Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
1.
BMC Oral Health ; 24(1): 1013, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210376

RESUMEN

BACKGROUND: Enhancing the antibacterial properties of polymethyl methacrylate (PMMA) dental resins is crucial in preventing secondary infections following dental procedures. Despite the necessity for such improvement, a universally applicable method for augmenting the antibacterial properties of PMMA without compromising its mechanical properties and cytotoxicity remains elusive. Consequently, this study aims to address the aforementioned challenges by developing and implementing a composite material known as zinc oxide/graphene oxide (ZnO/GO) nanocomposites, to modify the PMMA. METHODS: ZnO/GO nanocomposites were successfully synthesized by a one-step procedure and fully characterized by TEM, EDS, FTIR and XRD. Then the physical and mechanical properties of PMMA modified by ZnO/GO nanocomposites were evaluated through water absorption and solubility test, contact angle test, three-point bending tests, and compression test. Furthermore, the biological properties of the modified PMMA were evaluated by direct microscopic colony count method, crystal violet staining and CCK-8. RESULTS: The results revealed that ZnO/GO nanocomposites were successfully constructed. When the concentration of nanocomposites in PMMA was 0.2 wt. %, the flexural strength of the resin was increased by 23.4%, the compressive strength was increased by 31.1%, and the number of bacterial colonies was reduced by 60.33%. Meanwhile, It was found that the aging of the resin did not affect its antibacterial properties, and CCK-8 revealed that the modified PMMA had no cytotoxicity. CONCLUSION: ZnO/GO nanocomposites effectively improved the antibacterial properties of PMMA. Moreover, the mechanical properties of the resin were improved by adding ZnO/GO nanocomposites at a lower range of concentrations.


Asunto(s)
Antibacterianos , Grafito , Ensayo de Materiales , Nanocompuestos , Polimetil Metacrilato , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Nanocompuestos/química , Grafito/farmacología , Grafito/química , Polimetil Metacrilato/química , Polimetil Metacrilato/farmacología , Antibacterianos/farmacología , Resistencia Flexional , Fuerza Compresiva , Difracción de Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Microscopía Electrónica de Transmisión
2.
ACS Appl Bio Mater ; 7(7): 4510-4518, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38950150

RESUMEN

Fungal proliferation can lead to adverse effects for human health, due to the production of pathogenic and allergenic toxins and also through the creation of fungal biofilms on sensitive surfaces (i.e., medical equipment). On top of that, food spoilage from fungal activity is a major issue, with food losses exceeding 30% annually. In this study, the effect of the surface micro- and nanotopography, material (aluminum, Al, and poly(methyl methacrylate), PMMA), and wettability against Aspergillus awamori is investigated. The fungal activity is monitored using dynamic conditions by immersing the surfaces inside fungal spore-containing suspensions and measuring the fungal biomass growth, while the surfaces with the optimum antifungal properties are also evaluated by placing them near spore suspensions of A. awamori on agar plates. Al- and PMMA-based superhydrophobic surfaces demonstrate a passive-like antifungal profile, and the fungal growth is significantly reduced (1.6-2.2 times lower biomass). On the other hand, superhydrophilic PMMA surfaces enhance fungal proliferation, resulting in a 2.6 times higher fungal total dry weight. In addition, superhydrophobic surfaces of both materials exhibit antifouling and antiadhesive properties, whereas both superhydrophobic surfaces also create an "inhibition" zone against the growth of A. awamori when tested on agar plates.


Asunto(s)
Aspergillus , Materiales Biocompatibles , Ensayo de Materiales , Tamaño de la Partícula , Propiedades de Superficie , Humectabilidad , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Antifúngicos/farmacología , Antifúngicos/química , Polimetil Metacrilato/química , Polimetil Metacrilato/farmacología , Proliferación Celular/efectos de los fármacos
3.
ACS Appl Bio Mater ; 7(6): 4039-4050, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38830835

RESUMEN

We investigated the possibility of loading PMMA bone cement with antimicrobial nanostructured AgNbO3 particles to counter biofilm formation at the cement-tissue interface. We found that a formulation containing (1-4)% AgNbO3 showed high antibacterial activity against Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa while not showing any toxicity against THP1 human cell lines. In addition, loading the particles did not impact the mechanical properties of the cement. The results thus obtained illustrate the potential of the approach to replace the current technique of mixing cement with conventional antibiotics, which is associated with shortcomings such as efficacy loss from antibiotic depletion.


Asunto(s)
Antibacterianos , Cementos para Huesos , Ensayo de Materiales , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Polimetil Metacrilato , Pseudomonas aeruginosa , Staphylococcus aureus , Cementos para Huesos/química , Cementos para Huesos/farmacología , Polimetil Metacrilato/química , Polimetil Metacrilato/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Staphylococcus aureus/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Biopelículas/efectos de los fármacos , Nanopartículas/química
4.
Inorg Chem ; 63(28): 12870-12879, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38833385

RESUMEN

Drug resistance, one of the main drawbacks in cancer chemotherapy, can be tackled by employing a combination of drugs that target different biological processes in the cell, enhancing the therapeutic efficacy. Herein, we report the synthesis and characterization of a new paddlewheel diruthenium complex that includes 5-fluorouracil (5-FU), a commonly used anticancer drug. This drug was functionalized with a carboxylate group to take advantage of the previously demonstrated release capacity of carboxylate ligands from the diruthenium core. The resulting hydrophobic complex, [Ru2Cl(DPhF)3(5-FUA)] (Ru-5-FUA) (DPhF = N,N'-diphenylformamidinate; 5-FUA = 5-fluorouracil-1-acetate) was subsequently entrapped in poly(methyl methacrylate) (PMMA) nanoparticles (PMMA@Ru-5-FUA) via a reprecipitation method to be transported in biological media. The optimized encapsulation procedure yielded particles with an average size of 81.2 nm, a PDI of 0.11, and a zeta potential of 29.2 mV. The cytotoxicity of the particles was tested in vitro using the human colon carcinoma cell line Caco-2. The IC50 (half maximal inhibitory concentration) of PMMA@Ru-5-FUA (6.08 µM) was just slightly lower than that found for the drug 5-FU (7.64 µM). Most importantly, while cells seemed to have developed drug resistance against 5-FU, PMMA@Ru-5-FUA showed an almost complete lethality at ∼30 µM. Conversely, an analogous diruthenium complex devoid of the 5-FU moiety, [Ru2Cl(DPhF)3(O2CCH3)] (PMMA@RuA), displayed a reduced cytotoxicity at equivalent concentrations. These findings highlight the effect of combining the anticancer properties of 5-FU with those of diruthenium species. This suggests that the distinct modes of action of the two chemical species are crucial for overcoming drug resistance.


Asunto(s)
Complejos de Coordinación , Resistencia a Antineoplásicos , Fluorouracilo , Nanopartículas , Polimetil Metacrilato , Rutenio , Humanos , Fluorouracilo/farmacología , Fluorouracilo/química , Células CACO-2 , Rutenio/química , Rutenio/farmacología , Polimetil Metacrilato/química , Polimetil Metacrilato/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Nanopartículas/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacos , Estructura Molecular
5.
Anticancer Res ; 44(7): 2887-2897, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38925839

RESUMEN

BACKGROUND/AIM: This study aimed to investigate the structure and functions of the membrane formed around liquid nitrogen-treated bones in the osteogenesis and revitalization of frozen bone using a rat model. MATERIALS AND METHODS: Segmental defects were created in femurs of rats, and resected bones treated with liquid nitrogen [frozen bone (FB) group, n=20] or polymethylmethacrylate (PMMA group; n=20) were implanted as spacers. Histological analysis and quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) of the membrane around each spacer were performed for bone morphogenetic protein 2 (BMP2), transforming growth factor (TGF)-ß1, and vascular endothelial growth factor (VEGF). Furthermore, in week 2, spacers were removed from both groups (n=5 each), and autologous cancellous bone (ACB) harvested from the ilium was grafted into the defect. Radiological analysis was performed until bone union was observed. RESULTS: In week 2, similar two-layered membrane structures were observed in both groups; these matured into fibrous tissues over time. At each evaluation point, qRT-PCR showed higher expression of all factors in the FB than in the PMMA group. In the ACB graft model, the mean period to bone union and new bone volume were significantly shorter and greater, respectively, in the FB. Chondrocytes invaded the osteotomy site from the membrane in the FB, suggesting that endochondral ossification may occur and be related to osteogenesis. Additionally, fibroblasts and capillaries in the membrane invaded the surface of treated bone in week 2, and osteocytes were observed around them in weeks 6 and 8. CONCLUSION: Fibrous membranous tissue formed around liquid nitrogen-treated bones may be vital for osteogenesis and revitalization of frozen bones.


Asunto(s)
Osteogénesis , Factor A de Crecimiento Endotelial Vascular , Animales , Osteogénesis/efectos de los fármacos , Ratas , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Nitrógeno/metabolismo , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 2/genética , Masculino , Trasplante Óseo/métodos , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Polimetil Metacrilato/farmacología , Fémur/efectos de los fármacos , Fémur/metabolismo , Fémur/patología , Huesos/efectos de los fármacos , Huesos/metabolismo , Huesos/patología , Ratas Sprague-Dawley
6.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732100

RESUMEN

The use of temporary resin for provisional restorations is a fundamental step to maintain the position of prepared teeth, to protect the pulpal vitality and the periodontal health as well as the occlusion. The present study aimed at evaluating the biological effects of two resins used in dentistry for temporary restorations, Coldpac (Yates Motloid) and ProTemp 4™ (3M ESPE ™), and their eluates, in an in vitro model of human gingival fibroblasts (hGFs). The activation of the inflammatory pathway NFκB p65/NLRP3/IL-1ß induced by the self-curing resin disks was evaluated by real-time PCR, Western blotting and immunofluorescence analysis. The hGFs adhesion on resin disks was investigated by means of inverted light microscopy and scanning electron microscopy (SEM). Our results suggest that hGF cells cultured in adhesion and with eluate derived from ProTemp 4™ (3M ESPE ™) resin evidenced a downregulation in the expression of the inflammatory mediators such as NFκB p65, NLRP3 and IL-1ß compared to the cells cultured with Coldpac (Yates Motloid) after 24 h and 1 week of culture. Furthermore, the cells cultured with ProTemp 4™ (3M ESPE ™) after 24 h and 1 week of culture reported a higher cell viability compared to the cells cultured with Coldpac (Yates Motloid), established by MTS cell analysis. Similar results were obtained when hGFs were placed in culture with the eluate derived from ProTemp 4™ (3M ESPE ™) resin which showed a higher cell viability compared to the cells cultured with eluate derived from Coldpac (Yates Motloid). These results highlighted the lower pro-inflammatory action and improved cell biocompatibility of ProTemp 4™ (3M ESPE ™), suggesting a better performance in terms of cells-material interaction.


Asunto(s)
Resinas Compuestas , Fibroblastos , Encía , Interleucina-1beta , Polimetil Metacrilato , Humanos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Encía/citología , Resinas Compuestas/farmacología , Resinas Compuestas/química , Polimetil Metacrilato/química , Polimetil Metacrilato/farmacología , Interleucina-1beta/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células Cultivadas , Factor de Transcripción ReIA/metabolismo , Adhesión Celular/efectos de los fármacos
7.
J Indian Prosthodont Soc ; 24(2): 165-174, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38650342

RESUMEN

AIM: (1) To assess the release of stable silver nanoparticles (AgNPs) of small scale dimension added to heat polymerized polymethyl methacrylate (PMMA) in 6 months. (2) Assessing the influence of incorporating minimal concentrations of stable AgNPs with nanoscale dimensions into heat polymerized PMMA over a 6 month period on its antifungal efficacy (AF), flexural strength (FS), and impact strength (IS). SETTINGS AND DESIGN: Incorporating nanoparticles with a very small scale may have minimal impact on mechanical properties due to their diminutive size. However, the influence of these small scaled nanoparticles on antimicrobial efficacy and potential escalation in toxicity to host cells through leaching remains unexplored. AgNPs were prepared using an Ultrasonic Probe sonicator and the addition of ammonia to obtain stabilized AgNPs (< 0.01 nm) of small scale dimension. The characterization of these AgNPs involved ultraviolet visible spectroscopy, X ray diffraction, Zetasizer, and transmission electron microscopy with energy dispersive spectroscopy (TEM). MATERIALS AND METHODS: The prepared AgNPs were then added in various percentages by weight (0%-0.5%) to fabricate 252 modified PMMA samples of sizes 10 mm × 3 mm (AF, n = 108), 65 mm × 10 mm × 3 mm (FS, n = 72), and 65 mm × 10 mm × 2.5 mm (IS, n = 72) as per ADA specification no. 12. These samples underwent testing for leaching out of AgNPs and efficacy against Candida albicans for 6 months. The effect on FS and IS was evaluated using the three point bending test and Charpy's Impact Tester, respectively. STATISTICAL ANALYSIS USED: Intergroup comparison of CFU between various concentrations of AgNP was done using the Kruskal-Wallis ANOVA test succeeded by Mann-Whitney test for pair wise comparisons. Difference in CFU of various concentrations over 6 months was seen using one way ANOVA test. Intergroup comparison of FS and IS was performed using a one way ANOVA test, followed by a post hoc Tukey's test for pair wise comparisons. RESULTS: Repeated tests showed no leaching out of AgNPs from the denture base resin into the storage medium. All concentrations of AgNPs incorporated in resin showed inhibition of Candida growth. Intergroup comparison of FS and IS revealed highly statistically significant differences (F = 15.076, P < 0.01 and F = 28.266, P < 0.01) between the groups showing a reduction in strength. CONCLUSION: The AgNPs of small scale dimension incorporated into the denture base resin imparted a strong antifungal effectiveness against C. albicans, which did not decline during the study period and did not cause any release of nanoparticles. 0.5% showed the best antifungal efficacy. This may prove to be a viable and highly effective treatment for the prevention of Candida associated denture stomatitis. However, the inclusion of these particles resulted in a decrease in both FS and IS, and this reduction was directly proportional to the percentage of added AgNPs, with 0.5% demonstrating the least IS and FS.


Asunto(s)
Antifúngicos , Resistencia Flexional , Nanopartículas del Metal , Polimetil Metacrilato , Plata , Polimetil Metacrilato/química , Polimetil Metacrilato/farmacología , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Antifúngicos/farmacología , Antifúngicos/química , Candida albicans/efectos de los fármacos , Ensayo de Materiales , Técnicas In Vitro , Microscopía Electrónica de Transmisión
8.
ACS Biomater Sci Eng ; 10(4): 2398-2413, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38477550

RESUMEN

In vertebroplasty and kyphoplasty, bioinert poly(methyl methacrylate) (PMMA) bone cement is a conventional filler employed for quick stabilization of osteoporotic vertebral compression fractures (OVCFs). However, because of the poor osteointegration, excessive stiffness, and high curing temperature of PMMA, the implant loosens, the adjacent vertebrae refracture, and thermal necrosis of the surrounding tissue occurs frequently. This investigation addressed these issues by incorporating the small intestinal submucosa (SIS) into PMMA (SIS-PMMA). In vitro analyses revealed that this new SIS-PMMA bone cement had improved porous structure, as well as reduced compressive modulus and polymerization temperature compared with the original PMMA. Furthermore, the handling properties of SIS-PMMA bone cement were not significantly different from PMMA. The in vitro effect of PMMA and SIS-PMMA was investigated on MC3T3-E1 cells via the Transwell insert model to mimic the clinical condition or directly by culturing cells on the bone cement samples. The results indicated that SIS addition substantially enhanced the proliferation and osteogenic differentiation of MC3T3-E1 cells. Additionally, the bone cement's biomechanical properties were also assessed in a decalcified goat vertebrae model with a compression fracture, which indicated the SIS-PMMA had markedly increased compressive strength than PMMA. Furthermore, it was proved that the novel bone cement had good biosafety and efficacy based on the International Standards and guidelines. After 12 weeks of implantation, SIS-PMMA indicated significantly more osteointegration and new bone formation ability than PMMA. In addition, vertebral bodies with cement were also extracted for the uniaxial compression test, and it was revealed that compared with the PMMA-implanted vertebrae, the SIS-PMMA-implanted vertebrae had greatly enhanced maximum strength. Overall, these findings indicate the potential of SIS to induce efficient fixation between the modified cement surface and the host bone, thereby providing evidence that the SIS-PMMA bone cement is a promising filler for clinical vertebral augmentation.


Asunto(s)
Fracturas por Compresión , Fracturas de la Columna Vertebral , Humanos , Cementos para Huesos/farmacología , Cementos para Huesos/química , Polimetil Metacrilato/farmacología , Polimetil Metacrilato/química , Osteogénesis , Fracturas de la Columna Vertebral/cirugía , Columna Vertebral
9.
J Biomed Mater Res A ; 112(9): 1518-1531, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38488327

RESUMEN

Estrogen deficiency, long-term immobilization, and/or aging are commonly related to bone mass loss, thus increasing the risk of fractures. One option for bone replacement in injuries caused by either traumas or pathologies is the use of orthopedic cement based on polymethylmethacrylate (PMMA). Nevertheless, its reduced bioactivity may induce long-term detachment from the host tissue, resulting in the failure of the implant. In view of this problem, we developed an alternative PMMA-based porous cement (pPMMA) that favors cell invasion and improves osteointegration with better biocompatibility. The cement composition was changed by adding bioactive strontium-nanoparticles that mimic the structure of bone apatite. The nanoparticles were characterized regarding their physical-chemical properties, and their effects on osteoblasts and osteoclast cultures were assessed. Initial in vivo tests were also performed using 16 New Zealand rabbits as animal models, in which the pPMMA-cement containing the strontium nanoparticles were implanted. We showed that the apatite nanoparticles in which 90% of Ca2+ ions were substituted by Sr2+ (NanoSr 90%) upregulated TNAP activity and increased matrix mineralization. Moreover, at the molecular level, NanoSr 90% upregulated the mRNA expression levels of, Sp7, and OCN. Runx2 was increased at both mRNA and protein levels. In parallel, in vivo tests revealed that pPMMA-cement containing NanoSr 90%, upregulated two markers of bone maturation, OCN and BMP2, as well as the formation of apatite minerals after implantation in the femur of rabbits. The overall data support that strontium nanoparticles hold the potential to up-regulate mineralization in osteoblasts when associated with synthetic biomaterials.


Asunto(s)
Osteoblastos , Estroncio , Animales , Estroncio/farmacología , Estroncio/química , Conejos , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/citología , Nanopartículas/química , Polimetil Metacrilato/química , Polimetil Metacrilato/farmacología , Cementos para Huesos/farmacología , Cementos para Huesos/química , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Ratones
10.
J Mech Behav Biomed Mater ; 151: 106367, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38194787

RESUMEN

Poly (methyl methacrylate) (PMMA) bone cement relies on the loaded antibiotic to realize the antibacterial purpose. But the exothermic behavior during setting often makes temperature-sensitive antibiotics inactivated. It is necessary to develop new material candidates to replace antibiotics. In this study, a new quaternary ammonium methacrylate (QAM) monomer called dimethylaminetriclosan methacrylate (DMATCM) was designed by the quaternization between 2-(Dimethylamino)ethyl methacrylate and triclosan, then employed as the modifier to explore the feasibility of equipping bone cement with antibacterial activity, and to investigate the variations on the physical and biological performances brought by the substitution ratio of DMATCM to MMA. Results showed that DMATCM opened its C=C bonding to participate in the MMA polymerization, and the quaternary ammonium group helped it to perform broad-spectrum antibacterial property against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. With an increased substitution ratio of DMATCM to MMA, the glass transition temperatures, the maximum exothermic temperatures, and the contact angles of bone cements declined, but the residual monomer contents, the fluid uptakes, and the setting times under Vical indentation increased. Long-term soaking made almost no changes to the weight loss and the mechanical properties of DMATCM-modified cements with lower substitution ratios of 0∼20%, and the activation rather enhanced the strengths of uncured AMBC-4 and AMBC-5 samples. Owing to more DMATCM exposed on the cement surface, the inhibition ring diameter produced by modified cement was improved to a maximum of 28.09 mm, and MC3T3-E1 cells performed the cell viabilities all beyond 70% and healthy adhesion after 72 h co-culturing. Taking all measured properties and ISO standards into account, the antibacterial bone cement under the ratio of 10% performed better, besides its good bactericidal effect, the other properties satisfied the requirements for clinical application.


Asunto(s)
Compuestos de Amonio , Polimetil Metacrilato , Polimetil Metacrilato/farmacología , Cementos para Huesos/farmacología , Polimerizacion , Metacrilatos , Ensayo de Materiales , Antibacterianos/farmacología
11.
Int J Biol Macromol ; 258(Pt 1): 128793, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38134993

RESUMEN

In this work, Tamarindus indica (T. indica)-loaded crosslinked poly(methyl methacrylate) (PMMA)/cellulose acetate (CA)/poly(ethylene oxide) (PEO) electrospun nanofibers were designed and fabricated for wound healing applications. T. indica is a plant extract that possesses antidiabetic, antimicrobial, antioxidant, antimalarial and wound healing properties. T. indica leaves extract of different concentrations were blended with a tuned composition of a matrix comprised of PMMA (10 %), CA (2 %) and PEO (1.5 %), and were electrospun to form smooth, dense and continuous nanofibers as illustrated by SEM investigation. In vitro evaluation of T. indica-loaded nanofibers on normal human skin fibroblasts (HBF4) revealed a high compatibility and low cytotoxicity. T. indica-loaded nanofibers significantly increased the healing activity of scratched HBF4 cells, as compared to the free plant extract, and the healing activity was significantly enhanced upon increasing the plant extract concentration. Moreover, T. indica-loaded nanofibers demonstrated significant antimicrobial activity in vitro against the tested microbes. In vivo, nanofibers resulted in a superior wound healing efficiency compared to the control untreated animals. Hence, engineered nanofibers loaded with potent phytochemicals could be exploited as an effective biocompatible and eco-friendly antimicrobial biomaterials and wound healing composites.


Asunto(s)
Antiinfecciosos , Celulosa/análogos & derivados , Nanofibras , Tamarindus , Animales , Humanos , Polimetil Metacrilato/farmacología , Nanofibras/química , Cicatrización de Heridas , Antiinfecciosos/farmacología , Extractos Vegetales/química , Antibacterianos/farmacología
12.
Injury ; 54 Suppl 6: 110649, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38143147

RESUMEN

INTRODUCTION: Bone cement containing vancomycin or gentamicin is a therapeutic strategy for combating orthopedic infections: however, the activity of these antibiotics is narrow. Silver nanoparticles (AgNPs) are nanocomponents with a wide spectrum, including multidrug-resistant bacteria. In the present study, we aimed to evaluate the effect of AgNP-loaded polymethylmethacrylate (PMMA) on biofilm formation by Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus epidermidis. METHODS: The effect of AgNP-loaded PMMA with and without vancomycin or gentamicin on biofilm production was quantitatively analyzed. S. aureus, E. coli, P. aeruginosa, and S. epidermidis were included as biofilm-producing microorganisms in the in vitro model. RESULTS: AgNP-loaded PMMA with antibiotics reduced the number of colony-forming units (CFUs; p<0.001). However, AgNP-loaded PMMA alone did not significantly reduce biofilm formation. CONCLUSION: Our study demonstrated the potential of AgNP-loaded PMMA. Notably, we observed that AgNP-loaded PMMA containing vancomycin or gentamycin exhibited significantly superior efficacy, with satisfactory activity against most biofilm-forming microbial agents examined.


Asunto(s)
Nanopartículas del Metal , Vancomicina , Humanos , Vancomicina/farmacología , Polimetil Metacrilato/farmacología , Gentamicinas/farmacología , Plata/farmacología , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Cementos para Huesos/farmacología , Biopelículas , Bacterias
13.
BMC Musculoskelet Disord ; 24(1): 886, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964215

RESUMEN

BACKGROUND: Long bone defects resulting from primary trauma or secondary to debridement of fracture-related infection (FRI) remain a major clinical challenge. One approach often used is the induced membrane technique (IMT). The effectiveness of the IMT in infected versus non-infected settings remains to be definitively established. In this study we present a new rabbit humerus model and compare the IMT approach between animals with prior infection and non-infected equivalents. METHODS: A 5 mm defect was created in the humerus of New Zealand White rabbits (n = 53) and fixed with a 2.5 mm stainless steel plate. In the non-infected groups, the defect was either left empty (n = 6) or treated using the IMT procedure (PMMA spacer for 3 weeks, n = 6). Additionally, both approaches were applied in animals that were inoculated with Staphylococcus aureus 4 weeks prior to defect creation (n = 5 and n = 6, respectively). At the first and second revision surgeries, infected and necrotic tissues were debrided and processed for bacteriological quantification. In the IMT groups, the PMMA spacer was removed 3 weeks post implantation and replaced with a beta-tricalcium phosphate scaffold and bone healing observed for a further 10 weeks. Infected groups also received systemic antibiotic therapy. The differences in bone healing between the groups were evaluated radiographically using a modification of the radiographic union score for tibial fractures (RUST) and by semiquantitative histopathology on Giemsa-Eosin-stained sections. RESULTS: The presence of S. aureus infection at revision surgery was required for inclusion to the second stage. At the second revision surgery all collected samples were culture negative confirming successful treatment. In the empty defect group, bone healing was increased in the previously infected animals compared with non-infected controls as revealed by radiography with significantly higher RUST values at 6 weeks (p = 0.0281) and at the end of the study (p = 0.0411) and by histopathology with increased cortical bridging (80% and 100% in cis and trans cortical bridging in infected animals compared to 17% and 67% in the non-infected animals). With the IMT approach, both infected and non-infected animals had positive healing assessments. CONCLUSION: We successfully developed an in vivo model of bone defect healing with IMT with and without infection. Bone defects can heal after an infection with even better outcomes compared to the non-infected setting, although in both cases, the IMT achieved better healing.


Asunto(s)
Curación de Fractura , Fracturas de la Tibia , Conejos , Animales , Polimetil Metacrilato/farmacología , Polimetil Metacrilato/uso terapéutico , Staphylococcus aureus , Fracturas de la Tibia/cirugía , Húmero/diagnóstico por imagen , Húmero/cirugía
14.
J Orthop Surg Res ; 18(1): 646, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37653390

RESUMEN

BACKGROUND: Polymethylmethacrylate (PMMA) bone cement loaded with enoxaparin sodium (PMMA@ES) has been increasingly highlighted to affect the bone repair of bone defects, but the molecular mechanisms remain unclear. We addressed this issue by identifying possible molecular mechanisms of PMMA@ES involved in femoral defect regeneration based on bioinformatics analysis and network pharmacology analysis. METHODS: The upregulated genes affecting the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) were selected through bioinformatics analysis, followed by intersection with the genes of ES-induced differentiation of BMSCs identified by network pharmacology analysis. PMMA@ES was constructed. Rat primary BMSCs were isolated and cultured in vitro in the proliferation medium (PM) and osteogenic medium (OM) to measure alkaline phosphatase (ALP) activity, mineralization of the extracellular matrix, and the expression of RUNX2 and OCN using gain- or loss-of-function experiments. A rat femoral bone defect model was constructed to detect the new bone formation in rats. RESULTS: ATF2 may be a key gene in differentiating BMSCs into osteoblasts. In vitro cell assays showed that PMMA@ES promoted the osteogenic differentiation of BMSCs by increasing ALP activity, extracellular matrix mineralization, and RUNX2 and OCN expression in PM and OM. In addition, ATF2 activated the transcription of miR-335-5p to target ERK1/2 and downregulate the expression of ERK1/2. PMMA@ES induced femoral defect regeneration and the repair of femoral defects in rats by regulating the ATF2/miR-335-5p/ERK1/2 axis. CONCLUSION: The evidence provided by our study highlighted the ATF2-mediated mechanism of PMMA@ES in the facilitation of the osteogenic differentiation of BMSCs and femoral defect regeneration.


Asunto(s)
Calcinosis , MicroARNs , Animales , Ratas , Polimetil Metacrilato/farmacología , Cementos para Huesos/farmacología , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Osteogénesis/genética
15.
J Mater Chem B ; 11(35): 8471-8483, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37587844

RESUMEN

Macrophages are immune cells that can be activated into either pro-inflammatory M1 or anti-inflammatory M2 phenotypes. Attempts to modulate macrophage phenotype using drugs have been limited by targeting issues and systemic toxicity. This study investigates the effect of drug-free self-assembled hydrolyzed galactomannan-poly(methyl methacrylate) (hGM-g-PMMA) nanoparticles on the activation of the human monocyte-derived macrophage THP-1 cell line. Nanoparticles are cell compatible and are taken up by macrophages. RNA-sequencing analysis of cells exposed to NPs reveal the upregulation of seven metallothionein genes. Additionally, the secretion of pro-inflammatory and anti-inflammatory cytokines upon exposure of unpolarized macrophages and M1-like cells obtained by activation with lipopolysaccharide + interferon-γ to the NPs is reduced and increased, respectively. Finally, nanoparticle-treated macrophages promote fibroblast migration in vitro. Overall, results demonstrate that hGM-g-PMMA nanoparticles induce the release of anti-inflammatory cytokines by THP-1 macrophages, which could pave the way for their application in the therapy of different inflammatory conditions, especially by local delivery.


Asunto(s)
Nanopartículas , Polimetil Metacrilato , Humanos , Polimetil Metacrilato/farmacología , Antiinflamatorios/farmacología , Citocinas , Macrófagos , Fenotipo
16.
Head Face Med ; 19(1): 33, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37528466

RESUMEN

BACKGROUND: The aim of this study was to establish a sheep model of the Puricelli biconvex arthroplasty (ABiP) technique in sheep for evaluating its functional, biological and histological parameters. METHODS: Ten Corriedale black sheep were submitted to TMJ total reconstruction with poly(methyl methacrylate) (PMMA) using ABiP and euthanized after 45 (n = 5) or 90 (n = 5) days. Control animals (n = 2) underwent sham operations and were euthanized after 45 days. Variables were assessed before the surgery (T0), immediately after (T1) and at 45 or 90 postoperative days (T2). RESULTS: Histological analyses showed regression of inflammatory cells over the follow-up period. PMMA showed reduced porosity and roughness in the articular contact area. PMMA temporal components showed linear and volumetric wear in comparison to control, but no foreign body reaction was observed. The reconstructions were stable in all animals. The amplitude of mouth opening and left lateral movements were maintained, except for a reduction in the range of right lateral movements at day 90 in the experimental group. Clinical, macroscopic and radiographic observations showed that the reconstructions were stable. CONCLUSIONS: The analysis of functional, biological and histological parameters in sheep submitted to ABiP showed stable results of the procedure, with maintenance of body weight and all mandibular movements, save contralateral mandibular movement, suggesting that joint function was completely maintained following the procedure. This experimental study provides support for clinical results previously reported of the ABiP technique in TMJ reconstruction procedures.


Asunto(s)
Trastornos de la Articulación Temporomandibular , Anquilosis del Diente , Animales , Trastornos de la Articulación Temporomandibular/cirugía , Polimetil Metacrilato/farmacología , Artroplastia/métodos , Mandíbula/cirugía , Articulación Temporomandibular/cirugía , Rango del Movimiento Articular , Cóndilo Mandibular
17.
Photodiagnosis Photodyn Ther ; 43: 103669, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37356699

RESUMEN

BACKGROUND: Polymethylmethacrylate (PMMA)-based removable orthodontic appliances are susceptible to microbial colonization due to the surface porosity, and accumulating the biofilms causes denture stomatitis. the present study evaluated the anti-biofilm and antiinflammatory effects of antimicrobial photo-sonodynamic therapy (aPSDT) against multispecies microbial biofilms (Candida albicans, Staphylococcus aureus, Streptococcus sobrinus, and Actinomyces naeslundii) formed on acrylic resin modified with nanoresveratrol (NR). MATERIALS AND METHODS: Following the determination of the minimum biofilm inhibitory concentration (MBIC) of NR, in vitro anti-biofilm activity of NR was evaluated. The antibiofilm efficacy against multispecies microbial biofilm including C. albicans, S. aureus, S. sobrinus, and A. naeslundii, were assessed by biofilm inhibition test and the results were measured. To reveal the anti-inflammatory effects of aPSDT on human gingival fibroblast (HGF) cells, the gene expression levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were evaluated via quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: According to the results, the MBIC dose of NR against multispecies microbial biofilm was considered 512 µg/mL. The highest biofilm reduction activity was observed in MBIC treated with aPSDT and 2 × MBIC exposed to light emitting diode (LED) and ultrasound waves (UW). The expression level of TNF-α and IL-6 genes were significantly increased when HGF cells were exposed to multispecies microbial biofilms (P<0.05), while after treatment with aPSDT, the expression levels of genes were significantly downregulated in all groups (P<0.05). CONCLUSION: Overall, NR-mediated aPSDT reduced the growth of the multispecies microbial biofilm and downregulated the expression of TNF-α and IL-6 genes. Therefore, modified PMMA with NR can be serving as a promising new orthodontic acrylic resin against multispecies microbial biofilms and the effect of this new material is amplified when exposed to LED and UW.


Asunto(s)
Antiinfecciosos , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Staphylococcus aureus , Resinas Acrílicas/farmacología , Factor de Necrosis Tumoral alfa , Polimetil Metacrilato/farmacología , Interleucina-6 , Fármacos Fotosensibilizantes/farmacología , Antiinfecciosos/uso terapéutico , Candida albicans , Biopelículas , Antiinflamatorios/farmacología
18.
J Biomed Mater Res B Appl Biomater ; 111(10): 1813-1823, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37289178

RESUMEN

The purpose of this study was to test several modifications of the polymethylmethacrylate (PMMA) bone cement by incorporating osteoconductive and biodegradable materials for enhancing bone regeneration capacity in an osteoporotic rat model. Three bio-composites (PHT-1 [80% PMMA, 16% HA, 4% ß-TCP], PHT-2 [70% PMMA, 24% HA, 6% ß-TCP], and PHT-3 [30% PMMA, 56% HA, 14% ß-TCP]) were prepared using different concentrations of PMMA, hydroxyapatite (HA), and ß-tricalcium phosphate (ß-TCP). Their morphological structure was then examined using a scanning electron microscope (SEM) and mechanical properties were determined using a MTS 858 Bionics test machine (MTS, Minneapolis, MN, USA). For in vivo studies, 35 female Wister rats (250 g, 12 weeks of age) were prepared and divided into five groups including a sham group (control), an ovariectomy-induced osteoporosis group (OVX), an OVX with pure PMMA group (PMMA), an OVX with PHT-2 group (PHT-2), and an OVX with PHT-3 group (PHT-3). In vivo bone regeneration efficacy was assessed using micro-CT and histological analysis after injecting the prepared bone cement into the tibial defects of osteoporotic rats. SEM investigation showed that the PHT-3 sample had the highest porosity and roughness among all samples. In comparison to other samples, the PHT-3 exhibited favorable mechanical properties for use in vertebroplasty procedures. Micro-CT and histological analysis of OVX-induced osteoporotic rats revealed that PHT-3 was more effective in regenerating bone and restoring bone density than other samples. This study suggests that the PHT-3 bio-composite can be a promising candidate for treating osteoporosis-related vertebral fractures.


Asunto(s)
Osteoporosis , Polimetil Metacrilato , Ratas , Femenino , Animales , Polimetil Metacrilato/farmacología , Durapatita/farmacología , Cementos para Huesos/farmacología , Ratas Wistar , Regeneración Ósea , Osteoporosis/terapia , Fosfatos de Calcio/farmacología , Fosfatos de Calcio/química
19.
Mycopathologia ; 188(4): 361-369, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37294506

RESUMEN

There is no definitive method to prevent Candida albicans (C. albicans) biofilm formation on polymethyl methacrylate (PMMA) surfaces. The objective of this study was to evaluate the effect of Helium plasma treatment (before the application of removable dentures to the patient) to prevent or reduce C. albicans ATCC 10,231 the anti-adherent activity, viability, and biofilm formation on PMMA surfaces. One hundred disc-shaped PMMA samples (2 mm × 10 mm) were prepared. The samples were randomly divided into 5 surface groups and treated with different concentrations of Helium plasma: G I: Control group (untreated), G II: 80% Helium plasma-treated group, G III: 85% Helium plasma-treated group, G IV: 90% Helium plasma-treated group, G V: 100% Helium plasma-treated group. C. albicans viability and biofilm formations were evaluated using 2 methods: MTT (3-(4,5-dimethyl thiazolyl-2)-2, 5-diphenyltetrazolium bromide) assays and Crystal Violet (CV) staining. The surface morphology and C. albicans biofilm images were observed with scanning electron microscopy. The Helium plasma-treated PMMA groups (G II, G III, G IV, G V) observed a significant reduction in C. albicans cell viability and biofilm formation compared with the control group. Treating PMMA surfaces with different concentrations of Helium plasma prevents C. albicans viability and biofilm formation. This study suggests that Helium plasma treatment might be an effective strategy in modifying PMMA surfaces to prevent denture stomatitis formation.


Asunto(s)
Gases em Plasma , Polimetil Metacrilato , Humanos , Polimetil Metacrilato/química , Polimetil Metacrilato/farmacología , Candida albicans , Gases em Plasma/farmacología , Propiedades de Superficie , Biopelículas
20.
Front Cell Infect Microbiol ; 13: 1138588, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998636

RESUMEN

Objectives: Considering the high incidence rates of denture stomatitis, research that providing dental biomaterials with antifungal property are essential for clinical dentistry. The objectives of the present study were to investigate the effect of zinc dimethacrylate (ZDMA) modification on the antifungal and cytotoxic properties, as well as the variance in surface characteristics and other physicochemical properties of polymethyl methacrylate (PMMA) denture base resin. Methods: PMMA with various mass fraction of ZDMA (1 wt%, 2.5 wt% and 5 wt%) were prepared for experimental groups, and unmodified PMMA for the control. Fourier-transform infrared spectroscopy (FTIR) was applied for characterization. Thermogravimetric analysis, atomic force microscopy and water contact angle were performed to investigate the thermal stability and surface characteristics (n=5). Antifungal capacities and cytocompatibility were evaluated with Candida albicans (C. albicans) and human oral fibroblasts (HGFs), respectively. Colony-forming unit counting, crystal violet assay, live/dead biofilm staining and scanning electron microscopy observation were performed to assess antifungal effects, and the detection of intracellular reactive oxygen species production was applied to explore the possible antimicrobial mechanism. Finally, the cytotoxicity of ZDMA modified PMMA resin was evaluated by the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay and live/dead double staining. Results: The FTIR analyses confirmed some variation in chemical bonding and physical blend of the composites. Incorporation of ZDMA significantly enhanced the thermal stability and hydrophilicity compared with unmodified PMMA (p < 0.05). The surface roughness increased with the addition of ZDMA while remained below the suggested threshold (≤ 0.2 µm). The antifungal activity significantly improved with ZDMA incorporation, and cytocompatibility assays indicated no obvious cytotoxicity on HGFs. Conclusions: In the present study, the ZDMA mass fraction up to 5 wt% in PMMA performed better thermal stability, and an increase in surface roughness and hydrophilicity without enhancing microbial adhesion. Moreover, the ZDMA modified PMMA showed effective antifungal activity without inducing any cellular side effects.


Asunto(s)
Antifúngicos , Polimetil Metacrilato , Humanos , Antifúngicos/farmacología , Polimetil Metacrilato/química , Polimetil Metacrilato/farmacología , Zinc/farmacología , Violeta de Genciana , Candida albicans
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA