Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.174
Filtrar
1.
Commun Biol ; 7(1): 948, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107399

RESUMEN

Acinetobacter baumannii is a critical opportunistic pathogen associated with nosocomial infections. The high rates of antibiotic-resistance acquisition make most antibiotics ineffective. Thus, new medical countermeasures are urgently needed. Outer membrane proteins (OMPs) are prime candidates for developing novel drug targets and antibacterial strategies. However, there are substantial gaps in our knowledge of A. baumannii OMPs. This study reports the impact of OmpA-like protein on bacterial physiology and virulence in A. baumannii strain AB5075. We found that PsaB (ABUW_0505) negatively correlates to stress tolerance, while ArfA (ABUW_2730) significantly affects bacterial stiffness, cell shape, and cell envelope thickness. Furthermore, we expand our knowledge on YiaD (ABUW_3045), demonstrating structural and virulence roles of this porin, in addition to meropenem resistance. This study provides solid foundations for understanding how uncharacterized OMPs contribute to A. baumannii's physiological and pathological processes, aiding the development of innovative therapeutic strategies against A. baumannii infections.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Proteínas de la Membrana Bacteriana Externa , Porinas , Acinetobacter baumannii/patogenicidad , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/fisiología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Virulencia , Antibacterianos/farmacología , Porinas/metabolismo , Porinas/genética , Infecciones por Acinetobacter/microbiología , Infecciones por Acinetobacter/tratamiento farmacológico , Animales , Farmacorresistencia Bacteriana , Ratones , Pruebas de Sensibilidad Microbiana , Femenino
2.
Antimicrob Agents Chemother ; 68(8): e0066324, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38990012

RESUMEN

Non-carbapenemase-producing carbapenem-resistant Enterobacterales (non-CP CRE) may be associated with a grave outcome. The common underlying mechanism is beta-lactamases and mutations in outer membrane porins. We report a case of a deep-seated infection caused by Klebsiella pneumoniae ST395 not amenable to source control, involving recurrent bloodstream infection, resulting in in vivo selection of carbapenem resistance under therapy. Three consecutive K. pneumoniae blood isolates were studied using short- and long-read sequencing. The genomes were subject to resistome and virulome, phylogenetic, and plasmid analyses. ompK36 porins were analyzed at the nucleotide and amino acid levels. Genomes were compared to 297 public ST395 K. pneumoniae genomes using cgMLST, resistome, and porin analyses and the EuSCAPE project. Relevant ompK36 and micF sequences were extracted and analyzed as above. The three sequential K. pneumoniae blood isolates belonged to the same clone. Subsequent CR isolates revealed a new large deletion of the ompK36 gene also involving the upstream region (deletion of micF). Comparison with public ST395 genomes revealed the study isolates belonged to clade B, representing a separate clone. N-terminal large ompK36 truncations were uncommon in both public data sets. In vivo selection of non-CP CRE K. pneumoniae could have substantial clinical implications. Such selection should be scrutinized through repeated cultures and frequent susceptibility testing during antimicrobial treatment, especially in the context of persistent or recurrent bloodstream infections and when adequate source control cannot be achieved. The occurrence of an unusually large deletion involving the ompK36 locus and upstream micF should be further studied.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Carbapenémicos , Infecciones por Klebsiella , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Porinas , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/aislamiento & purificación , Humanos , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Porinas/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Masculino , Bacteriemia/microbiología , Bacteriemia/tratamiento farmacológico , Filogenia , Genoma Bacteriano/genética , Plásmidos/genética , beta-Lactamasas/genética
3.
Hum Vaccin Immunother ; 20(1): 2378537, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-39037011

RESUMEN

Meningococcal (Neisseria meningitidis) serogroup B (MenB) strain antigens are diverse and a limited number of strains can be evaluated using the human serum bactericidal antibody (hSBA) assay. The genetic Meningococcal Antigen Typing System (gMATS) was developed to predict the likelihood of coverage for large numbers of isolates by the 4CMenB vaccine, which includes antigens Neisseria adhesin A (NadA), Neisserial Heparin-Binding Antigen (NHBA), factor H-binding protein (fHbp), and Porin A (PorA). In this study, we characterized by whole-genome analyses 284 invasive MenB isolates collected from 2010 to 2014 by the Argentinian National Laboratories Network (52-61 isolates per year). Strain coverage was estimated by gMATS on all isolates and by hSBA assay on 74 randomly selected isolates, representative of the whole panel. The four most common clonal complexes (CCs), accounting for 81.3% of isolates, were CC-865 (75 isolates, 26.4%), CC-32 (59, 20.8%), CC-35 (59, 20.8%), and CC-41/44 (38, 13.4%). Vaccine antigen genotyping showed diversity. The most prevalent variants/peptides were fHbp variant 2, NHBA peptides 24, 21, and 2, and PorA variable region 2 profiles 16-36 and 14. The nadA gene was present in 66 (23.2%) isolates. Estimated strain coverage by hSBA assay showed 78.4% of isolates were killed by pooled adolescent sera, and 51.4% and 64.9% (based on two different thresholds) were killed by pooled infant sera. Estimated coverage by gMATS (61.3%; prediction interval: 55.5%, 66.7%) was consistent with the infant hSBA assay results. Continued genomic surveillance is needed to evaluate the persistence of major MenB CCs in Argentina.


The most common clinical manifestations of invasive meningococcal disease include meningitis and septicemia, which can be deadly, and many survivors suffer long-term serious after-effects. Most cases of invasive meningococcal disease are caused by six meningococcal serogroups (types), including serogroup B. Although vaccines are available against meningococcal serogroup B infection, these vaccines target antigens that are highly diverse. Consequently, the effectiveness of vaccination may vary from country to country because the meningococcal serogroup B strains circulating in particular regions carry different forms of the target vaccine antigens. This means it is important to test serogroup B strains isolated from specific populations to estimate the percentage of strains that a vaccine is likely to be effective against (known as 'vaccine strain coverage'). The genetic Meningococcal Antigen Typing System (gMATS) was developed to predict strain coverage by the four-component meningococcal serogroup B vaccine, 4CMenB, against large numbers of serogroup B strains. In this study, we analyzed 284 invasive meningococcal serogroup B isolates collected between 2010 and 2014 in Argentina. Genetic analyses showed that the vaccine antigens of the isolates were diverse and some genetic characteristics had not been found in isolates from other countries. However, vaccine strain coverage estimated by gMATS was consistent with that reported in other parts of the world and with strain coverage results obtained for a subset via another method, the human serum bactericidal antibody (hSBA) assay. These results highlight the need for continued monitoring of circulating bacterial strains to assess the estimated strain coverage of meningococcal serogroup B vaccines.


Asunto(s)
Antígenos Bacterianos , Infecciones Meningocócicas , Vacunas Meningococicas , Neisseria meningitidis Serogrupo B , Humanos , Argentina/epidemiología , Vacunas Meningococicas/inmunología , Vacunas Meningococicas/administración & dosificación , Infecciones Meningocócicas/microbiología , Infecciones Meningocócicas/prevención & control , Infecciones Meningocócicas/epidemiología , Lactante , Adolescente , Niño , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Preescolar , Adulto Joven , Neisseria meningitidis Serogrupo B/genética , Neisseria meningitidis Serogrupo B/aislamiento & purificación , Neisseria meningitidis Serogrupo B/inmunología , Adulto , Femenino , Masculino , Secuenciación Completa del Genoma , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Genotipo , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/inmunología , Persona de Mediana Edad , Porinas/genética , Porinas/inmunología , Determinación de Anticuerpos Séricos Bactericidas , Anciano , Neisseria meningitidis/genética , Neisseria meningitidis/inmunología , Neisseria meningitidis/aislamiento & purificación , Neisseria meningitidis/clasificación
4.
Biochemistry (Mosc) ; 89(6): 1079-1093, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38981702

RESUMEN

The work presents results of the in vitro and in silico study of formation of amyloid-like structures under harsh denaturing conditions by non-specific OmpF porin of Yersinia pseudotuberculosis (YpOmpF), a membrane protein with ß-barrel conformation. It has been shown that in order to obtain amyloid-like porin aggregates, preliminary destabilization of its structure in a buffer solution with acidic pH at elevated temperature followed by long-term incubation at room temperature is necessary. After heating at 95°C in a solution with pH 4.5, significant conformational rearrangements are observed in the porin molecule at the level of tertiary and secondary structure of the protein, which are accompanied by the increase in the content of total ß-structure and sharp decrease in the value of characteristic viscosity of the protein solution. Subsequent long-term exposure of the resulting unstable intermediate YpOmpF at room temperature leads to formation of porin aggregates of various shapes and sizes that bind thioflavin T, a specific fluorescent dye for the detection of amyloid-like protein structures. Compared to the initial protein, early intermediates of the amyloidogenic porin pathway, oligomers, have been shown to have increased toxicity to the Neuro-2aCCL-131™ mouse neuroblastoma cells. The results of computer modeling and analysis of the changes in intrinsic fluorescence during protein aggregation suggest that during formation of amyloid-like aggregates, changes in the structure of YpOmpF affect not only the areas with an internally disordered structure corresponding to the external loops of the porin, but also main framework of the molecule, which has a rigid spatial structure inherent to ß-barrel.


Asunto(s)
Porinas , Yersinia pseudotuberculosis , Porinas/química , Porinas/metabolismo , Yersinia pseudotuberculosis/metabolismo , Yersinia pseudotuberculosis/química , Animales , Ratones , Amiloide/metabolismo , Amiloide/química , Estructura Secundaria de Proteína , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Conformación Proteica
5.
J Am Chem Soc ; 146(29): 19896-19908, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38982560

RESUMEN

The disturbance of potassium current in cardiac myocytes caused by potassium channel dysfunction can lead to cardiac electrophysiological disorders, resulting in associated cardiovascular diseases. The emergence of artificial potassium ion channels opens up a way to replace dysfunctional natural ion channels and cure related diseases. However, bionic potassium ion channels have not been introduced into living cells to regulate cell function. One of the biggest challenges is that when the bionic channel fuses with the cell, it is difficult to control the inserting angle of the bionic potassium channel to ensure its penetration of the entire cell membrane. In nature, the extracellular vesicles can fuse with living cells with a completely preserved structure of vesicle protein. Inspired by this, we developed a vesicle fusion-based bionic porin (VFBP), which integrates bionic potassium ion channels into cardiomyocytes to replace damaged potassium ion channels. Theoretical and experimental results show that the inserted bionic ion channels have a potassium ion transport rate comparable to that of natural ion channels, which can restore the potassium ion outflow in cardiomyocytes and repair the abnormal action potential and excitation-contraction coupling of cardiomyocytes. Therefore, the bionic potassium ion channel system based on membrane fusion is expected to become the research object in many fields such as ultrafast ion transport, transmembrane delivery, and channelopathies treatment.


Asunto(s)
Miocitos Cardíacos , Canales de Potasio , Miocitos Cardíacos/metabolismo , Canales de Potasio/metabolismo , Canales de Potasio/química , Humanos , Potasio/metabolismo , Potasio/química , Animales , Porinas/metabolismo , Porinas/química
6.
ACS Infect Dis ; 10(8): 3042-3051, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-38922179

RESUMEN

Antimicrobial peptides (AMPs) are becoming next-generation alternative antibacterial agents because of the rapid increase in resistance in bacteria against existing antibiotics, which can also be attributed to the formation of resilient biofilms. However, their widespread use is limited because of their poor absorption, higher dosage requirements, and delayed onset of the bioactivity to elicit a desired response. Here we developed a short AMP that specifically targeted Fusobacterium nucleatum. We conjugated 23R to a statherin-derived peptide (SDP) through rational design; this conjugate binds to FomA, a major porin protein of F. nucleatum. The SDP-tagged 23R exhibited rapid and highly specific bactericidal efficacy against F. nucleatum. Further, IC50 values were in the nanomolar range, and they were 100-fold lower than those obtained with unconjugated 23R. In a human gut microbiota model, 0.1 nM SDP-23R achieved 99% clearance of F. nucleatum ATCC 25586 without markedly altering resident microbiota. Here we demonstrated that binding-peptide-coupled AMPs show increased killing efficacy and specificity for the target pathogen without affecting the resident microbiota.


Asunto(s)
Antibacterianos , Péptidos Antimicrobianos , Fusobacterium nucleatum , Fusobacterium nucleatum/efectos de los fármacos , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Microbioma Gastrointestinal/efectos de los fármacos , Biopelículas/efectos de los fármacos , Porinas/metabolismo , Porinas/genética , Porinas/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética
7.
Nucleic Acids Res ; 52(13): 7429-7436, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38884270

RESUMEN

Nanopores are increasingly powerful tools for single molecule sensing, in particular, for sequencing DNA, RNA and peptides. This success has spurred efforts to sequence non-canonical nucleic acid bases and amino acids. While canonical DNA and RNA bases have pKas far from neutral, certain non-canonical bases, natural RNA modifications, and amino acids are known to have pKas near neutral pHs at which nanopore sequencing is typically performed. Previous reports have suggested that the nanopore signal may be sensitive to the protonation state of an individual moiety. We sequenced ion currents with the MspA nanopore using a single stranded DNA containing a single non-canonical DNA base (Z) at various pH conditions. The Z-base has a near-neutral pKa ∼ 7.8. We find that the measured ion current is remarkably sensitive to the protonation state of the Z-base. We demonstrate how nanopores can be used to localize and determine the pKa of individual moieties along a polymer. More broadly, these experiments provide a path to mapping different protonation sites along polymers and give insight in how to optimize sequencing of polymers that contain moieties with near-neutral pKas.


Asunto(s)
ADN de Cadena Simple , Nanoporos , Concentración de Iones de Hidrógeno , ADN de Cadena Simple/química , ADN/química , Protones , Porinas/química , Porinas/genética , Análisis de Secuencia de ADN/métodos
8.
PLoS Genet ; 20(6): e1011127, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38829907

RESUMEN

The cell envelope fortifies bacterial cells against antibiotics and other insults. Species in the Mycobacteriales order have a complex envelope that includes an outer layer of mycolic acids called the mycomembrane (MM) and a cell wall composed of peptidoglycan and arabinogalactan. This envelope architecture is unique among bacteria and contributes significantly to the virulence of pathogenic Mycobacteriales like Mycobacterium tuberculosis. Characterization of pathways that govern envelope biogenesis in these organisms is therefore critical in understanding their biology and for identifying new antibiotic targets. To better understand MM biogenesis, we developed a cell sorting-based screen for mutants defective in the surface exposure of a porin normally embedded in the MM of the model organism Corynebacterium glutamicum. The results revealed a requirement for the conserved σD envelope stress response in porin export and identified MarP as the site-1 protease, respectively, that activate the response by cleaving the membrane-embedded anti-sigma factor. A reporter system revealed that the σD pathway responds to defects in mycolic acid and arabinogalactan biosynthesis, suggesting that the stress response has the unusual property of being induced by activating signals that arise from defects in the assembly of two distinct envelope layers. Our results thus provide new insights into how C. glutamicum and related bacteria monitor envelope integrity and suggest a potential role for members of the σD regulon in protein export to the MM.


Asunto(s)
Membrana Celular , Pared Celular , Corynebacterium glutamicum , Ácidos Micólicos , Factor sigma , Pared Celular/metabolismo , Pared Celular/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ácidos Micólicos/metabolismo , Factor sigma/metabolismo , Factor sigma/genética , Membrana Celular/metabolismo , Estrés Fisiológico , Porinas/metabolismo , Porinas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Galactanos/metabolismo , Regulación Bacteriana de la Expresión Génica , Peptidoglicano/metabolismo
9.
Microb Pathog ; 192: 106720, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815778

RESUMEN

Pseudomonas aeruginosa is a significant pathogen responsible for severe multisite infections with high morbidity and mortality rates. This study analyzed carbapenem-resistant Pseudomonas aeruginosa (CRPA) at a tertiary hospital in Shandong, China, using whole-genome sequencing (WGS). The objective was to explore the mechanisms and molecular characteristics of carbapenem resistance. A retrospective analysis of 91 isolates from January 2022 to March 2023 was performed, which included strain identification and antimicrobial susceptibility testing. WGS was utilized to determine the genome sequences of these CRPA strains, and the species were precisely identified using average nucleotide identification (ANI), with further analysis on multilocus sequence typing and strain relatedness. Some strains were found to carry the ampD and oprD genes, while only a few harbored carbapenemase genes or related genes. Notably, all strains possessed the mexA, mexE, and mexX genes. The major lineage identified was ST244, followed by ST235. The study revealed a diverse array of carbapenem resistance mechanisms among hospital isolates, differing from previous studies in mainland China. It highlighted that carbapenem resistance is not due to a single mechanism but rather a combination of enzyme-mediated resistance, AmpC overexpression, OprD dysfunction, and efflux pump overexpression. This research provides valuable insights into the evolutionary mechanisms and molecular features of CRPA resistance in this region, aiding in the national prevention and control of CRPA, and offering references for targeting and developing new drugs.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Carbapenémicos , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Secuenciación Completa del Genoma , beta-Lactamasas , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/clasificación , Pseudomonas aeruginosa/aislamiento & purificación , China , Carbapenémicos/farmacología , Humanos , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Infecciones por Pseudomonas/microbiología , Estudios Retrospectivos , beta-Lactamasas/genética , Porinas/genética , Genoma Bacteriano/genética , Proteínas de Transporte de Membrana/genética , Centros de Atención Terciaria , Proteínas de la Membrana Bacteriana Externa/genética
10.
J Bacteriol ; 206(6): e0017224, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38809006

RESUMEN

The EnvZ-OmpR two-component system of Escherichia coli regulates the expression of the ompF and ompC porin genes in response to medium osmolarity. However, certain mutations in envZ confer pleiotropy by affecting the expression of genes of the iron and maltose regulons not normally controlled by EnvZ-OmpR. In this study, we obtained two novel envZ and ompR pleiotropic alleles, envZT15P and ompRL19Q, among revertants of a mutant with heightened envelope stress and an outer membrane (OM) permeability defect. Unlike envZ, pleiotropic mutations in ompR have not been described previously. The mutant alleles reduced the expression of several outer membrane proteins (OMPs), overcame the temperature-sensitive growth defect of a protease-deficient (ΔdegP) strain, and lowered envelope stress and OM permeability defects in a background lacking the BamB protein of an essential ß-barrel assembly machinery complex. Biochemical analysis showed OmpRL19Q, like wild-type OmpR, is readily phosphorylated by EnvZ, but the EnvZ-dependent dephosphorylation of OmpRL19Q~P was drastically impaired compared to wild-type OmpR. This defect would lead to a prolonged half-life for OmpRL19Q~P, an outcome remarkably similar to what we had previously described for EnvZR397L, resulting in pleiotropy. By employing null alleles of the OMP genes, it was determined that the three pleiotropic alleles lowered envelope stress by reducing OmpF and LamB levels. The absence of LamB was principally responsible for lowering the OM permeability defect, as assessed by the reduced sensitivity of a ΔbamB mutant to vancomycin and rifampin. Possible mechanisms by which novel EnvZ and OmpR mutants influence EnvZ-OmpR interactions and activities are discussed.IMPORTANCEMaintenance of the outer membrane (OM) integrity is critical for the survival of Gram-negative bacteria. Several envelope homeostasis systems are activated when OM integrity is perturbed. Through the isolation and characterization of novel pleiotropic ompR/envZ alleles, this study highlights the involvement of the EnvZ-OmpR two-component system in lowering envelope stress and the OM permeability defect caused by the loss of proteins that are involved in OM biogenesis, envelope homeostasis, and structural integrity.


Asunto(s)
Antibacterianos , Proteínas de la Membrana Bacteriana Externa , Proteínas de Escherichia coli , Escherichia coli , Regulación Bacteriana de la Expresión Génica , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Antibacterianos/farmacología , Alelos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Porinas/genética , Porinas/metabolismo , Mutación , Estrés Fisiológico , Fosforilación , Complejos Multienzimáticos , Transactivadores
11.
BMC Microbiol ; 24(1): 152, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702660

RESUMEN

BACKGROUND: Pseudomonas aeruginosa is a common cause of nosocomial infections. However, the emergence of multidrug-resistant strains has complicated the treatment of P. aeruginosa infections. While polymyxins have been the mainstay for treatment, there is a global increase in resistance to these antibiotics. Therefore, our study aimed to determine the prevalence and molecular details of colistin resistance in P. aeruginosa clinical isolates collected between June 2019 and May 2023, as well as the genetic linkage of colistin-resistant P. aeruginosa isolates. RESULTS: The resistance rate to colistin was 9% (n = 18) among P. aeruginosa isolates. All 18 colistin-resistant isolates were biofilm producers and carried genes associated with biofilm formation. Furthermore, the presence of genes encoding efflux pumps, TCSs, and outer membrane porin was observed in all colistin-resistant P. aeruginosa strains, while the mcr-1 gene was not detected. Amino acid substitutions were identified only in the PmrB protein of multidrug- and colistin-resistant strains. The expression levels of mexA, mexC, mexE, mexY, phoP, and pmrA genes in the 18 colistin-resistant P. aeruginosa strains were as follows: 88.8%, 94.4%, 11.1%, 83.3%, 83.3%, and 38.8%, respectively. Additionally, down-regulation of the oprD gene was observed in 44.4% of colistin-resistant P. aeruginosa strains. CONCLUSION: This study reports the emergence of colistin resistance with various mechanisms among P. aeruginosa strains in Ardabil hospitals. We recommend avoiding unnecessary use of colistin to prevent potential future increases in colistin resistance.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Colistina , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Factores de Transcripción , Colistina/farmacología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/aislamiento & purificación , Antibacterianos/farmacología , Humanos , Proteínas Bacterianas/genética , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/epidemiología , Prevalencia , Farmacorresistencia Bacteriana Múltiple/genética , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Hospitales , Farmacorresistencia Bacteriana/genética , Infección Hospitalaria/microbiología , Infección Hospitalaria/epidemiología , Proteínas de Transporte de Membrana/genética , Porinas/genética
12.
Microb Biotechnol ; 17(5): e14487, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38801351

RESUMEN

Pseudomonas aeruginosa is a notorious multidrug-resistant pathogen that poses a serious and growing threat to the worldwide public health. The expression of resistance determinants is exquisitely modulated by the abundant regulatory proteins and the intricate signal sensing and transduction systems in this pathogen. Downregulation of antibiotic influx porin proteins and upregulation of antibiotic efflux pump systems owing to mutational changes in their regulators or the presence of distinct inducing molecular signals represent two of the most efficient mechanisms that restrict intracellular antibiotic accumulation and enable P. aeruginosa to resist multiple antibiotics. Treatment of P. aeruginosa infections is extremely challenging due to the highly inducible mechanism of antibiotic resistance. This review comprehensively summarizes the regulatory networks of the major porin proteins (OprD and OprH) and efflux pumps (MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY) that play critical roles in antibiotic influx and efflux in P. aeruginosa. It also discusses promising therapeutic approaches using safe and efficient adjuvants to enhance the efficacy of conventional antibiotics to combat multidrug-resistant P. aeruginosa by controlling the expression levels of porins and efflux pumps. This review not only highlights the complexity of the regulatory network that induces antibiotic resistance in P. aeruginosa but also provides important therapeutic implications in targeting the inducible mechanism of resistance.


Asunto(s)
Antibacterianos , Regulación Bacteriana de la Expresión Génica , Proteínas de Transporte de Membrana , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Humanos , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Porinas/metabolismo , Porinas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico
13.
Emerg Microbes Infect ; 13(1): 2352432, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38712634

RESUMEN

This study investigated resistance evolution mechanisms of conjugated plasmids and bacterial hosts under different concentrations of antibiotic pressure. Ancestral strain ECNX52 was constructed by introducing the blaNDM-5-carrying IncX3 plasmid into E. coli C600, and was subjected to laboratory evolution under different concentrations of meropenem pressure. Minimal inhibitory concentrations and conjugation frequency were determined. Fitness of these strains was assessed. Whole genome sequencing and transcriptional changes were performed. Ancestral host or plasmids were recombined with evolved hosts or plasmids to verify plasmid or host factors in resistance evolution. Role of the repA mutation on plasmid copy number was determined. Two out of the four clones (EM2N1 and EM2N3) exhibited four-fold increase in MIC when exposed to a continuous pressure of 2 µg/mL MEM (1/32 MIC), by down regulating expression of outer membrane protein ompF. Besides, all four clones displayed four-fold increase in MIC and higher conjugation frequency when subjected to a continuous pressure of 4 µg/mL MEM (1/16 MIC), attributing to increasing plasmid copy number generated by repA D140Y (GAT→TAT) mutation. Bacterial hosts and conjugative plasmids can undergo resistance evolution under certain concentrations of antimicrobial pressure by reducing the expression of outer membrane proteins or increasing plasmid copy numbers.


Asunto(s)
Antibacterianos , Proteínas de Escherichia coli , Escherichia coli , Pruebas de Sensibilidad Microbiana , Plásmidos , Porinas , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Plásmidos/genética , Antibacterianos/farmacología , Porinas/genética , Porinas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Carbapenémicos/farmacología , Meropenem/farmacología , Mutación , Evolución Molecular , Conjugación Genética , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Secuenciación Completa del Genoma , Dosificación de Gen , beta-Lactamasas/genética
14.
Nat Commun ; 15(1): 4185, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760367

RESUMEN

Bacteriophage infection, a pivotal process in microbiology, initiates with the phage's tail recognizing and binding to the bacterial cell surface, which then mediates the injection of viral DNA. Although comprehensive studies on the interaction between bacteriophage lambda and its outer membrane receptor, LamB, have provided rich information about the system's biochemical properties, the precise molecular mechanism remains undetermined. This study revealed the high-resolution cryo-electron microscopy (cryo-EM) structures of the bacteriophage lambda tail complexed with its irreversible Shigella sonnei 3070 LamB receptor and the closed central tail fiber. These structures reveal the complex processes that trigger infection and demonstrate a substantial conformational change in the phage lambda tail tip upon LamB binding. Providing detailed structures of bacteriophage lambda infection initiation, this study contributes to the expanding knowledge of lambda-bacterial interaction, which holds significance in the fields of microbiology and therapeutic development.


Asunto(s)
Bacteriófago lambda , Microscopía por Crioelectrón , Shigella sonnei , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Bacteriófago lambda/fisiología , Shigella sonnei/virología , Shigella sonnei/metabolismo , Proteínas de la Cola de los Virus/metabolismo , Proteínas de la Cola de los Virus/química , Proteínas de la Cola de los Virus/genética , Porinas/metabolismo , Porinas/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/ultraestructura , Unión Proteica , Modelos Moleculares , Conformación Proteica , Receptores Virales
15.
J Mol Recognit ; 37(4): e3087, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38686731

RESUMEN

Epitope imprinting has shown better prospects to synthesize synthetic receptors for proteins. Here, dual epitope imprinted polymer electrode (DEIP) matrix was fabricated on gold surface of electrochemical quartz crystal microbalance (EQCM) for recognition of target epitope sequence in blood samples of patients suffering from brain fever. Epitope sequences from outer membrane protein Por B of Neisseria meningitidis (MC58) bacteria predicted through immunoinformatic tools were chosen for imprinting. Self-assembled monolayers (SAM) of cysteine appended epitope sequences on gold nanoparticles were subjected to polymerization prior to electrodeposition on gold coated EQCM electrode. The polymeric matrix was woven around the cysteine appended epitope SAMs through multiple monomers (3-sulfo propyl methacrylate potassium salt (3-SPMAP), benzyl methacrylate (BMA)) and crosslinker (N, N'-methylene-bis-acrylamide). On extraction of the peptide sequences, imprinted cavities were able to selectively and specifically bind targeted epitope sequences in laboratory samples as well as 'real' samples of patients. Selectivity of sensor was examined through mismatched peptide sequences and certain plasma proteins also. The sensor was able to show specific binding towards the blood samples of infected patients, even in the presence of 'matrix' and other plasma proteins such as albumin and globulin. Even other peptide sequences, similar to epitope sequences only with one or two amino acid mismatches were also unable to show any binding. The analytical performance of DEIP-EQCM sensor was tested through selectivity, specificity, matrix effect, detection limit (0.68-1.01 nM), quantification limit (2.05-3.05 nM) and reproducibility (RSD ~ 5%). Hence, a diagnostic tool for bacterium causing meningitis is successfully fabricated in a facile manner which will broaden the clinical access and make efficient population screening feasible.


Asunto(s)
Electrodos , Epítopos , Oro , Impresión Molecular , Neisseria meningitidis , Tecnicas de Microbalanza del Cristal de Cuarzo , Epítopos/inmunología , Epítopos/química , Humanos , Neisseria meningitidis/inmunología , Oro/química , Técnicas Biosensibles/métodos , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Nanopartículas del Metal/química , Porinas/química , Porinas/inmunología
16.
Chemphyschem ; 25(14): e202400147, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38625051

RESUMEN

We investigated, by using all-atom molecular dynamics simulations, the effect of the outer membrane of Gram-negative bacteria, composed in the outer leaflet by polar/charged lipopolysaccharides (LPS), on the electrostatic properties of general porins from the Enterobacteriaceae family. General porins constitute the main path for the facilitated diffusion of polar antibiotics through the outer membrane. As model system we selected OmpK36 from Klebsiella pneumoniae, the ortholog of OmpC from Escherichia coli. This species presents high variability of amino acid composition of porins, with the effect to increase its resistance to the penetration of antibiotics. The various properties we analyzed seem to indicate that LPS acts as an independent layer without affecting the internal electrostatic properties of OmpK36. The only apparent effect on the microsecond time scale we sampled is the appearance of calcium ions, when present at moderate concentration in solution, inside the pore. However, we noticed increased fluctuations of the polarization density and only minor changes on its average value.


Asunto(s)
Lipopolisacáridos , Simulación de Dinámica Molecular , Porinas , Electricidad Estática , Lipopolisacáridos/química , Porinas/química , Porinas/metabolismo , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/química , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/química , Enterobacteriaceae/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/química
17.
Artículo en Inglés | MEDLINE | ID: mdl-38573823

RESUMEN

Escherichia coli were engineered to selectively adsorb and recover lithium from the environment by employing a bacterial cell surface display strategy. Lithium binding peptide (LBP1) was integrated into the Escherichia coli membrane protein OmpC. The effect of environmental conditions on the adsorption of lithium by a recombinant strain was evaluated, and lithium particles on the cellular surface were analyzed by FE-SEM and XRD. To elevate the lithium adsorption, dimeric, trimeric, and tetrameric repeats of the LBP1 peptide were constructed and displayed on the surface of E. coli. The constructed recombinant E. coli displaying the LBP1 trimer was applied to real industrial lithium battery wastewater to recover lithium.


Asunto(s)
Escherichia coli , Litio , Porinas , Escherichia coli/genética , Escherichia coli/metabolismo , Adsorción , Residuos Industriales , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Aguas Residuales/microbiología , Suministros de Energía Eléctrica , Técnicas de Visualización de Superficie Celular , Proteínas Recombinantes/genética
18.
Sci Total Environ ; 930: 172713, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38657814

RESUMEN

Antimicrobial resistance transmission from farm animals to humans is a critical health concern and hence a detailed molecular surveillance is essential for tracking the spread and consequent evolution of antimicrobial resistance. In this study, a pan-drug resistant Klebsiella pneumoniae MS1 strain was isolated from a healthy broiler farm and studied. From the results of the study, MS1 was found to be is resistant to 18 tested antibiotics and has a high-risk to be pathogenic to humans with a probability of 0.80. The whole genome sequencing data of MS1 was used to predict the presence of antimicrobial resistance genes and pathogenicity. The genome analysis has revealed MS1 to have 34 AMR genes. Out of these, the AMR gene OmpK37 codes for an important protein involved in cell permeability and hence in antibiotic resistance. Further analysis was carried out by using an in-genome analysis method to understand the evolution of OmpK37 and the underlying reason for the emergence of resistance. From the detailed analysis, the current study could demonstrate for the first time the evolution of OmpK37 from OmpC. Though structurally OmpK37 was very similar to other porins present in MS1, it was found to have higher mutability as a distinguishing feature which makes it an important protein in monitoring the evolving resistances in microorganisms.


Asunto(s)
Pollos , Heces , Klebsiella pneumoniae , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Pollos/microbiología , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana Múltiple/genética , Heces/microbiología , Genoma Bacteriano , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Porinas/genética , Secuenciación Completa del Genoma
19.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38653725

RESUMEN

AIMS: Acinetobacter baumannii is a nosocomial pathogen known to be multidrug-resistant (MDR), especially to drugs of the carbapenem class. Several factors contribute to resistance, including efflux pumps, ß-lactamases, alteration of target sites, and permeability defects. In addition, outer membrane proteins (OMPs), like porins are involved in the passage of antibiotics, and their alteration could lead to resistance development. This study aimed to explore the possible involvement of porins and OMPs in developing carbapenem resistance due to differential expression. METHODS AND RESULTS: The antibiotic-susceptible and MDR isolates of A. baumannii were first studied for differences in their transcriptional levels of OMP expression and OMP profiles. The antibiotic-susceptible isolates were further treated with imipenem, and it was found that the omp genes were differentially expressed. Six of the nine genes studied were upregulated at 1 h of exposure to imipenem. Their expression gradually decreased with time, further confirmed by their OMP profile and two-dimensional gel electrophoresis. CONCLUSIONS: This study could identify OMPs that were differentially expressed on exposure to imipenem. Hence, this study provides insights into the role of specific OMPs in antibiotic resistance in A. baumannii.


Asunto(s)
Acinetobacter baumannii , Antibacterianos , Proteínas de la Membrana Bacteriana Externa , Imipenem , Pruebas de Sensibilidad Microbiana , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Imipenem/farmacología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Antibacterianos/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Acinetobacter/microbiología , Humanos , Porinas/genética , Porinas/metabolismo
20.
BMC Microbiol ; 24(1): 122, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600509

RESUMEN

BACKGROUND: Escherichia coli (E. coli) is a multidrug resistant opportunistic pathogen that can cause secondary bacterial infections in patients with COVID-19. This study aimed to determine the antimicrobial resistance profile of E. coli as a secondary bacterial infection in patients with COVID-19 and to assess the prevalence and characterization of genes related to efflux pumps and porin. METHODS: A total of 50 nonduplicate E. coli isolates were collected as secondary bacterial infections in COVID-19 patients. The isolates were cultured from sputum samples. Confirmation and antibiotic susceptibility testing were conducted by Vitek 2. PCR was used to assess the prevalence of the efflux pump and porin-related genes in the isolates. The phenotypic and genotypic evolution of antibiotic resistance genes related to the efflux pump was evaluated. RESULTS: The E. coli isolates demonstrated high resistance to ampicillin (100%), cefixime (62%), cefepime (62%), amoxicillin-clavulanic acid (60%), cefuroxime (60%), and ceftriaxone (58%). The susceptibility of E. coli to ertapenem was greatest (92%), followed by imipenem (88%), meropenem (86%), tigecycline (80%), and levofloxacin (76%). Regarding efflux pump gene combinations, there was a significant association between the acrA gene and increased resistance to levofloxacin, between the acrB gene and decreased resistance to meropenem and increased resistance to levofloxacin, and between the ompF and ompC genes and increased resistance to gentamicin. CONCLUSIONS: The antibiotics ertapenem, imipenem, meropenem, tigecycline, and levofloxacin were effective against E. coli in patients with COVID-19. Genes encoding efflux pumps and porins, such as acrA, acrB, and outer membrane porins, were highly distributed among all the isolates. Efflux pump inhibitors could be alternative antibiotics for restoring tetracycline activity in E. coli isolates.


Asunto(s)
COVID-19 , Coinfección , Infecciones por Escherichia coli , Humanos , Escherichia coli , Ertapenem/farmacología , Levofloxacino/farmacología , Meropenem/farmacología , Tigeciclina/farmacología , Antibacterianos/farmacología , Infecciones por Escherichia coli/microbiología , Imipenem/farmacología , Porinas/genética , Porinas/farmacología , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA