Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.215
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 125036, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39197210

RESUMEN

Sodium tripolyphosphate (STPP), as one of the many food additives, can cause gastrointestinal discomfort and a variety of adverse reactions when ingested by the human body, which is a great potential threat to human health. Therefore, it is necessary to develop a fast, sensitive and simple method to detect STPP in food. In this study, we synthesized a kind of nitrogen-doped carbon quantum dots (N-CQDs), and were surprised to find that the addition of STPP led to the gradual enhancement of the emission peaks of the N-CQDs, with a good linearity in the range of 0.067-1.96 µM and a low detection limit as low as 0.024 µM. Up to now, there is no report on the use of carbon quantum dots for the direct detection of STPP. Meanwhile, we found that the addition of Al3+ effectively bursts the fluorescence intensity of N-CQDs@STPP solution and has a good linear relationship in the range of 0.33-6.25 µM with a lower detection limit of 0.24 µM. To this end, we developed a fluorescent probe to detect STPP and Al3+. In addition, the probe was successfully applied to the detection of bread samples, which has great potential for practical application.


Asunto(s)
Carbono , Colorantes Fluorescentes , Aditivos Alimentarios , Límite de Detección , Polifosfatos , Puntos Cuánticos , Espectrometría de Fluorescencia , Puntos Cuánticos/química , Colorantes Fluorescentes/química , Aditivos Alimentarios/análisis , Espectrometría de Fluorescencia/métodos , Carbono/química , Polifosfatos/análisis , Polifosfatos/química , Aluminio/análisis , Nitrógeno/química , Pan/análisis
2.
Molecules ; 29(19)2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39407673

RESUMEN

A general approach is presented for synthesizing alkyne-modified nucleoside triphosphates via the Sonogashira cross-coupling reaction of unprotected halogenated 2'-deoxynucleoside, followed by monophosphorylation and the reaction of the corresponding phosphoromorpholidate with tributylammonium pyrophosphate. A highly efficient approach for the milligram-scale synthesis of base-modified nucleoside triphosphates with an amino acid-like side chain was developed. The present chemical method outweighs the other reported methods of a base-modified nucleoside triphosphates synthesis in terms of it being a protection-free strategy, the shortening of reaction steps, and increased yields (about 70%). The resulting 8-alkynylated dATP was tested as a substrate for DNA polymerases in a primer extension reaction.


Asunto(s)
Alquinos , Alquinos/química , Nucleósidos/química , Nucleósidos/síntesis química , Nucleótidos/química , Nucleótidos/síntesis química , Polifosfatos/química
3.
Theranostics ; 14(13): 5262-5280, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39267793

RESUMEN

Rationale: Tissue regeneration of skin and bone is an energy-intensive, ATP-consuming process that, if impaired, can lead to the development of chronic clinical pictures. ATP levels in the extracellular space including the exudate of wounds, especially chronic wounds, are low. This deficiency can be compensated by inorganic polyphosphate (polyP) supplied via the blood platelets to the regenerating site. Methods: The contribution of the different forms of energy derived from polyP (metabolic energy, mechanical energy and heat) to regeneration processes was dissected and studied both in vitro and in patients. ATP is generated metabolically during the enzymatic cleavage of the energy-rich anhydride bonds between the phosphate units of polyP, involving the two enzymes alkaline phosphatase (ALP) and adenylate kinase (ADK). Exogenous polyP was administered after incorporation into compressed collagen or hydrogel wound coverages to evaluate its regenerative activity for chronic wound healing. Results: In a proof-of-concept study, fast healing of chronic wounds was achieved with the embedded polyP, supporting the crucial regeneration-promoting activity of ATP. In the presence of Ca2+ in the wound exudate, polyP undergoes a coacervation process leading to a conversion of fibroblasts into myofibroblasts, a crucial step supporting cell migration during regenerative tissue repair. During coacervation, a switch from an endothermic to an exothermic, heat-generating process occurs, reflecting a shift from an entropically- to an enthalpically-driven thermodynamic reaction. In addition, mechanical forces cause the appearance of turbulent flows and vortices during liquid-liquid phase separation. These mechanical forces orient the cellular and mineralic (hydroxyapatite crystallite) components, as shown using mineralizing SaOS-2 cells as a model. Conclusion: Here we introduce the energetic triad: metabolic energy (ATP), thermal energy and mechanical energy as a novel theranostic biomarker, which contributes essentially to a successful application of polyP for regeneration processes.


Asunto(s)
Adenosina Trifosfato , Polifosfatos , Cicatrización de Heridas , Polifosfatos/metabolismo , Polifosfatos/farmacología , Humanos , Cicatrización de Heridas/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Metabolismo Energético/efectos de los fármacos , Calor , Fosfatasa Alcalina/metabolismo , Adenilato Quinasa/metabolismo , Masculino
4.
Molecules ; 29(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39274969

RESUMEN

This review article is focused on the progress made in the synthesis of 5'-α-P-modified nucleoside triphosphates (α-phosphate mimetics). A variety of α-P-modified nucleoside triphosphates (NTPαXYs, Y = O, S; X = S, Se, BH3, alkyl, amine, N-alkyl, imido, or others) have been developed. There is a unique class of nucleoside triphosphate analogs with different properties. The main chemical approaches to the synthesis of NTPαXYs are analyzed and systematized here. Using the data presented here on the diversity of NTPαXYs and their synthesis protocols, it is possible to select an appropriate method for obtaining a desired α-phosphate mimetic. Triphosphates' substrate properties toward nucleic acid metabolism enzymes are highlighted too. We reviewed some of the most prominent applications of NTPαXYs including the use of modified dNTPs in studies on mechanisms of action of polymerases or in systematic evolution of ligands by exponential enrichment (SELEX). The presence of heteroatoms such as sulfur, selenium, or boron in α-phosphate makes modified triphosphates nuclease resistant. The most distinctive feature of NTPαXYs is that they can be recognized by polymerases. As a result, S-, Se-, or BH3-modified phosphate residues can be incorporated into DNA or RNA. This property has made NTPαXYs a multifunctional tool in molecular biology. This review will be of interest to synthetic chemists, biochemists, biotechnologists, or biologists engaged in basic or applied research.


Asunto(s)
Fosfatos , Fosfatos/química , Fosfatos/síntesis química , Nucleósidos/química , Nucleósidos/síntesis química , Polifosfatos/química , Nucleótidos/química , Nucleótidos/síntesis química
5.
Int J Nanomedicine ; 19: 9707-9725, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39309185

RESUMEN

Purpose: The eradication of bacterial biofilms poses an enormous challenge owing to the inherently low antibiotic susceptibility of the resident microbiota. The complexation of antibiotics with polyphosphate can substantially improve antimicrobial performance. Methods: Nanoparticular complexes of the model drug colistin and polyphosphate (CP-NPs) were developed and characterized in terms of their particle size and morphology, polydispersity index (PDI), zeta potential, and cytotoxicity. Enzyme-triggered monophosphate and colistin release from the CP-NPs was evaluated in the presence of alkaline phosphatase (AP). Subsequently, antimicrobial efficacy was assessed by inhibition experiments on planktonic cultures, as well as time-kill assays on biofilms formed by the model organism Micrococcus luteus. Results: The CP-NPs exhibited a spherical morphology with particle sizes <200 nm, PDI <0.25, and negative zeta potential. They showed reduced cytotoxicity toward two human cell lines and significantly decreased hemotoxicity compared with native colistin. Release experiments with AP verified the enzymatic cleavage of polyphosphate and subsequent release of monophosphate and colistin from CP-NPs. Although CP-NPs were ineffective against planktonic M. luteus cultures, they showed major activity against bacterial biofilms, outperforming native colistin treatment. Strongly elevated AP levels in the biofilm state were identified as a potential key factor for the observed findings. Conclusion: Accordingly, polyphosphate-based nanocomplexes represent a promising tool to tackle bacterial biofilm.


Asunto(s)
Antibacterianos , Biopelículas , Colistina , Micrococcus luteus , Nanopartículas , Polifosfatos , Biopelículas/efectos de los fármacos , Polifosfatos/química , Polifosfatos/farmacología , Colistina/farmacología , Colistina/química , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Nanopartículas/química , Micrococcus luteus/efectos de los fármacos , Tamaño de la Partícula , Fosfatasa Alcalina/metabolismo , Pruebas de Sensibilidad Microbiana , Línea Celular , Supervivencia Celular/efectos de los fármacos
6.
PLoS One ; 19(9): e0305020, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39325761

RESUMEN

Long-acting diquafosol ophthalmic solution (DQS-LX) has significant advantages regarding patient adherence owing to the reduced frequency of required eye drops; however, some patients prefer conventional diquafosol ophthalmic solution (DQS) over DQS-LX. Herein, to clarify the characteristics of patients according to their preference for ophthalmic solutions, dry eye (DE) and meibomian gland (MG) findings were retrospectively investigated. This study enrolled 341 patients with DE (mean age, 62.1 ± 11.7 years) treated at the Itoh Clinic between November 8, 2022, and July 31, 2023, who switched from DQS to DQS-LX. Patients were divided into two groups: those who continued DQS-LX administration (DQS-LX group) and those who wished to revert to conventional DQS (DQS group). Data regarding subjective symptoms assessed using the Standard Patient Evaluation of Eye Dryness (SPEED) questionnaire, tear film breakup time (BUT), tear meniscus height (TMH), corneal and conjunctival fluorescein staining (CFS), conjunctival hyperemia/papilla, meiboscore, plugging, vascularity, meibum grade, and Schirmer's score at the time of DQS-LX switch were evaluated. Of the 341 patients, 31 (9.1%) wished to revert to conventional DQS. In total, 16 eyes of 16 patients in the DQS group and 32 eyes of 32 patients in the DQS-LX group-for whom complete data were available-were included in the analysis. The DQS-LX group had higher SPEED scores, lower TMHs (P < 0.001, respectively), shorter FBUTs, greater CFS findings, larger meibum grades, lower Schirmer scores, and more pluggings compared with the DQS group (P = 0.005, 0.001, 0.001, 0.046, 0.003, respectively). Meiboscores and vascularity did not differ significantly between the two groups (P = 0.73 and 0.39, respectively). In conclusion, patients with low tear film volume and DE complicated by moderate or severe meibomian gland dysfunction (MGD) preferred DQS-LX, while those with allergic findings preferred conventional DQS.


Asunto(s)
Síndromes de Ojo Seco , Glándulas Tarsales , Soluciones Oftálmicas , Polifosfatos , Lágrimas , Nucleótidos de Uracilo , Humanos , Persona de Mediana Edad , Femenino , Masculino , Glándulas Tarsales/metabolismo , Lágrimas/metabolismo , Anciano , Soluciones Oftálmicas/administración & dosificación , Síndromes de Ojo Seco/tratamiento farmacológico , Nucleótidos de Uracilo/administración & dosificación , Estudios Retrospectivos , Disfunción de la Glándula de Meibomio/metabolismo
7.
Nucleic Acids Res ; 52(18): 10788-10809, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39248095

RESUMEN

The recent COVID-19 pandemics have demonstrated the great therapeutic potential of in vitro transcribed (IVT) mRNAs, but improvements in their biochemical properties, such as cellular stability, reactogenicity and translational activity, are critical for further practical applications in gene replacement therapy and anticancer immunotherapy. One of the strategies to overcome these limitations is the chemical modification of a unique mRNA 5'-end structure, the 5'-cap, which is responsible for regulating translation at multiple levels. This could be achieved by priming the in vitro transcription reaction with synthetic cap analogs. In this study, we combined a highly efficient trinucleotide IVT capping technology with several modifications of the 5' cap triphosphate bridge to synthesize a series of 16 new cap analogs. We also combined these modifications with epigenetic marks (2'-O-methylation and m6Am) characteristic of mRNA 5'-ends in higher eukaryotes, which was not possible with dinucleotide caps. All analogs were compared for their effect on the interactions with eIF4E protein, IVT priming, susceptibility to decapping, and mRNA translation efficiency in model cell lines. The most promising α-phosphorothiolate modification was also evaluated in an in vivo mouse model. Unexpected differences between some of the analogs were analyzed using a protein cell extract pull-down assay.


Asunto(s)
Análogos de Caperuza de ARN , ARN Mensajero , Animales , Análogos de Caperuza de ARN/síntesis química , Análogos de Caperuza de ARN/química , Análogos de Caperuza de ARN/metabolismo , Ratones , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , COVID-19/virología , Biosíntesis de Proteínas/efectos de los fármacos , Caperuzas de ARN/metabolismo , Caperuzas de ARN/genética , Caperuzas de ARN/química , Polifosfatos/química , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4E Eucariótico de Iniciación/genética
8.
J Mater Chem B ; 12(38): 9622-9638, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39226118

RESUMEN

Inorganic materials are of increasing interest not only for bone repair but also for other applications in regenerative medicine. In this study, the combined effects of energy-providing, regeneratively active inorganic polyphosphate (polyP) and also morphogenetically active pearl powder on wound healing were investigated. Aragonite, the mineralic constituent of pearl nacre and thermodynamically unstable form of crystalline calcium carbonate, was found to be converted into a soluble state in the presence of a Ca2+-containing wound exudate, particularly upon addition of sodium polyP (Na-polyP), driven by the transfer of Ca2+ ions from aragonite to polyP, leading to liquid-liquid phase separation to form an aqueous Ca-polyP coacervate. This process is further enhanced in the presence of Ca-polyP nanoparticles (Ca-polyP-NP). Kinetic studies revealed that the coacervation of polyP and nacre aragonite in wound exudate is a very rapid process that results in the formation of a stronger gel with a porous structure compared to polyP alone. Coacervate formation, enabled by phase transition of crystalline aragonite in the presence of Na-polyP/Ca-polyP-NP and wound exudate, could also be demonstrated in a hydroxyethyl cellulose-based hydrogel used for wound treatment. Furthermore, it is shown that Na-polyP/Ca-polyP-NP together with nacre aragonite strongly enhances the proliferation of mesenchymal stem cells and promotes microtube formation in the in vitro angiogenesis assay with HUVEC endothelial cells. The latter effect was confirmed by gene expression studies, applying real-time polymerase chain reaction, using the biomarker genes VEGF (vascular endothelial growth factor) and hypoxia-inducible factor-1 α (HIF-1α). Division of Escherichia coli is suppressed when suspended in a matrix containing Na-polyP/Ca-polyP-NP and aragonite. The potential medical relevance of these findings is supported by an animal study on genetically engineered diabetic mice (db/db), which demonstrated a marked increase in granulation tissue and microvessel formation in regenerating experimental wounds treated with Ca-polyP-NP compared to controls. Co-administration of aragonite significantly accelerated the wound healing-promoting effect of polyP in db/db mice. Based on these results, we propose that the ability of polyP to form a mixed coacervate with aragonite, in addition to its energy (ATP)-generating function, can decisively contribute to the regenerative activity of this polymer in wound repair.


Asunto(s)
Transición de Fase , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Animales , Polifosfatos/química , Humanos , Piel , Regeneración/efectos de los fármacos , Ratones , Carbonato de Calcio/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Células Endoteliales de la Vena Umbilical Humana , Tamaño de la Partícula , Proliferación Celular/efectos de los fármacos
9.
Yeast ; 41(10): 593-604, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39262085

RESUMEN

Polyphosphate (polyP) is an intriguing molecule that is found in almost any organism, covering a multitude of cellular functions. In industry, polyP is used due to its unique physiochemical properties, including pH buffering, water binding, and bacteriostatic activities. Despite the importance of polyP, its analytics is still challenging, with the gold standard being 31P NMR. Here, we present a simple staining method using the fluorescent dye JC-D7 for the semi-quantitative polyP evaluation in yeast extracts. Notably, fluorescence response was affected by polyP concentration and polymer chain length in the 0.5-500 µg/mL polyP concentration range. Hence, for polyP samples of unknown chain compositions, JC-D7 cannot be used for absolute quantification. Fluorescence of JC-D7 was unaffected by inorganic phosphate up to 50 mM. Trace elements (FeSO4 > CuSO4 > CoCl2 > ZnSO4) and toxic mineral salts (PbNO3 and HgCl2) diminished polyP-induced JC-D7 fluorescence, affecting its applicability to samples containing polyP-metal complexes. The fluorescence was only marginally affected by other parameters, such as pH and temperature. After validation, this simple assay was used to elucidate the degree of polyP production by yeast strains carrying gene deletions in (poly)phosphate homeostasis. The results suggest that staining with JC-D7 provides a robust and sensitive method for detecting polyP in yeast extracts and likely in extracts of other microbes. The simplicity of the assay enables high-throughput screening of microbes to fully elucidate and potentially enhance biotechnological polyP production, ultimately contributing to a sustainable phosphorus utilization.


Asunto(s)
Colorantes Fluorescentes , Polifosfatos , Saccharomyces cerevisiae , Polifosfatos/metabolismo , Polifosfatos/química , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/química , Colorantes Fluorescentes/química , Fluorescencia , Concentración de Iones de Hidrógeno
10.
J Mater Chem B ; 12(37): 9199-9205, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39263769

RESUMEN

Stimuli-responsive nanomaterials show promise in eradicating Staphylococcus aureus biofilm from implants. Peptidoglycan hydrolases (PGHs) are cationic antimicrobials that can be bioengineered to improve the targeting of persisters and drug-resistant bacteria. However, these molecules can be degraded before reaching the target and/or present limited efficacy against biofilm. Therefore, there is an urgent need to improve their potency. Herein, PGH-polyphosphate nanoparticles (PGH-PP NPs) are formed by ionotropic gelation between cationic PGHs and anionic polyphosphate, with the aim of protecting PHGs and delivering them at the target site triggered by alkaline phosphatase (AP) from S. aureus biofilm. Optimized conditions for obtaining M23-PP NPs and GH15-PP NPs are presented. Size, zeta potential, and transmission electron microscopy imaging confirm the nanoscale size. The system demonstrates outstanding performance, as evidenced by a dramatic reduction in PGHs' minimum inhibitory concentration and minimum bactericidal concentration, together with protection against proteolytic effects, storage stability, and cytotoxicity towards the Caco-2 and HeLa cell lines. Time-kill experiments show the great potential of these negatively charged delivery systems in overcoming the staphylococcal biofilm barrier. Efficacy under conditions inhibiting AP proves the enzyme-triggered delivery of PGHs. The enzyme-responsive PGH-PP NPs significantly enhance the effectiveness of PGHs against bacteria residing in biofilm, offering a promising strategy for eradicating S. aureus biofilm.


Asunto(s)
Antibacterianos , Biopelículas , Pruebas de Sensibilidad Microbiana , Nanopartículas , Staphylococcus aureus , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Biopelículas/efectos de los fármacos , Nanopartículas/química , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Endopeptidasas/metabolismo , Endopeptidasas/farmacología , Endopeptidasas/química , Tamaño de la Partícula , Polifosfatos/química , Polifosfatos/farmacología
11.
Biomolecules ; 14(8)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39199393

RESUMEN

Bacterial cytoplasmic organelles are diverse and serve many varied purposes. Here, we employed Rhodobacter sphaeroides to investigate the accumulation of carbon and inorganic phosphate in the storage organelles, polyhydroxybutyrate (PHB) and polyphosphate (PP), respectively. Using cryo-electron tomography (cryo-ET), these organelles were observed to increase in size and abundance when growth was arrested by chloramphenicol treatment. The accumulation of PHB and PP was quantified from three-dimensional (3D) segmentations in cryo-tomograms and the analysis of these 3D models. The quantification of PHB using both segmentation analysis and liquid chromatography and mass spectrometry (LCMS) each demonstrated an over 10- to 20-fold accumulation of PHB. The cytoplasmic location of PHB in cells was assessed with fluorescence light microscopy using a PhaP-mNeonGreen fusion-protein construct. The subcellular location and enumeration of these organelles were correlated by comparing the cryo-ET and fluorescence microscopy data. A potential link between PHB and PP localization and possible explanations for co-localization are discussed. Finally, the study of PHB and PP granules, and their accumulation, is discussed in the context of advancing fundamental knowledge about bacterial stress response, the study of renewable sources of bioplastics, and highly energetic compounds.


Asunto(s)
Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Polifosfatos , Rhodobacter sphaeroides , Rhodobacter sphaeroides/metabolismo , Rhodobacter sphaeroides/ultraestructura , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Polifosfatos/metabolismo , Polifosfatos/química , Orgánulos/metabolismo , Orgánulos/ultraestructura , Hidroxibutiratos/metabolismo , Hidroxibutiratos/química , Microscopía Fluorescente/métodos , Poliésteres/metabolismo , Poliésteres/química , Polihidroxibutiratos
12.
Antimicrob Agents Chemother ; 68(9): e0045824, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39105584

RESUMEN

Antiretroviral therapy has substantially reduced morbidity, mortality, and disease transmission in people living with HIV. Islatravir is a nucleoside reverse transcriptase translocation inhibitor that inhibits HIV-1 replication by multiple mechanisms of action, and it is in development for the treatment of HIV-1 infection. In preclinical and clinical studies, islatravir had a long half-life (t½) of 3.0 and 8.7 days (72 and 209 hours, respectively); therefore, islatravir is being investigated as a long-acting oral antiretroviral agent. A study was conducted to definitively elucidate the terminal t½ of islatravir and its active form islatravir-triphosphate (islatravir-TP). A single-site, open-label, non-randomized, single-dose phase 1 study was performed to evaluate the pharmacokinetics and safety of islatravir in plasma and the pharmacokinetics of islatravir-TP in peripheral blood mononuclear cells after administration of a single oral dose of islatravir 30 mg. Eligible participants were healthy adult males without HIV infection between the ages of 18 and 65 years. Fourteen participants were enrolled. The median time to maximum plasma islatravir concentration was 1 hour. Plasma islatravir concentrations decreased in a biphasic manner, with a t½ of 73 hours. The t½ (percentage geometric coefficient of variation) of islatravir-TP in peripheral blood mononuclear cells through 6 weeks (~1008 hours) after dosing was 8.1 days or 195 hours (25.6%). Islatravir was generally well tolerated with no drug-related adverse events observed. Islatravir-TP has a long intracellular t½, supporting further clinical investigation of islatravir administered at an extended dosing interval.


Asunto(s)
Fármacos Anti-VIH , Leucocitos Mononucleares , Humanos , Masculino , Adulto , Semivida , Persona de Mediana Edad , Fármacos Anti-VIH/farmacocinética , Fármacos Anti-VIH/uso terapéutico , Fármacos Anti-VIH/administración & dosificación , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Adulto Joven , Desoxiadenosinas/farmacocinética , Desoxiadenosinas/administración & dosificación , Desoxiadenosinas/uso terapéutico , Inhibidores de la Transcriptasa Inversa/farmacocinética , Inhibidores de la Transcriptasa Inversa/uso terapéutico , Inhibidores de la Transcriptasa Inversa/administración & dosificación , Adolescente , VIH-1/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , Anciano , Esquema de Medicación , Polifosfatos
13.
Biomolecules ; 14(8)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39199325

RESUMEN

Polyphosphate (polyP) is an evolutionary ancient inorganic molecule widespread in biology, exerting a broad range of biological activities. The intracellular polymer serves as an energy storage pool and phosphate/calcium ion reservoir with implications for basal cellular functions. Metabolisms of the polymer are well understood in procaryotes and unicellular eukaryotic cells. However, functions, regulation, and association with disease states of the polymer in higher eukaryotic species such as mammalians are just beginning to emerge. The review summarises our current understanding of polyP metabolism, the polymer's functions, and methods for polyP analysis. In-depth knowledge of the pathways that control polyP turnover will open future perspectives for selective targeting of the polymer.


Asunto(s)
Polifosfatos , Polifosfatos/química , Polifosfatos/metabolismo , Humanos , Animales
14.
Nanomedicine (Lond) ; 19(21-22): 1779-1799, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39140594

RESUMEN

Aim: To develop a trivalent DNA vaccine candidate encapsulated in Chitosan-TPP nanoparticles against hand foot and mouth disease (HFMD) and assess its immunogenicity in mice.Materials & methods: Trivalent plasmid carrying the VP1 and VP2 genes of EV-A71, VP1 gene of CV-A16 was encapsulated in Chitosan-TPP nanoparticles through ionic gelation. In vitro characterization and in vivo immunization studies of the CS-TPP-NPs (pIRES-VP121) were performed.Results: Mice administered with CS-TPP NPs (pIRES-VP121) intramuscularly were observed to have the highest IFN-γ response. Sera from mice immunized with the naked pDNA and CS-TPP-NPs (pIRES-VP121) demonstrated good viral clearance against wild-type EV-A71 and CV-A16 in RD cells.Conclusion: CS-TPP-NPs (pIRES-VP121) could serve as a prototype for future development of multivalent HFMD DNA vaccine candidates.


[Box: see text].


Asunto(s)
Quitosano , Enterovirus Humano A , Enfermedad de Boca, Mano y Pie , Nanopartículas , Vacunas de ADN , Animales , Vacunas de ADN/inmunología , Vacunas de ADN/administración & dosificación , Quitosano/química , Nanopartículas/química , Ratones , Enterovirus Humano A/inmunología , Enfermedad de Boca, Mano y Pie/prevención & control , Enfermedad de Boca, Mano y Pie/inmunología , Ratones Endogámicos BALB C , Femenino , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Humanos , Plásmidos , Interferón gamma/metabolismo , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/química , Polifosfatos
15.
Cells ; 13(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39120282

RESUMEN

Dry eye disease (DED) is caused by inflammation and damage to the corneal surface due to tear film instability and hyperosmolarity. Various eye drops are used to treat this condition. Each eye drop has different properties and mechanisms of action, so the appropriate drug should be used according to clinical phenotypes. This study aims to compare the therapeutic mechanisms of cyclosporine A (CsA) and diquafosol tetrasodium (DQS). An experimental in vivo/in vitro model of DED using hyperosmolarity showed decreased cell viability, inhibited wound healing, and corneal damage compared to controls. Treatment with cyclosporine or diquafosol restored cell viability and wound healing and reduced corneal damage by hyperosmolarity. The expression of the inflammation-related genes il-1ß, il-1α, and il-6 was reduced by cyclosporine and diquafosol, and the expression of Tnf-α, c1q, and il-17a was reduced by cyclosporine. Increased apoptosis in the DED model was confirmed by increased Bax and decreased Bcl-2 and Bcl-xl expression, but treatment with cyclosporine or diquafosol resulted in decreased apoptosis. Diquafosol increased NGF expression and translocation into the extracellular space. DED has different damage patterns depending on the progression of the lesion. Thus, depending on the type of lesion, eye drops should be selected according to the therapeutic target, focusing on repairing cellular damage when cellular repair is needed or reducing inflammation when inflammation is high and cellular damage is severe.


Asunto(s)
Córnea , Ciclosporina , Modelos Animales de Enfermedad , Síndromes de Ojo Seco , Factor de Crecimiento Nervioso , Nucleótidos de Uracilo , Cicatrización de Heridas , Nucleótidos de Uracilo/farmacología , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/genética , Cicatrización de Heridas/efectos de los fármacos , Animales , Síndromes de Ojo Seco/tratamiento farmacológico , Síndromes de Ojo Seco/metabolismo , Síndromes de Ojo Seco/patología , Córnea/efectos de los fármacos , Córnea/patología , Córnea/metabolismo , Ciclosporina/farmacología , Humanos , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Polifosfatos/farmacología , Ratones
16.
Sci Rep ; 14(1): 18754, 2024 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138325

RESUMEN

Herbicides are widely used to control weeds in agriculture filed, however, the excessive use of the conventional formulation causes harmful side effects on the environment. To relieve this problem, natural polymer nanoparticles as herbicide carrier were rapidly developed and applied in recent years. In the present study, chitosan/tripolyphosphate (CS/TPP) nanoparticles were synthesized as nanocarrier to load herbicide 4-chloro-2-methylphenoxyacetate sodium salt (MCPA-Na). The encapsulation efficiency (EE) of 51.32% was obtained through measuring indirectly by high performance liquid chromatography (HPLC). The free and MCPA-Na-loaded CS/TPP nanoparticles were characterized by using dynamic light scattering (DLS), zeta potential, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The encapsulation of MCPA-Na in CS/TPP nanoparticles resulted in the change of MCPA-Na release profile in different pH media and displayed effective sustained-release under neutral condition. The evaluation of herbicidal activity against Bidens pilosa L. showed that the efficacy enhancement of MCPA-Na was realized after encapsulation in CS/TPP nanoparticles. The proposed herbicide nanoformulation presented a good potential as a sustainable alternative for weed control in agriculture.


Asunto(s)
Ácido 2-Metil-4-clorofenoxiacético , Bidens , Quitosano , Herbicidas , Nanopartículas , Quitosano/química , Quitosano/farmacología , Quitosano/análogos & derivados , Herbicidas/química , Herbicidas/farmacología , Nanopartículas/química , Bidens/química , Espectroscopía Infrarroja por Transformada de Fourier , Portadores de Fármacos/química , Polifosfatos/química
17.
ACS Appl Mater Interfaces ; 16(33): 43244-43256, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39136271

RESUMEN

The development of efficient hemostatic materials is crucial for achieving rapid hemorrhage control and effective wound healing. Inorganic polyphosphate (polyP) is recognized as an effective modulator of the blood coagulation process. However, the specific effect of polyP chain length on coagulation is not yet fully understood. Furthermore, calcium ions (Ca2+) are essential for the coagulation process, promoting multiple enzyme-catalyzed reactions within the coagulation cascade. Hence, calcium ion-coupled polyphosphate powders with three different degrees of polymerization (CaPP-n, n = 20, 50, and 1500) are synthesized by an ion-exchange reaction. CaPP exhibits a crystalline phase at a low polymerization degree and transitions to an amorphous phase as the polymerization degree increases. Notably, the addition of Ca2+ enhances the wettability of polyP, and CaPP promotes hemostasis, with varying degrees of effectiveness related to chain length. CaPP-50 exhibits the most promising hemostatic performance, with the lowest blood clotting index (BCI, 12.1 ± 0.7%) and the shortest clotting time (302.0 ± 10.5 s). By combining Ca2+ with polyP of medium-chain length, CaPP-50 demonstrates an enhanced ability to accelerate the adhesion and activation of blood cells, initiate the intrinsic coagulation cascade, and form a stable blood clot, outperforming both CaPP-20 and CaPP-1500. The hemostatic efficacy of CaPP-50 is further validated using rat liver bleeding and femoral artery puncture models. CaPP-50 is proven to possess hemostatic properties comparable to those of commercial calcium-based zeolite hemostatic powder and superior to kaolin. In addition, CaPP-50 exhibits excellent biocompatibility and long-term storage stability. These results suggest that CaPP-50 has significant clinical and commercial potential as an active inorganic hemostatic agent for rapid control of bleeding.


Asunto(s)
Calcio , Hemorragia , Polimerizacion , Polifosfatos , Animales , Polifosfatos/química , Polifosfatos/farmacología , Calcio/química , Ratas , Hemorragia/prevención & control , Hemorragia/tratamiento farmacológico , Hemostáticos/química , Hemostáticos/farmacología , Coagulación Sanguínea/efectos de los fármacos , Ratas Sprague-Dawley , Masculino , Hemostasis/efectos de los fármacos , Iones/química
18.
Acta Biomater ; 185: 240-253, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39025390

RESUMEN

Transcatheter arterial chemoembolization (TACE) is the first-line therapy for hepatocellular carcinoma (HCC). However, the exacerbated hypoxia microenvironment induces tumor relapse and metastasis post-TACE. Here, temperature-sensitive block polymer complexed with polyphosphate-cisplatin (Pt-P@PND) was prepared for the enhancement of tumor artery embolization by coagulation activation. After supra-selective infusion into the tumor vessels, Pt-P@PND nanogels performed efficient embolization of tumor arteries by sol-gel transition at body temperature. Meanwhile, coagulation cascade was evoked to form blood clots in the peripheral arteries inaccessible to the nanogels by released PolyP. The blood clots-filled hydrogel networks composed of gel and clots showed a denser structure and higher modulus, thereby achieving long-term embolization of all levels of tumor arteries. Pt-P@PND nanogels efficiently inhibited tumor growth and reduced the expression of HIF-1α, VEGF, CD31, and MMP-9 on VX2 tumor-bearing rabbit model. The released Nitro-Pt stimulated the immunogenic cell death of tumor cells, thus enhancing the antitumor immune response to suppress tumor relapse and metastasis post-TACE. It is hoped that Pt-P@PND nanogels can be developed as a promising embolic agent with procoagulant activity for enhancing the antitumor immune response through a combination of embolism, coagulation, and chemotherapy. STATEMENT OF SIGNIFICANCE: Clinical embolic agents, such as Lipiodol and polyvinyl alcohol (PVA) microspheres, are limited by their rapid elimination or larger size, thus lead to incomplete embolization of trans-catheter arterial chemoembolization (TACE). Herein, temperature-sensitive Pt-P@PND nanogels were developed to achieve long-term embolization of all levels of tumor arteries by gel/clot generation. The released Nitro-Pt induced immunogenic cell death in tumor cells, which improved the antitumor immune microenvironment by the maturation of DCs and lymphocytic infiltration. Pt-P@PND nanogels successfully inhibited tumor growth and activated an antitumor immune response to curb the recurrence and metastasis of residual tumor cells both in VX2 tumor-bearing rabbit model and 4T1 tumor-bearing mouse model. These findings suggested that Pt-P@PND could be developed as an ideal embolic agent for clinical TACE treatment.


Asunto(s)
Cisplatino , Nanogeles , Polifosfatos , Temperatura , Animales , Cisplatino/farmacología , Conejos , Nanogeles/química , Polifosfatos/química , Polifosfatos/farmacología , Coagulación Sanguínea/efectos de los fármacos , Embolización Terapéutica/métodos , Línea Celular Tumoral , Quimioembolización Terapéutica/métodos , Ratones
19.
Cell Rep Methods ; 4(7): 100814, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38981472

RESUMEN

Inorganic polyphosphate (polyP) is a ubiquitous polymer that controls fundamental processes. To overcome the absence of a genetically tractable mammalian model, we developed an inducible mammalian cell line expressing Escherichia coli polyphosphate kinase 1 (EcPPK1). Inducing EcPPK1 expression prompted polyP synthesis, enabling validation of polyP analytical methods. Virtually all newly synthesized polyP accumulates within the nucleus, mainly in the nucleolus. The channeled polyP within the nucleolus results in the redistribution of its markers, leading to altered rRNA processing. Ultrastructural analysis reveals electron-dense polyP structures associated with a hyper-condensed nucleolus resulting from an exacerbation of the liquid-liquid phase separation (LLPS) phenomena controlling this membraneless organelle. The selective accumulation of polyP in the nucleoli could be interpreted as an amplification of polyP channeling to where its physiological function takes place. Indeed, quantitative analysis of several mammalian cell lines confirms that endogenous polyP accumulates within the nucleolus.


Asunto(s)
Nucléolo Celular , Polifosfatos , Polifosfatos/metabolismo , Nucléolo Celular/metabolismo , Humanos , Animales , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Escherichia coli/metabolismo , Línea Celular , ARN Ribosómico/metabolismo , Células HeLa
20.
Braz Oral Res ; 38: e056, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39016365

RESUMEN

This study evaluated the effect of fluoride varnishes containing micrometric or nanosized sodium trimetaphosphate (TMP) on dentin erosive wear in vitro. Bovine root dentin blocks were selected by surface hardness and randomly divided into five experimental groups/varnishes (n = 20/group): placebo, 5% sodium fluoride (NaF); 5% NaF+5% micrometric TMP; 5% NaF+2.5% nanosized TMP; and 5% NaF+5% nanosized TMP. Half of the surface of all blocks received a single application of the assigned varnish, with subsequent immersion in artificial saliva for 6 h. Varnishes were then removed and the blocks were immersed in citric acid (90 s, 4×/day, 5 days). After each erosive cycle, ten blocks of each group were immersed in a placebo dentifrice for 15 s (ERO), while the other ten blocks were subjected to abrasion by brushing (ERO+ABR). Dentin erosive wear was assessed by profilometry. Data were submitted to 2-way ANOVA and to the Holm-Sidak test (p<0.05). Dentin erosive wear was significantly higher for ERO+ABR than for ERO for all varnishes. TMP-containing varnishes promoted superior effects against dentin erosive wear compared with 5% NaF alone; and 5% nanosized TMP led to the lowest wear among all varnishes. In conclusion, the addition of TMP to conventional fluoride varnish (i.e., varnish containing only NaF) enhanced its protective effects against bovine root dentin erosion and erosion+abrasion. Additionally, the use of 5% nanosized TMP led to superior effects in comparison to 5% micrometric TMP, both for erosion and erosion+abrasion in vitro.


Asunto(s)
Dentina , Fluoruros Tópicos , Ensayo de Materiales , Polifosfatos , Fluoruro de Sodio , Propiedades de Superficie , Erosión de los Dientes , Bovinos , Animales , Polifosfatos/farmacología , Polifosfatos/química , Dentina/efectos de los fármacos , Fluoruro de Sodio/farmacología , Erosión de los Dientes/prevención & control , Fluoruros Tópicos/farmacología , Análisis de Varianza , Factores de Tiempo , Propiedades de Superficie/efectos de los fármacos , Distribución Aleatoria , Reproducibilidad de los Resultados , Nanopartículas/química , Abrasión de los Dientes/prevención & control , Saliva Artificial/química , Ácido Cítrico/farmacología , Valores de Referencia , Pruebas de Dureza
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA