Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.749
Filtrar
1.
ACS Appl Mater Interfaces ; 16(36): 46947-46963, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39225271

RESUMEN

Biomedical-device-associated infection (BAI) is undoubtedly a major concern and a serious challenge in modern medicine. Therefore, the development of biomedical materials that are capable of resisting or killing bacteria is of great importance. In this work, a croconaine-functionalized polymer with antifouling and near-infrared (NIR) photothermal bactericidal properties was prepared and facilely modified on polypropylene (PP) to combat medical device infections. Croconaine dye is elaborately modified as a "living" initiator, termed CR-4EBiB, for preparing amphiphilic block polymers by atom transfer radical polymerization (ATRP). In the formed polymer coating, the hydrophobic block can strongly adhere to the surface of the PP substrate, whereas the hydrophilic block is located on the outer layer by solvent-induced resistance to bacterial adhesion. Under the irradiation of an NIR laser (808 nm), the croconaine dye in the coating achieved maximum conversion of light to heat to effectively kill E. coli, S. aureus, and methicillin-resistant Staphylococcus aureus (MRSA). This work provides a facile and promising strategy for the development of implantable antibacterial biomedical materials.


Asunto(s)
Antibacterianos , Escherichia coli , Rayos Infrarrojos , Staphylococcus aureus Resistente a Meticilina , Polipropilenos , Polipropilenos/química , Polipropilenos/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/síntesis química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Propiedades de Superficie , Polímeros/química , Polímeros/farmacología , Staphylococcus aureus/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Incrustaciones Biológicas/prevención & control
2.
Bull Exp Biol Med ; 177(4): 534-543, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39266921

RESUMEN

The subcutaneous tissue of rats after implantation of polypropylene materials with adsorbed bone marrow-derived mesenchymal multipotent stromal cells (MMSCs) was studied using light microscopy. Inflammation in response to implantation was mild, and the foreign material was encapsulated into a thin strip of dense fibrous connective tissue with multinucleated macrophages. By 1 year after introduction of the monofilament and 6 and 12 months after implantation of the mesh product, some threads were deformed, broken, and had sharp edges. Small fragments of foreign material appeared in the adjacent tissues surrounded by their own relatively thick acellular capsule. As a result of preliminary adsorption of MMSCs on polypropylene, the thickness of the connective tissue capsule decreased, its vascularization increased, and the severity of inflammatory infiltration decreased. However, all effects of MMSCs adsorption in rats were transient and disappeared within 1 week.


Asunto(s)
Células Madre Mesenquimatosas , Polipropilenos , Animales , Polipropilenos/química , Ratas , Células Madre Mesenquimatosas/citología , Masculino , Adsorción , Prótesis e Implantes , Trasplante de Células Madre Mesenquimatosas/métodos , Tejido Subcutáneo/patología , Ratas Wistar , Células de la Médula Ósea/citología
3.
Environ Sci Pollut Res Int ; 31(39): 52181-52197, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39141264

RESUMEN

Industrial solid waste (mine tailings) management has emerged as the key universal ecological challenge as a result of the unceasing creation of rising waste by-products. Employing tailings makes mine fill production economical and assists resolve disposal problems. Foamed cement-based tailings backfill (FCTB) is a mine fill consisting of tailing, cement, water, and foaming agents. It provides certain advantages such as lightweight, good fluidity, and thermal insulation yet is relatively weak in strength. Additionally, FCTB's strength properties can be intensely improved by adding fibers. A total of three diverse fibers: polypropylene (PP), glass (G), and basalt (B) as well as dodecyltrimethylammonium bromide (DTAB) as a foaming agent were used to prepare fiber-reinforced foamed cementitious tailings backfill (FR-FCTB). The mechanical properties, energy evolution, ductility, and microstructure of FR-FCTB were elaborately investigated by uniaxial compression tests (UCS) and SEM. Laboratory findings demonstrate the reinforcing effect of three fibers on FCTB specimens: glass > polypropylene > basalt. FR-FCTB showed the best strength features as a fiber content of 0.3% was adopted in FCTB. At this time, the UCS performance of glass fiber-reinforced FCTBs was 0.85 MPa increased by 18.1%. The addition of fibers can increase the fill's energy storage limit, slow down the discharge of elastic strain energy within the backfill, and enhance the fill's ductility and toughness. The ductility factor evaluates the degree of deterioration of filling in terms of post-peak drop, with all FR-FCTB values being greater than CTB. FR-FCTB's chief hydration product is the C-S-H gel. Fiber's bridging effect significantly rallies crack extension and thus fill's strength features. Lastly, the study's main results are instructive for the industrial application of FR-FCTB used in metallic mines.


Asunto(s)
Materiales de Construcción , Polipropilenos/química , Minería
4.
Environ Sci Technol ; 58(37): 16611-16620, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39215385

RESUMEN

Waste polypropylene (PP) presents a significant environmental challenge, owing to its refractory nature and inert C-C backbone. In this study, we introduce a practical chemical recovery strategy from PP waste using a mild catalyst-free hydrothermal treatment (HT). The treatment converts 64.1% of the processed PP into dissolved organic products within 2 h in an air atmosphere at 160 °C. Higher temperatures increase the PP conversion efficiency. Distinct electron absorption and emission characteristics of the products are identified by spectral analysis. Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS) reveals the oxidative cracking of PP into shorter-chain homologues (10-50 carbon atoms) containing carboxylic and carbonyl groups. Density functional theory (DFT) calculations support a reaction pathway involving thermal C-H oxidation at the tertiary carbon sites in the polymer chain. The addition of 1% H2O2 further enhances the oxidation reaction to produce valuable short-chain acetic acids, enabling gram-scale recycling of both pure PP and disposable surgical masks from the real world. Techno-economic analysis (TEA) and environmental life cycle costing (E-LCC) analysis suggest that this hydrothermal oxidation recovery technology is financially viable, which shows significant potential in tackling the ongoing plastic pollution crisis and advancing plastic treatment methodologies toward a circular economy paradigm.


Asunto(s)
Polipropilenos , Polipropilenos/química , Catálisis , Reciclaje , Oxidación-Reducción
5.
Mar Pollut Bull ; 207: 116854, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39151329

RESUMEN

This study investigated the impact of ocean acidification on the photodegradation of three microplastics (MPs): polypropylene (PP), expanded polystyrene (EPS), and ethylene-vinyl acetate (EVA), under accelerated UV radiation at three pH levels (i.e., 8.1, 7.8, and 7.5), simulating marine conditions. The acidification system simulated current and projected future environmental conditions. As expected, an increase in partial pressure of CO2, total inorganic carbon, bicarbonate ion, and CO2 resulted in more acidic pH levels, with the reverse being true for the carbonate ion. Structural changes of MPs were evaluated, revealing that all weathered samples underwent higher degradation rate compared to the virgin samples. The oxidation state and crystallinity of PP and EVA MPs were higher in samples exposed to the lowest pH, whereas no significant increase in the degradation rate of EPS samples was observed. Saltwater acidification in this study contributed to enhance the photo-oxidation of MPs depending on their polymeric composition.


Asunto(s)
Microplásticos , Fotólisis , Agua de Mar , Contaminantes Químicos del Agua , Microplásticos/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Agua de Mar/química , Polipropilenos/química , Poliestirenos/química , Océanos y Mares , Acidificación de los Océanos
6.
Int J Biol Macromol ; 277(Pt 3): 134316, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094859

RESUMEN

Due to dwindling petroleum resources and the need for environmental protection, the development of bio-based flame retardants has received much attention. In order to explore the feasibility of fully biomass polyelectrolyte complexes (PEC) for polyolefin flame retardant applications, chitosan (CS), sodium alginate (SA), and sodium phytate (SP) were used to prepare CS-based fully biomass PEC intercalated montmorillonite (MMT) hybrid biomaterials (SA-CS@MMT and SP-CS@MMT). The effects of two hybrid biomaterials on the fire safety and mechanical properties of intumescent flame-retardant polypropylene (PP) composites were compared. The SP-CS@MMT showed the best flame retardancy and toughening effect at the same addition amount. After adding 5 wt% SP-CS@MMT, the limiting oxygen index (LOI) value of PP5 reached 30.9 %, and the peak heat release rate (pHRR) decreased from 1348 kW/m2 to 163 kW/m2. In addition, the hydrogen bonding between polyelectrolyte complexes significantly improved the mechanical properties of PP composites. Compared with PP2, the tensile strength of PP5 increased by 59 %. This study provided an efficient and eco-friendly strategy for the large-scale production of renewable biomaterials with good thermal stability and expanded the application of macromolecular biomaterials in the field of fire safety.


Asunto(s)
Bentonita , Quitosano , Retardadores de Llama , Polielectrolitos , Polipropilenos , Quitosano/química , Bentonita/química , Polipropilenos/química , Polielectrolitos/química , Resistencia a la Tracción , Tecnología Química Verde/métodos , Materiales Biocompatibles/química , Fenómenos Mecánicos
7.
Water Res ; 263: 122177, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39111211

RESUMEN

For the resource recovery of biomass waste, it is a challenge to simultaneously remove micro-/nano-plastics pollution but preserve organic resources. Wet oxidation is a promising technology for valorization of organic wastes through thermal hydrolysis and oxidation. This might in turn result in the degradation of microplastics in the presence of oxygen and high temperatures. Based on this hypothesis, this study quantified both microplastics and nanoplastics in an industrial-scale wet oxidation reactor from a full-size coverage perspective. Wet oxidation significantly reduced the size and mass of individual microplastics, and decreased total mass concentration of microplastics and nanoplastics by 94.8 % to 98.6 %. This technology also reduced the micro- and nanoplastic shapes and polymer types, resulting in a complete removal of fibers, clusters, polypropylene (PP) and poly(methyl methacrylate) (PMMA). The present study confirms that wet oxidation technology is effective in removing microplastics and nanoplastics while recovering organic waste.


Asunto(s)
Microplásticos , Oxidación-Reducción , Contaminantes Químicos del Agua/química , Polipropilenos/química , Plásticos/química , Polimetil Metacrilato/química
8.
Sci Total Environ ; 951: 175690, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39173748

RESUMEN

Microplastics and antibiotics are receiving increasing attention as two emerging pollutants in the aquatic ecosystem. The absorption of antibiotics by microplastics can potentially intensify their impact on marine organisms and human health. However, the detailed mechanisms underlying this interaction remain to be elucidated. Through molecular dynamics (MD) simulations and density functional theory (DFT) calculations, this study investigated the adsorption of cefradine (CED) onto three typical microplastics (MPs)-polyethylene (PE), polypropylene (PP), and polyamide (PA). The results of the molecular dynamics simulations showed that the interaction energy between CED and microplastics followed the order of PA-CED > PP-CED > PE-CED, indicating that PA microplastics had the highest adsorption capacity for CED antibiotics. The total energy contribution of the microplastics-cefradine (MPs-CED) systems suggested that the van der Waals and electrostatic interactions were the two primary mechanisms for the adsorption of CED by these three microplastics. In DFT calculations, the adsorption of CED on PA was found to be significantly influenced by both electrostatic and van der Waals effects, while the main driving force in the adsorption of PE and PP is van der Waals effect. In addition, IGMH analysis and AIM topological analysis confirmed that the adsorption of CED on PA relied heavily on the synergistic effect of hydrogen bonding and the van der Waals effect. The findings of this study validate the results obtained from molecular dynamics simulations, laying a foundation for a comprehensive exploration of the interaction mechanisms between microplastics and organic pollutants by integrating MD simulations and DFT calculations.


Asunto(s)
Cefradina , Teoría Funcional de la Densidad , Microplásticos , Simulación de Dinámica Molecular , Contaminantes Químicos del Agua , Adsorción , Contaminantes Químicos del Agua/química , Cefradina/química , Modelos Químicos , Antibacterianos/química , Polipropilenos/química , Polietileno/química
9.
Acta Biomater ; 186: 185-200, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39103136

RESUMEN

Thrombosis and plasma leakage are two of the most frequent dysfunctions of polypropylene (PP) hollow fiber membrane (PPM) used in extracorporeal membrane oxygenation (ECMO) therapy. In this study, a superhydrophilic endothelial membrane mimetic coating (SEMMC) was constructed on polydopamine-polyethyleneimine pre-coated surfaces of the PPM oxygenator and its ECMO circuit to explore safer and more sustainable ECMO strategy. The SEMMC is fabricated by multi-point anchoring of a phosphorylcholine and carboxyl side chained copolymer (PMPCC) and grafting of heparin (Hep) to form PMPCC-Hep interface, which endows the membrane superior hemocompatibility and anticoagulation performances. Furthermore, the modified PPM reduces protein adsorption amount to less than 30 ng/cm2. More significantly, the PMPCC-Hep coated ECMO system extends the anti-leakage and non-clotting oxygenation period to more than 15 h in anticoagulant-free animal extracorporeal circulation, much better than the bare and conventional Hep coated ECMO systems with severe clots and plasma leakage in 4 h and 8 h, respectively. This SEMMC strategy of grafting bioactive heparin onto bioinert zwitterionic copolymer interface has great potential in developing safer and longer anticoagulant-free ECMO systems. STATEMENT OF SIGNIFICANCE: A superhydrophilic endothelial membrane mimetic coating was constructed on surfaces of polypropylene hollow fiber membrane (PPM) oxygenator and its ECMO circuit by multi-point anchoring of a phosphorylcholine and carboxyl side chain copolymer (PMPCC) and grafting of heparin (Hep). The strong antifouling nature of the PMPCC-Hep coating resists the adsorption of plasma bio-molecules, resulting in enhanced hemocompatibility and anti-leakage ability. The grafted heparin on the zwitterionic PMPCC interface exhibits superior anticoagulation property. More significantly, the PMPCC-Hep coating achieves an extracorporeal circulation in a pig model for at least 15 h without any systemic anticoagulant. This endothelial membrane mimetic anticoagulation strategy shows great potential for the development of safer and longer anticoagulant-free ECMO systems.


Asunto(s)
Materiales Biocompatibles Revestidos , Oxigenación por Membrana Extracorpórea , Animales , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Heparina/química , Heparina/farmacología , Humanos , Polipropilenos/química , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Fibrinolíticos/farmacología , Fibrinolíticos/química , Membranas Artificiales , Adsorción , Trombosis/prevención & control , Fosforilcolina/química , Fosforilcolina/análogos & derivados , Polímeros/química
10.
Waste Manag ; 187: 306-316, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39089146

RESUMEN

Plastic waste poses a critical environmental challenge for the world. The proliferation of waste plastic coffee pods exacerbates this issue. Traditional disposal methods such as incineration and landfills are environmentally unfriendly, necessitating the exploration of alternative management strategies. One promising avenue is the pyrolysis in-line reforming process, which converts plastic waste into hydrogen. However, traditional pyrolysis methods are costly due to inefficiencies and heat losses. To address this, for the first time, our study investigates the use of microwave to enhance the pyrolysis process. We explored microwave pyrolysis for polypropylene (PP), high-density polypropylene (HDPE), and waste coffee pods, with the latter primarily comprising polypropylene. Additionally, catalytic ex-situ pyrolysis of coffee pod pyrolysis over a nickel-based catalyst was investigated to convert the evolved gas into hydrogen. The single-stage microwave pyrolysis results revealed the highest gas yield at 500 °C for HDPE, and 41 % and 58 % (by mass) for waste coffee pods and polypropylene at 700 °C, respectively. Polypropylene exhibited the highest gaseous yield, suggesting its readiness for pyrolytic degradation. Waste coffee pods uniquely produced carbon dioxide and carbon monoxide gases because of the oxygen present in their structure. Catalytic reforming of evolved gas from waste coffee pods using a 5 % nickel loaded activated carbon catalyst, yielded 76 % (by volume) hydrogen at 900 °C. These observed results were supported by elemental balance analysis. These findings highlight that two-stage microwave and catalysis assisted pyrolysis could be a promising method for the efficient management of waste coffee pods, particularly for producing clean energy.


Asunto(s)
Café , Hidrógeno , Microondas , Polietileno , Polipropilenos , Pirólisis , Polipropilenos/química , Hidrógeno/química , Café/química , Catálisis , Polietileno/química , Eliminación de Residuos/métodos
11.
Environ Pollut ; 359: 124751, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39151783

RESUMEN

The impacts of microplastics on soil ecological functions such as carbon recycling and soil structure maintenance have been extensively focused. However, the mechanisms underlying the impacts of microplastics on soil carbon transformation and soil microbial community at soil aggregate scale have not been clarified yet. In this work, the effects and action mechanisms of traditional microplastic polypropylene (PP) and degradable microplastic polylactic acid (PLA) on carbon transformation in three sizes of soil aggregates were investigated. The results showed that both PP and PLA promoted CO2 emission, and the effect depended on the type and content of microplastics, and the size of soil aggregates. Changes in soil carbon stocks were mainly driven by changes in organic carbon associated with macroaggregates. For macroaggregates, PP microplastics decreased soil organic carbon (SOC) as well as dissolved organic carbon (DOC). These changes were reversed in microaggregates and silt and clay. Interestingly, PLA increased the SOC, DOC and CO2 emissions in bulk soil and all three aggregates with a dose-effect response. These changes were associated with soil microbes, functional genes and enzymes associated with the degradation of labile and recalcitrant carbon fractions. Furthermore, PP and PLA reduced bacterial community diversities and shifted bacterial community structures in both the three aggregates and in bulk soil. Alterations of functional genes induced by microplastics were the key driving factors of their impacts on carbon transformation in soil aggregates. This research opened up a new insight into the mechanisms underlying the impacts of microplastics on soil carbon transformation, and helped us make rational assessments of the risks and the disturbances of microplastics on soil carbon cycling.


Asunto(s)
Carbono , Microplásticos , Microbiología del Suelo , Contaminantes del Suelo , Suelo , Suelo/química , Biodegradación Ambiental , Poliésteres/química , Polipropilenos/química
12.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(4): 853-860, 2024 Jul 20.
Artículo en Chino | MEDLINE | ID: mdl-39170003

RESUMEN

Objective: This study aims to develop a medical patch surface material featuring a microporous polyurethane (PU) membrane and to assess the material's properties and biological performance. The goal is to enhance the clinical applicability of pelvic floor repair patch materials. Methods: PU films with a microporous surface were prepared using PU prepolymer foaming technology. The films were produced by optimizing the PU prepolymer isocyanate index (R value) and the relative humidity (RH) of the foaming environment. The surface morphology of the PU microporous films was observed by scanning electron microscopy, and the chemical properties of the PU microporous films, including hydrophilicity, were analyzed using infrared spectroscopy, Raman spectroscopy, and water contact angle measurements. In vitro evaluations included testing the effects of PU microporous film extracts on the proliferation of L929 mouse fibroblasts and observing the adhesion and morphology of these fibroblasts. Additionally, the effect of the PU microporous films on RAW264.7 mouse macrophages was studied. Immune response and tissue regeneration were assessed in vivo using Sprague Dawley (SD) rats. Results: The PU films exhibited a well-defined and uniform microporous structure when the R value of PU prepolymer=1.5 and the foaming environment RH=70%. The chemical structure of the PU microporous films was not significantly altered compared to the PU films, with a significantly lower water contact angle ([55.7±1.5]° ) compared to PU films ([69.5±1.7]° ) and polypropylene (PP) ([ 104.3±2.5]°), indicating superior hydrophilicity. The extracts from PU microporous films demonstrated good in vitro biocompatibility, promoting the proliferation of L929 mouse fibroblasts. The surface morphology of the PU microporous films facilitated fibroblast adhesion and spreading. The films also inhibited the secretion of tumor necrosis factor-α (TNF-α) and interleukin (IL)-1ß by RAW264.7 macrophages while enhancing IL-10 and IL-4 secretion. Compared to 24 hours, after 72 hours of culture, the expression levels of TNF-α and IL-1ß were reduced in both the PU film and PU microporous film groups and were significantly lower than those in the PP film group (P<0.05), with the most notable decreases observed in the PU microporous film group. IL-10 and IL-4 levels increased significantly in the PU microporous film group, surpassing those in the PP film group (P<0.01), with the most pronounced increase in IL-4. The PU microporous film induced mild inflammation with no significant fibrous capsule formation in vivo. After 60 days of implantation, the film partially degraded, showing extensive collagen fiber growth and muscle formation in its central region. Conclusion: The PU microporous film exhibits good hydrophilicity and biocompatibility. Its surface morphology enhances cell adhesion, regulates the function of RAW264.7 macrophages, and promotes tissue repair, offering new insights for the design of pelvic floor repair and reconstruction patch materials.


Asunto(s)
Fibroblastos , Polipropilenos , Poliuretanos , Ratas Sprague-Dawley , Poliuretanos/química , Animales , Ratones , Ratas , Polipropilenos/química , Fibroblastos/citología , Materiales Biocompatibles/química , Mallas Quirúrgicas , Células RAW 264.7 , Propiedades de Superficie , Línea Celular , Porosidad , Ensayo de Materiales , Proliferación Celular/efectos de los fármacos , Macrófagos/citología
13.
J Hazard Mater ; 478: 135475, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39146588

RESUMEN

This study aims to deepen knowledge of the biodegradation of plastics, focusing on polypropylene (PP) fabric from surgical masks and polystyrene (PS) by larvae of Zophobas atratus as well as of specialized bacterial consortia from their gut, which were obtained in different enrichment conditions (aerobic, anaerobic, presence or absence of combined nitrogen). Plastics ingested by larvae obtained in Spain did not show any signs of oxidation but only limited depolymerization, preferably from the lowest molecular weight chains. Gut microbiota composition changed as an effect of plastic feeding. Such differences were more evident in bacterial enrichment cultures, where the polymer type influenced the composition more than by culture conditions, with an increase in the presence of nitrogen-fixers in anaerobic conditions. PS and PP degradation by different enrichment cultures was confirmed under aerobic and anaerobic conditions by respirometry tests, with anaerobic conditions favouring a more active plastic degradation. In addition, exposure to selected bacterial consortia in aerobiosis induced limited surface oxidation of PS. This possibly indicates that different biochemical routes are being utilized in the anaerobic gut and in aerobic conditions to degrade the polymer.


Asunto(s)
Biodegradación Ambiental , Larva , Polipropilenos , Poliestirenos , Poliestirenos/química , Poliestirenos/metabolismo , Animales , Polipropilenos/química , Polipropilenos/metabolismo , Larva/metabolismo , Anaerobiosis , Microbioma Gastrointestinal , Bacterias/metabolismo , Consorcios Microbianos , Aerobiosis
14.
Environ Sci Technol ; 58(35): 15711-15721, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39172764

RESUMEN

Recent research has shown that microplastics are widespread in the atmosphere. However, we know little about their ability to nucleate ice and their impact on ice formation in clouds. Ice nucleation by microplastics could also limit their long-range transport and global distribution. The present study explores the heterogeneous ice-nucleating ability of seven microplastic samples in immersion freezing mode. Two polypropylene samples and one polyethylene terephthalate sample froze heterogeneously with median freezing temperatures of -20.9, -23.2, and -21.9 °C, respectively. The number of ice nucleation sites per surface area, ns(T), ranged from 10-1 to 104 cm-2 in a temperature interval of -15 to -25 °C, which is comparable to that of volcanic ash and fungal spores. After exposure to ozone or a combination of UV light and ozone, simulating atmospheric aging, the ice nucleation activity decreased in some cases and remained unchanged in others. Our freezing data suggest that microplastics may promote ice formation in cloud droplets. In addition, based on a comparison of our freezing results and previous simulations using a global transport model, ice nucleation by microplastics will impact their long-range transport to faraway locations and global distribution.


Asunto(s)
Atmósfera , Hielo , Microplásticos , Atmósfera/química , Ozono/química , Congelación , Rayos Ultravioleta , Contaminantes Atmosféricos/química , Tereftalatos Polietilenos/química , Polipropilenos/química
15.
Eur J Pharm Biopharm ; 203: 114425, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39059751

RESUMEN

Monoclonal antibodies (mAbs) encounter numerous interfaces during manufacturing, storage, and administration. While protein adsorption at the solid/liquid interface has been widely explored on model surfaces, a key challenge remains - the detection of very small amounts of adsorbed mAb directly on real medical surfaces. This study introduces a novel ELISA-based device, ELIBAG, a new tool for measuring mAb adsorption on medical bags. The efficacy of this device was highlighted by successfully confirming the adsorption of an IgG1 on two medical bag types: a polypropylene IV administration bag and a low-density polyethylene pharmaceutical manufacturing bag. We also investigated IgG1 adsorption on plastic model surfaces, revealing a similar range of mAb bulk concentration for surface saturation on both model and bag surfaces. This innovative device, characterized by its high-throughput and rapid approach, paves the way for extensive investigations into therapeutic proteins, such as mAbs, adsorption on a variety of medical or pharmaceutical surfaces, diverse adsorption conditions, and the influence of excipients employed in mAb formulation, which could enhance the knowledge of mAb interactions with plastic surfaces throughout their lifecycle.


Asunto(s)
Anticuerpos Monoclonales , Ensayo de Inmunoadsorción Enzimática , Inmunoglobulina G , Plásticos , Polipropilenos , Adsorción , Anticuerpos Monoclonales/química , Ensayo de Inmunoadsorción Enzimática/métodos , Plásticos/química , Inmunoglobulina G/química , Polipropilenos/química , Propiedades de Superficie , Embalaje de Medicamentos/métodos , Polietileno/química , Excipientes/química
16.
Chemosphere ; 363: 142741, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38977247

RESUMEN

Microplastics are widely present in the natural environment and exhibit a strong affinity for heavy metals in water, resulting in the formation of microplastics composite heavy metal pollutants. This study investigated the adsorption of heavy metals by electron beam-aged microplastics. For the first time, electron beam irradiation was employed to degrade polypropylene, demonstrating its ability to rapidly age microplastics and generate a substantial number of oxygen-containing functional groups on aged microplastics surface. Adsorption experiments revealed that the maximum adsorption equilibrium capacity of hexavalent chromium by aged microplastics reached 9.3 mg g-1. The adsorption process followed second-order kinetic model and Freundlich model, indicating that the main processes of heavy metal adsorption by aged microplastics are chemical adsorption and multilayer adsorption. The adsorption of heavy metals on aged microplastics primarily relies on the electrostatic and chelation effects of oxygen-containing functional groups. The study results demonstrate that environmental factors, such as pH, salinity, coexisting metal ions, humic acid, and water matrix, exert inhibitory effects on the adsorption of heavy metals by microplastics. Theoretical calculations confirm that the aging process of microplastics primarily relies on hydroxyl radicals breaking carbon chains and forming oxygen-containing functional groups on the surface. The results indicate that electron beam irradiation can simultaneously oxidize and degrade microplastics while reducing hexavalent chromium levels by approximately 90%, proposing a novel method for treating microplastics composite pollutants. Gas chromatography-mass spectrometry analysis reveals that electron beam irradiation can oxidatively degrade microplastics into esters, alcohols, and other small molecules. This study proposes an innovative and efficient approach to treat both microplastics composite heavy metal pollutants while elucidating the impact of environmental factors on the adsorption of heavy metals by electron beam-aged microplastics. The aim is to provide a theoretical basis and guidance for controlling microplastics composite pollution.


Asunto(s)
Cromo , Microplásticos , Contaminantes Químicos del Agua , Adsorción , Cromo/química , Microplásticos/química , Contaminantes Químicos del Agua/química , Cinética , Metales Pesados/química , Sustancias Húmicas , Electrones , Polipropilenos/química , Concentración de Iones de Hidrógeno
17.
Chemosphere ; 363: 142814, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38986773

RESUMEN

There is a lack of agreement on a suitable container material for per- and polyfluoroalkyl substances (PFAS) analysis, particularly at trace levels. In this study, the losses of 18 short- and long-chain (C4-C10) PFAS to commonly used labware materials (high-density polyethylene (HDPE), polypropylene (PP), polystyrene (PS), polypropylene co-polymer (PPCO), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), and glass were investigated. The influence of sample storage and preparation conditions, i.e., storage time, solvent composition, storage temperatures (4 °C and 20 °C), and sample agitation techniques (shaking and centrifugation) on PFAS losses to the container materials were investigated. The results showed higher losses for most of the considered PFAS (up to 50.9%) in 100% aqueous solutions after storage for 7 days regardless of the storage temperature compared to those after 3 days. Overall, the order of losses to different materials varied for individual PFAS, with the highest losses of long-chain PFAS observed to PP and HDPE after 7-day storage at room temperature. The addition of methanol to aqueous PFAS solutions reduced the losses of long-chain PFAS to all tested materials. The use of sample centrifugation and shaking did not influence the extent of losses for most of the PFAS in 80:20 water:methanol (%, v/v) to container materials except for 8:2 fluorotelomer sulfonic acid (8:2 FTS), 9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9Cl-PF3ONS), perfluorodecanoic acid (PFDA) and 4:2 fluorotelomer sulfonic acid (4:2 FTS). This study demonstrates lower losses of both long- and short-chain PFAS to glass and PET. It also highlights the need for caution when deciding on sample preparatory steps and storage during the analysis of PFAS.


Asunto(s)
Fluorocarburos , Fluorocarburos/análisis , Fluorocarburos/química , Tereftalatos Polietilenos/química , Temperatura , Polietileno/química , Polipropilenos/química , Politetrafluoroetileno/química , Vidrio/química , Poliestirenos/química
18.
ACS Appl Bio Mater ; 7(8): 5171-5187, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39008660

RESUMEN

In response to the ongoing threat posed by respiratory diseases, ensuring effective transmission protection is crucial for public health. To address the drawbacks of single-use face masks/respirators, which can be a potential source of contact-based transmission, we have designed an antimicrobial face mask and mask covering utilizing a stack of salt-coated spunbond (SB) fabric. This fabric acts as an outer layer for the face mask and as a covering over a conventional mask, respectively. We evaluated the universal antimicrobial performance of the salt-coated three-stacked SB fabric against enveloped/nonenveloped viruses and spore-forming/nonspore-forming bacteria. The distinctive pathogen inactivation efficiency was confirmed, including resistant pathogens such as human rhinovirus and Clostridium difficile. In addition, we tested other filter attributes, such as filtration efficiency and breathability, to determine the optimal layer for salt coating and its effects on performance. Our findings revealed that the outer layer of a conventional face mask plays a crucial role in contact transmission through contaminated face masks and respirators. Through contact transmission experiments using droplets involving three types of contaminants (fluorescent dyes, bacteria, and viruses), the salt-coated stacked SB fabric demonstrated a superior effect in preventing contact transmission compared to SB or meltblown polypropylene fabrics─an issue challenging to existing masks. Our results demonstrate that the use of salt-coated stacked SB fabrics as (i) the outer layer of a mask and (ii) a mask cover over a mask enhances overall filter performance against infectious droplets, achieving high pathogen inactivation and low contact-based transmission while maintaining breathability.


Asunto(s)
Máscaras , Ensayo de Materiales , Polipropilenos , Textiles , Polipropilenos/química , Máscaras/virología , Humanos , Tamaño de la Partícula , Antiinfecciosos/farmacología , Antiinfecciosos/química , Clostridioides difficile/efectos de los fármacos
19.
Environ Sci Pollut Res Int ; 31(36): 49100-49115, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39046636

RESUMEN

The research investigates the effects of substituting sand with rubber particles derived from waste tyres-up to 40% by volume-and the inclusion of polypropylene (PP) fibres. Unlike steel fibres, which can cause operational challenges and surface irregularities in the printing process, PP fibres' flexibility integrates well within the concrete matrix. This integration ensures smooth extrusion and a high-quality surface finish, enhancing the printability of the concrete. The study's findings reveal that including rubber particles and PP fibres impacts the concrete's properties, showing a general decline in compressive and flexural strengths as the rubber content increases. Nevertheless, the PP fibre-enhanced mixtures maintain sufficient structural strength, demonstrating an anisotropic compressive strength above 30 MPa and a flexural strength of 4 MPa. These results underscore the feasibility of using rubberised 3D-printed concrete with PP fibres in sustainable construction practices, aligning with standards (ACI 318:2018) and contributing to eco-friendly and innovative construction methodologies.


Asunto(s)
Materiales de Construcción , Polipropilenos , Impresión Tridimensional , Goma , Goma/química , Polipropilenos/química , Anisotropía , Ensayo de Materiales , Fuerza Compresiva
20.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000151

RESUMEN

Plastic particles, particularly micro- and nanoparticles, are emerging pollutants due to the ever-growing amount of plastics produced across a wide variety of sectors. When plastic particles enter a biological medium, they become surrounded by a corona, giving them their biological identity and determining their interactions in the living environment and their biological effects. Here, we studied the interactions of microstructured plastics with hemoglobin (Hb). Virgin polyethylene microparticles (PEMPs) and polypropylene microparticles (PPMPs) as well as heat- or irradiation-aged microparticles (ag-PEMPs and ag-PPMPs) were used to quantify Hb adsorption. Polypropylene filters (PP-filters) were used to measure the oxygenation of adsorbed Hb. Microstructured plastics were characterized using optical microscopy, SAXS, ATR-FTIR, XPS, and Raman spectroscopy. Adsorption isotherms showed that the Hb corona thickness is larger on PPMPs than on PEMPs and Hb has a higher affinity for PPMPs than for PEMPs. Hb had a lower affinity for ag-PEMPs and ag-PPMPs, but they can be adsorbed in larger amounts. The presence of partial charges on the plastic surface and the oxidation rate of microplastics may explain these differences. Tonometry experiments using an original method, the diffuse reflection of light, showed that adsorbed Hb on PP-filters retains its cooperativity, but its affinity for O2 decreases significantly.


Asunto(s)
Hemoglobinas , Oxígeno , Plásticos , Polipropilenos , Hemoglobinas/química , Hemoglobinas/metabolismo , Adsorción , Oxígeno/química , Oxígeno/metabolismo , Plásticos/química , Polipropilenos/química , Polietileno/química , Microplásticos/química , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA