2, as substrates of PARP1. Deletion of GRF1 or GRF2 results in delayed and dysfunctional appressorium, diminished plant penetration, and reduced virulence of the fungus. Biochemical and genetic evidence suggest that PARylation of 14-3-3s is essential for its function in M. oryzae virulence. Moreover, PARylation regulates 14-3-3 dimerization and is required for the activation of the mitogen-activated protein kinases (MAPKs), Pmk1 and Mps1. GRF1 interacts with both Mst7 and Pmk1, and bridges their interaction in a PARylation-dependent manner. This study unveils a distinctive mechanism that PARylation of 14-3-3 proteins controls appressorium formation through MAPK activation, and could facilitate the development of new strategies of rice blast disease control.


Asunto(s)
Proteínas 14-3-3 , Proteínas Fúngicas , Oryza , Enfermedades de las Plantas , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Virulencia , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , ADP-Ribosilación , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Ascomicetos/patogenicidad , Ascomicetos/genética , Ascomicetos/metabolismo , Magnaporthe/patogenicidad , Magnaporthe/genética , Magnaporthe/metabolismo , Procesamiento Proteico-Postraduccional
4.
Nat Commun ; 15(1): 6641, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103378

RESUMEN

DNA-protein crosslinks (DPCs) are toxic lesions that inhibit DNA related processes. Post-translational modifications (PTMs), including SUMOylation and ubiquitylation, play a central role in DPC resolution, but whether other PTMs are also involved remains elusive. Here, we identify a DPC repair pathway orchestrated by poly-ADP-ribosylation (PARylation). Using Xenopus egg extracts, we show that DPCs on single-stranded DNA gaps can be targeted for degradation via a replication-independent mechanism. During this process, DPCs are initially PARylated by PARP1 and subsequently ubiquitylated and degraded by the proteasome. Notably, PARP1-mediated DPC resolution is required for resolving topoisomerase 1-DNA cleavage complexes (TOP1ccs) induced by camptothecin. Using the Flp-nick system, we further reveal that in the absence of PARP1 activity, the TOP1cc-like lesion persists and induces replisome disassembly when encountered by a DNA replication fork. In summary, our work uncovers a PARP1-mediated DPC repair pathway that may underlie the synergistic toxicity between TOP1 poisons and PARP inhibitors.


Asunto(s)
Reparación del ADN , Replicación del ADN , ADN-Topoisomerasas de Tipo I , Poli(ADP-Ribosa) Polimerasa-1 , Poli ADP Ribosilación , Animales , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Xenopus laevis , Ubiquitinación , Humanos , ADN/metabolismo , Daño del ADN , Camptotecina/farmacología , Procesamiento Proteico-Postraduccional , ADN de Cadena Simple/metabolismo , Proteínas de Xenopus/metabolismo
5.
Biochem J ; 481(17): 1097-1123, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39178157

RESUMEN

ADP-ribosylation is a prominent and versatile post-translational modification, which regulates a diverse set of cellular processes. Poly-ADP-ribose (PAR) is synthesised by the poly-ADP-ribosyltransferases PARP1, PARP2, tankyrase (TNKS), and tankyrase 2 (TNKS2), all of which are linked to human disease. PARP1/2 inhibitors have entered the clinic to target cancers with deficiencies in DNA damage repair. Conversely, tankyrase inhibitors have continued to face obstacles on their way to clinical use, largely owing to our limited knowledge of their molecular impacts on tankyrase and effector pathways, and linked concerns around their tolerability. Whilst detailed structure-function studies have revealed a comprehensive picture of PARP1/2 regulation, our mechanistic understanding of the tankyrases lags behind, and thereby our appreciation of the molecular consequences of tankyrase inhibition. Despite large differences in their architecture and cellular contexts, recent structure-function work has revealed striking parallels in the regulatory principles that govern these enzymes. This includes low basal activity, activation by intra- or inter-molecular assembly, negative feedback regulation by auto-PARylation, and allosteric communication. Here we compare these poly-ADP-ribosyltransferases and point towards emerging parallels and open questions, whose pursuit will inform future drug development efforts.


Asunto(s)
Poli(ADP-Ribosa) Polimerasa-1 , Tanquirasas , Tanquirasas/metabolismo , Tanquirasas/antagonistas & inhibidores , Tanquirasas/genética , Tanquirasas/química , Humanos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/genética , Animales , Procesamiento Proteico-Postraduccional , Reparación del ADN , ADP-Ribosilación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli ADP Ribosilación/genética
6.
Cell Rep ; 43(8): 114626, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39167487

RESUMEN

The majority of severe early-onset and juvenile cases of amyotrophic lateral sclerosis (ALS) are caused by mutations in the FUS gene, resulting in rapid disease progression. Mutant FUS accumulates within stress granules (SGs), thereby affecting the dynamics of these ribonucleoprotein complexes. Here, we define the interactome of the severe mutant FUSP525L variant in human induced pluripotent stem cell (iPSC)-derived motor neurons. We find increased interaction of FUSP525L with the PARP1 enzyme, promoting poly-ADP-ribosylation (PARylation) and binding of FUS to histone H1.2. Inhibiting PARylation or reducing H1.2 levels alleviates mutant FUS aggregation, SG alterations, and apoptosis in human motor neurons. Conversely, elevated H1.2 levels exacerbate FUS-ALS phenotypes, driven by the internally disordered terminal domains of H1.2. In C. elegans models, knockdown of H1.2 and PARP1 orthologs also decreases FUSP525L aggregation and neurodegeneration, whereas H1.2 overexpression worsens ALS-related changes. Our findings indicate a link between PARylation, H1.2, and FUS with potential therapeutic implications.


Asunto(s)
Esclerosis Amiotrófica Lateral , Caenorhabditis elegans , Histonas , Mutación , Poli(ADP-Ribosa) Polimerasa-1 , Proteína FUS de Unión a ARN , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Humanos , Histonas/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Proteína FUS de Unión a ARN/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Animales , Mutación/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Poli ADP Ribosilación , Células Madre Pluripotentes Inducidas/metabolismo , Unión Proteica
7.
Cell Death Dis ; 15(8): 610, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174499

RESUMEN

PARP1 is crucial in DNA damage repair, chromatin remodeling, and transcriptional regulation. The principle of synthetic lethality has effectively guided the application of PARP inhibitors in treating tumors carrying BRCA1/2 mutations. Meanwhile, PARP inhibitors have exhibited efficacy in BRCA-proficient patients, further highlighting the necessity for a deeper understanding of PARP1 function and its inhibition in cancer therapy. Here, we unveil PIN2/TRF1-interacting telomerase inhibitor 1 (PINX1) as an uncharacterized PARP1-interacting protein that synergizes with PARP inhibitors upon its depletion across various cancer cell lines. Loss of PINX1 compromises DNA damage repair capacity upon etoposide treatment. The vulnerability of PINX1-deficient cells to etoposide and PARP inhibitors could be effectively restored by introducing either a full-length or a mutant form of PINX1 lacking telomerase inhibitory activity. Mechanistically, PINX1 is recruited to DNA lesions through binding to the ZnF3-BRCT domain of PARP1, facilitating the downstream recruitment of the DNA repair factor XRCC1. In the absence of DNA damage, PINX1 constitutively binds to PARP1, promoting PARP1-chromatin association and transcription of specific DNA damage repair proteins, including XRCC1, and transcriptional regulators, including GLIS3. Collectively, our findings identify PINX1 as a multifaceted partner of PARP1, crucial for safeguarding cells against genotoxic stress and emerging as a potential candidate for targeted tumor therapy.


Asunto(s)
Proteínas de Ciclo Celular , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Línea Celular Tumoral , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Daño del ADN , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Reparación del ADN/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Etopósido/farmacología , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
8.
Toxicol In Vitro ; 100: 105901, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39029599

RESUMEN

Hydroquinone (HQ) is one of benzene metabolites that can cause oxidative stress damage and Homologous recombination repair (HR). A good deal of reactive oxygen species (ROS) generated by oxidative stress can trigger apoptotic signaling pathways. The nuclear factor erythroid 2-related factor 2 (Nrf2) can regulate the cell response to oxidative stress damage. The aim of this study was to explore whether Nrf2 participate in HQ-induced apoptosis and its mechanism. The findings displayed that HQ triggered HR, promoted Nrf2 transfer into the cell nucleus and induced cell apoptosis, while Nrf2 deficient elevated cell apoptosis, attenuated the expression of PARP1 and RAD51. We also observed that Nrf2 deficient triggered Caspase-9. Thus, we speculated that Nrf2 might participate in HQ-induced cell apoptosis through Caspase-9 dependent pathways. Meanwhile, Nrf2 participated in HQ-induced DNA damage repair by regulating the level of PARP1 and RAD51.


Asunto(s)
Apoptosis , Daño del ADN , Hidroquinonas , Factor 2 Relacionado con NF-E2 , Poli(ADP-Ribosa) Polimerasa-1 , Recombinasa Rad51 , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Hidroquinonas/toxicidad , Apoptosis/efectos de los fármacos , Humanos , Línea Celular , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Caspasa 9/metabolismo , Reparación del ADN/efectos de los fármacos
9.
G3 (Bethesda) ; 14(9)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39056235

RESUMEN

Poly(ADP-ribose) polymerase 1 (PARP1) is a highly conserved nuclear protein in multicellular organisms that by modulating chromatin opening facilitates gene expression during development. All reported Parp1 null knockout mouse strains are viable with no developmental anomalies. It was believed that functional redundancy with other PARP family members, mainly PARP2, explains such a controversy. However, while PARP2 has similar catalytic domain to PARP1, it lacks other domains, making the absence of developmental problems in Parp1 mice knockouts unlikely. Contrary to prior assumptions, in our analysis of the best-investigated Parp1 knockout mouse strain, we identified persistent mRNA expression, albeit at reduced levels. Transcript analysis revealed an alternatively spliced Parp1 variant lacking exon 2. Subsequent protein analysis confirmed the existence of a truncated PARP1 protein in knockout mice. The decreased level of poly(ADP-ribose) (pADPr) was detected in Parp1 knockout embryonic stem (ES) cells with western blotting analysis, but immunofluorescence staining did not detect any difference in distribution or level of pADPr in nuclei of knockout ES cells. pADPr level in double Parp1 Parg mutant ES cells greatly exceeded its amount in normal and even in hypomorph Parg mutant ES cells, suggesting the presence of functionally active PARP1. Therefore, our findings challenge the conventional understanding of PARP1 depletion effects.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Poli(ADP-Ribosa) Polimerasa-1 , Animales , Ratones , Empalme Alternativo , Células Madre Embrionarias/metabolismo , Sitios Genéticos , Ratones Noqueados , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo
10.
Nat Commun ; 15(1): 5822, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38987289

RESUMEN

DNA polymerase theta (Polθ)-mediated end-joining (TMEJ) repairs DNA double-strand breaks and confers resistance to genotoxic agents. How Polθ is regulated at the molecular level to exert TMEJ remains poorly characterized. We find that Polθ interacts with and is PARylated by PARP1 in a HPF1-independent manner. PARP1 recruits Polθ to the vicinity of DNA damage via PARylation dependent liquid demixing, however, PARylated Polθ cannot perform TMEJ due to its inability to bind DNA. PARG-mediated de-PARylation of Polθ reactivates its DNA binding and end-joining activities. Consistent with this, PARG is essential for TMEJ and the temporal recruitment of PARG to DNA damage corresponds with TMEJ activation and dissipation of PARP1 and PAR. In conclusion, we show a two-step spatiotemporal mechanism of TMEJ regulation. First, PARP1 PARylates Polθ and facilitates its recruitment to DNA damage sites in an inactivated state. PARG subsequently activates TMEJ by removing repressive PAR marks on Polθ.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , ADN Polimerasa theta , ADN Polimerasa Dirigida por ADN , Poli(ADP-Ribosa) Polimerasa-1 , Humanos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Daño del ADN , Animales , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , ADN/metabolismo , ADN/genética , Células HEK293 , Poli ADP Ribosilación , Poli(ADP-Ribosa) Polimerasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Proteínas Portadoras , Glicósido Hidrolasas , Proteínas Nucleares
11.
Nat Commun ; 15(1): 6009, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39019926

RESUMEN

RNA helicase DHX9 is essential for genome stability by resolving aberrant R-loops. However, its regulatory mechanisms remain unclear. Here we show that SUMOylation at lysine 120 (K120) is crucial for DHX9 function. Preventing SUMOylation at K120 leads to R-loop dysregulation, increased DNA damage, and cell death. Cells expressing DHX9 K120R mutant which cannot be SUMOylated are more sensitive to genotoxic agents and this sensitivity is mitigated by RNase H overexpression. Unlike the mutant, wild-type DHX9 interacts with R-loop-associated proteins such as PARP1 and DDX21 via SUMO-interacting motifs. Fusion of SUMO2 to the DHX9 K120R mutant enhances its association with these proteins, reduces R-loop accumulation, and alleviates survival defects of DHX9 K120R. Our findings highlight the critical role of DHX9 SUMOylation in maintaining genome stability by regulating protein interactions necessary for R-loop balance.


Asunto(s)
ARN Helicasas DEAD-box , Inestabilidad Genómica , Estructuras R-Loop , Sumoilación , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Humanos , Células HEK293 , Daño del ADN , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Lisina/metabolismo , Mutación , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas de Neoplasias
12.
Proc Natl Acad Sci U S A ; 121(30): e2303642121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39012819

RESUMEN

Glutamyl-prolyl-tRNA synthetase (EPRS1) is a bifunctional aminoacyl-tRNA-synthetase (aaRS) essential for decoding the genetic code. EPRS1 resides, with seven other aaRSs and three noncatalytic proteins, in the cytoplasmic multi-tRNA synthetase complex (MSC). Multiple MSC-resident aaRSs, including EPRS1, exhibit stimulus-dependent release from the MSC to perform noncanonical activities distinct from their primary function in protein synthesis. Here, we show EPRS1 is present in both cytoplasm and nucleus of breast cancer cells with constitutively low phosphatase and tensin homolog (PTEN) expression. EPRS1 is primarily cytosolic in PTEN-expressing cells, but chemical or genetic inhibition of PTEN, or chemical or stress-mediated activation of its target, AKT, induces EPRS1 nuclear localization. Likewise, preferential nuclear localization of EPRS1 was observed in invasive ductal carcinoma that were also P-Ser473-AKT+. EPRS1 nuclear transport requires a nuclear localization signal (NLS) within the linker region that joins the catalytic glutamyl-tRNA synthetase and prolyl-tRNA synthetase domains. Nuclear EPRS1 interacts with poly(ADP-ribose) polymerase 1 (PARP1), a DNA-damage sensor that directs poly(ADP-ribosyl)ation (PARylation) of proteins. EPRS1 is a critical regulator of PARP1 activity as shown by markedly reduced ADP-ribosylation in EPRS1 knockdown cells. Moreover, EPRS1 and PARP1 knockdown comparably alter the expression of multiple tumor-related genes, inhibit DNA-damage repair, reduce tumor cell survival, and diminish tumor sphere formation by breast cancer cells. EPRS1-mediated regulation of PARP1 activity provides a mechanistic link between PTEN loss in breast cancer cells, PARP1 activation, and cell survival and tumor growth. Targeting the noncanonical activity of EPRS1, without inhibiting canonical tRNA ligase activity, provides a therapeutic approach potentially supplementing existing PARP1 inhibitors.


Asunto(s)
Neoplasias de la Mama , Núcleo Celular , Poli(ADP-Ribosa) Polimerasa-1 , Proteínas Proto-Oncogénicas c-akt , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Núcleo Celular/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Línea Celular Tumoral , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Aminoacil-ARNt Sintetasas/metabolismo , Aminoacil-ARNt Sintetasas/genética , Transporte Activo de Núcleo Celular , Señales de Localización Nuclear/metabolismo
13.
J Biol Chem ; 300(8): 107554, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002667

RESUMEN

Cyclic GMP-AMP synthase (cGAS), a cytosolic DNA sensor, also exhibits nuclear genomic localization and is involved in DNA damage signaling. In this study, we investigated the impact of cGAS crotonylation on the regulation of the DNA damage response, particularly homologous recombination repair, following exposure to ionizing radiation (IR). Lysine 254 of cGAS is constitutively crotonylated by the CREB-binding protein; however, IR-induced DNA damage triggers sirtuin 3 (SIRT3)-mediated decrotonylation. Lysine 254 decrotonylation decreased the DNA-binding affinity of cGAS and inhibited its interaction with PARP1, promoting homologous recombination repair. Moreover, SIRT3 suppression led to homologous recombination repair inhibition and markedly sensitized cancer cells to IR and DNA-damaging chemicals, highlighting SIRT3 as a potential target for cancer therapy. Overall, this study revealed the crucial role of cGAS crotonylation in the DNA damage response. Furthermore, we propose that modulating cGAS and SIRT3 activities could be potential strategies for cancer therapy.


Asunto(s)
Daño del ADN , Nucleotidiltransferasas , Poli(ADP-Ribosa) Polimerasa-1 , Reparación del ADN por Recombinación , Sirtuina 3 , Humanos , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Sirtuina 3/metabolismo , Sirtuina 3/genética , ADN/metabolismo , Lisina/metabolismo , Lisina/química , Radiación Ionizante , Células HEK293
14.
Reprod Biol Endocrinol ; 22(1): 92, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085882

RESUMEN

BACKGROUND: Endometriosis is a gynecological disease characterized by the presence of endometrial tissue in abnormal locations, leading to severe symptoms, inflammation, pain, organ dysfunction, and infertility. Surgical removal of endometriosis lesions is crucial for improving pain and fertility outcomes, with the goal of complete lesion removal. This study aimed to analyze the location and expression patterns of poly (ADP-ribose) polymerase 1 (PARP-1), epithelial cell adhesion molecule (EpCAM), and folate receptor alpha (FRα) in endometriosis lesions and evaluate their potential for targeted imaging. METHODS: Gene expression analysis was performed using the Turku endometriosis database (EndometDB). By immunohistochemistry, we investigated the presence and distribution of PARP-1, EpCAM, and FRα in endometriosis foci and adjacent tissue. We also applied an ad hoc platform for the analysis of images to perform a quantitative immunolocalization analysis. Double immunofluorescence analysis was carried out for PARP-1 and EpCAM, as well as for PARP-1 and FRα, to explore the expression of these combined markers within endometriosis foci and their potential simultaneous utilization in surgical treatment. RESULTS: Gene expression analysis revealed that PARP-1, EpCAM, and FOLR1 (FRα gene) are more highly expressed in endometriotic lesions than in the peritoneum, which served as the control tissue. The results of the immunohistochemical study revealed a significant increase in the expression levels of all three biomarkers inside the endometriosis foci compared to the adjacent tissues. Additionally, the double immunofluorescence analysis consistently demonstrated the presence of PARP-1 in the nucleus and the expression of EpCAM and FRα in the cell membrane and cytoplasm. CONCLUSION: Overall, these three markers demonstrate significant potential for effective imaging of endometriosis. In particular, the results emphasize the importance of PARP-1 expression as a possible indicator for distinguishing endometriotic lesions from adjacent tissue. PARP-1, as a potential biomarker for endometriosis, offers promising avenues for further investigation in terms of both pathophysiology and diagnostic-therapeutic approaches.


Asunto(s)
Endometriosis , Molécula de Adhesión Celular Epitelial , Receptor 1 de Folato , Poli(ADP-Ribosa) Polimerasa-1 , Endometriosis/metabolismo , Endometriosis/cirugía , Endometriosis/genética , Endometriosis/diagnóstico , Endometriosis/patología , Femenino , Humanos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Receptor 1 de Folato/genética , Receptor 1 de Folato/metabolismo , Molécula de Adhesión Celular Epitelial/genética , Molécula de Adhesión Celular Epitelial/metabolismo , Adulto , Biomarcadores/metabolismo , Inmunohistoquímica , Endometrio/metabolismo , Endometrio/patología , Endometrio/cirugía
15.
Free Radic Biol Med ; 223: 443-457, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39047850

RESUMEN

Neural stem cells play a crucial role in maintaining brain homeostasis. Neural stem cells senescence can lead to the decline of nerve repair and regeneration, causing brain aging and neurodegenerative diseases. However, the mechanism underlying neural stem cells senescence remains poorly understood. In this study, we report a novel HO-1/PARP1 non-canonical pathway highlighting how oxidative stress triggers the DNA damage response, ultimately leading to premature cellular senescence in neural stem cells. HO-1 acts as a sensor for oxidative stress, while PARP1 functions as a sensor for DNA damage. The simultaneous expression and molecular interaction of these two sensors can initiate a crosstalk of oxidative stress and DNA damage response processes, leading to the vicious cycle. The persistent activation of this pathway contributes to the senescence of neural stem cells, which in turn plays a crucial role in the progression of neurodegenerative diseases. Consequently, targeting this novel signaling pathway holds promise for the development of innovative therapeutic strategies and targets aimed at mitigating neural stem cells senescence-related disorders.


Asunto(s)
Senescencia Celular , Daño del ADN , Hemo-Oxigenasa 1 , Células-Madre Neurales , Estrés Oxidativo , Poli(ADP-Ribosa) Polimerasa-1 , Transducción de Señal , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Animales , Humanos , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Ratones , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/genética , Especies Reactivas de Oxígeno/metabolismo
16.
Cell Rep ; 43(7): 114433, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38985679

RESUMEN

ADP-ribosylation (ADPr) signaling plays a crucial role in DNA damage response. Inhibitors against the main enzyme catalyzing ADPr after DNA damage, poly(ADP-ribose) polymerase 1 (PARP1), are used to treat patients with breast cancer harboring BRCA1/2 mutations. However, resistance to PARP inhibitors (PARPi) is a major obstacle in treating patients. To understand the role of ADPr in PARPi sensitivity, we use liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyze ADPr in six breast cancer cell lines exhibiting different PARPi sensitivities. We identify 1,632 sites on 777 proteins across all cell lines, primarily on serine residues, with site-specific overlap of targeted residues across DNA-damage-related proteins across all cell lines, demonstrating high conservation of serine ADPr-signaling networks upon DNA damage. Furthermore, we observe site-specific differences in ADPr intensities in PARPi-sensitive BRCA mutants and unique ADPr sites in PARPi-resistant BRCA-mutant HCC1937 cells, which have low poly(ADP-ribose) glycohydrolase (PARG) levels and longer ADPr chains on PARP1.


Asunto(s)
ADP-Ribosilación , Proteína BRCA1 , Neoplasias de la Mama , Daño del ADN , Serina , Humanos , Femenino , Línea Celular Tumoral , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Serina/metabolismo , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Mutación/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética
17.
Nat Cell Biol ; 26(9): 1545-1557, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38997456

RESUMEN

Gasdermin (GSDM) family proteins, known as the executors of pyroptosis, undergo protease-mediated cleavage before inducing pyroptosis. We here discovered a form of pyroptosis mediated by full-length (FL) GSDME without proteolytic cleavage. Intense ultraviolet-C irradiation-triggered DNA damage activates nuclear PARP1, leading to extensive formation of poly(ADP-ribose) (PAR) polymers. These PAR polymers are released to the cytoplasm, where they activate PARP5 to facilitate GSDME PARylation, resulting in a conformational change in GSDME that relieves autoinhibition. Moreover, ultraviolet-C irradiation promotes cytochrome c-catalysed cardiolipin peroxidation to elevate lipid reactive oxygen species, which is then sensed by PARylated GSDME, leading to oxidative oligomerization and plasma membrane targeting of FL-GSDME for perforation, eventually inducing pyroptosis. Reagents that concurrently stimulate PARylation and oxidation of FL-GSDME, synergistically promoting pyroptotic cell death. Overall, the present findings elucidate an unreported mechanism underlying the cleavage-independent function of GSDME in executing cell death, further enriching the paradigms and understanding of FL-GSDME-mediated pyroptosis.


Asunto(s)
Piroptosis , Humanos , Animales , Ratones , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Daño del ADN , Especies Reactivas de Oxígeno/metabolismo , Rayos Ultravioleta , Células HEK293 , Poli Adenosina Difosfato Ribosa/metabolismo , Peroxidación de Lípido , Proteolisis , Ratones Endogámicos C57BL , Cardiolipinas/metabolismo , Gasderminas
18.
Nat Commun ; 15(1): 6343, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068174

RESUMEN

Clinical success with poly (ADP-ribose) polymerase inhibitors (PARPi) is impeded by inevitable resistance and associated cytotoxicity. Depletion of Amplified in Liver Cancer 1 (ALC1), a chromatin-remodeling enzyme, can overcome these limitations by hypersensitizing BReast CAncer genes 1/2 (BRCA1/2) mutant cells to PARPi. Here, we demonstrate that PARPi hypersensitivity upon ALC1 loss is reliant on its role in promoting the repair of chromatin buried abasic sites. We show that ALC1 enhances the ability of the abasic site processing enzyme, Apurinic/Apyrimidinic endonuclease 1 (APE1) to cleave nucleosome-occluded abasic sites. However, unrepaired abasic sites in ALC1-deficient cells are readily accessed by APE1 at the nucleosome-free replication forks. APE1 cleavage leads to fork breakage and trapping of PARP1/2 upon PARPi treatment, resulting in hypersensitivity. Collectively, our studies reveal how cells overcome the chromatin barrier to repair abasic lesions and uncover cleavage of abasic sites as a mechanism to overcome limitations of PARPi.


Asunto(s)
Proteína BRCA1 , Proteína BRCA2 , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Humanos , Línea Celular Tumoral , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/deficiencia , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/deficiencia , Reparación del ADN/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Femenino , Cromatina/metabolismo , Mutación , Daño del ADN/efectos de los fármacos , Neoplasias de la Mama/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Replicación del ADN/efectos de los fármacos , Nucleosomas/metabolismo , ADN Helicasas , Proteínas de Unión al ADN
19.
Cancer Res ; 84(17): 2836-2855, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-38862269

RESUMEN

Yes-associated protein (YAP) is a central player in cancer development, with functions extending beyond its recognized role in cell growth regulation. Recent work has identified a link between YAP/transcriptional coactivator with PDZ-binding motif (TAZ) and the DNA damage response. Here, we investigated the mechanistic underpinnings of the cross-talk between DNA damage repair and YAP activity. Ku70, a key component of the nonhomologous end joining pathway to repair DNA damage, engaged in a dynamic competition with TEAD4 for binding to YAP, limiting the transcriptional activity of YAP. Depletion of Ku70 enhanced interaction between YAP and TEAD4 and boosted YAP transcriptional capacity. Consequently, Ku70 loss enhanced tumorigenesis in colon cancer and hepatocellular carcinoma (HCC) in vivo. YAP impeded DNA damage repair and elevated genome instability by inducing PARP1 degradation through the SMURF2-mediated ubiquitin-proteasome pathway. Analysis of samples from patients with HCC substantiated the link between Ku70 expression, YAP activity, PARP1 levels, and genome instability. In conclusion, this research provides insight into the mechanistic interactions between YAP and key regulators of DNA damage repair, highlighting the role of a Ku70-YAP-PARP1 axis in preserving genome stability. Significance: Increased yes-associated protein transcriptional activity stimulated by loss of Ku70 induces PARP1 degradation by upregulating SMURF2 to inhibit DNA damage, driving genome instability and tumorigenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas de Unión al ADN , Inestabilidad Genómica , Autoantígeno Ku , Poli(ADP-Ribosa) Polimerasa-1 , Factores de Transcripción , Ubiquitinación , Proteínas Señalizadoras YAP , Humanos , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Señalizadoras YAP/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Animales , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Ratones , Carcinogénesis/genética , Carcinogénesis/metabolismo , Factores de Transcripción de Dominio TEA/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Daño del ADN , Reparación del ADN , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ratones Desnudos
20.
Cell Mol Life Sci ; 81(1): 253, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38852108

RESUMEN

Post-transcriptional regulation of cytokine/chemokine mRNA turnover is critical for immune processes and contributes to the mammalian cellular response to diverse inflammatory stimuli. The ubiquitous RNA-binding protein human antigen R (HuR) is an integral regulator of inflammation-associated mRNA fate. HuR function is regulated by various post-translational modifications that alter its subcellular localization and ability to stabilize target mRNAs. Both poly (ADP-ribose) polymerase 1 (PARP1) and p38 mitogen-activated protein kinases (MAPKs) have been reported to regulate the biological function of HuR, but their specific regulatory and crosstalk mechanisms remain unclear. In this study, we show that PARP1 acts via p38 to synergistically promote cytoplasmic accumulation of HuR and stabilization of inflammation-associated mRNAs in cells under inflammatory conditions. Specifically, p38 binds to auto-poly ADP-ribosylated (PARylated) PARP1 resulting in the covalent PARylation of p38 by PARP1, thereby promoting the retention and activity of p38 in the nucleus. In addition, PARylation of HuR facilitates the phosphorylation of HuR at the serine 197 site mediated by p38, which then increases the translocation of HuR to the cytoplasm, ultimately stabilizing the inflammation-associated mRNA expression at the post-transcriptional level.


Asunto(s)
Citoplasma , Proteína 1 Similar a ELAV , Inflamación , Poli(ADP-Ribosa) Polimerasa-1 , ARN Mensajero , Proteínas Quinasas p38 Activadas por Mitógenos , Proteína 1 Similar a ELAV/metabolismo , Proteína 1 Similar a ELAV/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Humanos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Citoplasma/metabolismo , Inflamación/metabolismo , Inflamación/genética , Inflamación/patología , ARN Mensajero/metabolismo , ARN Mensajero/genética , Fosforilación , Regulación de la Expresión Génica , Animales , Poli ADP Ribosilación/genética , Células HEK293 , Núcleo Celular/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA