Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.223
Filtrar
1.
Nano Lett ; 24(38): 11944-11953, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39269011

RESUMEN

Vitamin Bs, a group of water-soluble compounds, are essential nutrients for almost all living organisms. However, due to their structural heterogeneity, rapid and simultaneous analysis of multiple vitamin Bs is still challenging. In this paper, it is discovered that a hetero-octameric Mycobacterium smegmatis porin A (MspA) nanopore containing a sole nickel ion-bound nitrilotriacetic acid (NTA-Ni) adapter at its pore constriction is suitable for the simultaneous sensing of different vitamin Bs, including vitamin B1 (thiamine), vitamin B3 (nicotinic acid and nicotinamide), vitamin B5 (pantothenic acid), and vitamin B6 (pyridoxine, pyridoxal, and pyridoxamine). Assisted by a custom machine learning algorithm, all seven vitamin Bs can be fully distinguished, reporting a general accuracy of 99.9%. This method was further validated in the rapid analysis of commercial cosmetics and natural food, suggesting its potential uses in food and drug administration.


Asunto(s)
Nanoporos , Vitamina B 6 , Vitamina B 6/análisis , Vitamina B 6/química , Porinas/química , Mycobacterium smegmatis , Tiamina/análisis , Tiamina/química , Aprendizaje Automático , Niacinamida/análisis , Niacinamida/química
2.
J Phys Chem B ; 128(35): 8376-8387, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39180156

RESUMEN

Experimental studies on the translocation and accumulation of antibiotics in Gram-negative bacteria have revealed details of the properties that allow efficient permeation through bacterial outer membrane porins. Among the major outer membrane diffusion channels, OmpF has been extensively studied to understand the antibiotic translocation process. In a few cases, this knowledge has also helped to improve the efficacy of existing antibacterial molecules. However, the extension of these strategies to enhance the efficacy of other existing and novel drugs require comprehensive molecular insight into the permeation process and an understanding of how antibiotic and channel properties influence the effective permeation rates. Previous studies have investigated how differences in antibiotic charge distribution can influence the observed permeation pathways through the OmpF channel, and have shown that the dynamics of the L3 loop can play a dominant role in the permeation process. Here, we perform all-atom simulations of the OmpF orthologs, OmpE35 from Enterobacter cloacae and OmpK35 from Klebsiella pneumoniae. Unbiased simulations of the porins and biased simulations of the ciprofloxacin permeation processes through these channels provide insight into the differences in the permeation pathway and energetics. In addition, we show that similar to the OmpF channel, antibiotic-induced dynamics of the L3 loop are also operative in the orthologs. However, the sequence and structural differences, influence the extent of the L3 loop fluctuations with OmpK35 showing greater stability in unbiased runs and subdued fluctuations in simulations with ciprofloxacin.


Asunto(s)
Antibacterianos , Ciprofloxacina , Enterobacter cloacae , Klebsiella pneumoniae , Simulación de Dinámica Molecular , Porinas , Enterobacter cloacae/metabolismo , Enterobacter cloacae/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/metabolismo , Ciprofloxacina/farmacología , Ciprofloxacina/química , Ciprofloxacina/metabolismo , Porinas/metabolismo , Porinas/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/metabolismo , Difusión , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química
3.
J Am Chem Soc ; 146(29): 19896-19908, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38982560

RESUMEN

The disturbance of potassium current in cardiac myocytes caused by potassium channel dysfunction can lead to cardiac electrophysiological disorders, resulting in associated cardiovascular diseases. The emergence of artificial potassium ion channels opens up a way to replace dysfunctional natural ion channels and cure related diseases. However, bionic potassium ion channels have not been introduced into living cells to regulate cell function. One of the biggest challenges is that when the bionic channel fuses with the cell, it is difficult to control the inserting angle of the bionic potassium channel to ensure its penetration of the entire cell membrane. In nature, the extracellular vesicles can fuse with living cells with a completely preserved structure of vesicle protein. Inspired by this, we developed a vesicle fusion-based bionic porin (VFBP), which integrates bionic potassium ion channels into cardiomyocytes to replace damaged potassium ion channels. Theoretical and experimental results show that the inserted bionic ion channels have a potassium ion transport rate comparable to that of natural ion channels, which can restore the potassium ion outflow in cardiomyocytes and repair the abnormal action potential and excitation-contraction coupling of cardiomyocytes. Therefore, the bionic potassium ion channel system based on membrane fusion is expected to become the research object in many fields such as ultrafast ion transport, transmembrane delivery, and channelopathies treatment.


Asunto(s)
Miocitos Cardíacos , Canales de Potasio , Miocitos Cardíacos/metabolismo , Canales de Potasio/metabolismo , Canales de Potasio/química , Humanos , Potasio/metabolismo , Potasio/química , Animales , Porinas/metabolismo , Porinas/química
4.
Biochemistry (Mosc) ; 89(6): 1079-1093, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38981702

RESUMEN

The work presents results of the in vitro and in silico study of formation of amyloid-like structures under harsh denaturing conditions by non-specific OmpF porin of Yersinia pseudotuberculosis (YpOmpF), a membrane protein with ß-barrel conformation. It has been shown that in order to obtain amyloid-like porin aggregates, preliminary destabilization of its structure in a buffer solution with acidic pH at elevated temperature followed by long-term incubation at room temperature is necessary. After heating at 95°C in a solution with pH 4.5, significant conformational rearrangements are observed in the porin molecule at the level of tertiary and secondary structure of the protein, which are accompanied by the increase in the content of total ß-structure and sharp decrease in the value of characteristic viscosity of the protein solution. Subsequent long-term exposure of the resulting unstable intermediate YpOmpF at room temperature leads to formation of porin aggregates of various shapes and sizes that bind thioflavin T, a specific fluorescent dye for the detection of amyloid-like protein structures. Compared to the initial protein, early intermediates of the amyloidogenic porin pathway, oligomers, have been shown to have increased toxicity to the Neuro-2aCCL-131™ mouse neuroblastoma cells. The results of computer modeling and analysis of the changes in intrinsic fluorescence during protein aggregation suggest that during formation of amyloid-like aggregates, changes in the structure of YpOmpF affect not only the areas with an internally disordered structure corresponding to the external loops of the porin, but also main framework of the molecule, which has a rigid spatial structure inherent to ß-barrel.


Asunto(s)
Porinas , Yersinia pseudotuberculosis , Porinas/química , Porinas/metabolismo , Yersinia pseudotuberculosis/metabolismo , Yersinia pseudotuberculosis/química , Animales , Ratones , Amiloide/metabolismo , Amiloide/química , Estructura Secundaria de Proteína , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Conformación Proteica
5.
Nucleic Acids Res ; 52(13): 7429-7436, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38884270

RESUMEN

Nanopores are increasingly powerful tools for single molecule sensing, in particular, for sequencing DNA, RNA and peptides. This success has spurred efforts to sequence non-canonical nucleic acid bases and amino acids. While canonical DNA and RNA bases have pKas far from neutral, certain non-canonical bases, natural RNA modifications, and amino acids are known to have pKas near neutral pHs at which nanopore sequencing is typically performed. Previous reports have suggested that the nanopore signal may be sensitive to the protonation state of an individual moiety. We sequenced ion currents with the MspA nanopore using a single stranded DNA containing a single non-canonical DNA base (Z) at various pH conditions. The Z-base has a near-neutral pKa ∼ 7.8. We find that the measured ion current is remarkably sensitive to the protonation state of the Z-base. We demonstrate how nanopores can be used to localize and determine the pKa of individual moieties along a polymer. More broadly, these experiments provide a path to mapping different protonation sites along polymers and give insight in how to optimize sequencing of polymers that contain moieties with near-neutral pKas.


Asunto(s)
ADN de Cadena Simple , Nanoporos , Concentración de Iones de Hidrógeno , ADN de Cadena Simple/química , ADN/química , Protones , Porinas/química , Porinas/genética , Análisis de Secuencia de ADN/métodos
6.
ACS Infect Dis ; 10(8): 3042-3051, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-38922179

RESUMEN

Antimicrobial peptides (AMPs) are becoming next-generation alternative antibacterial agents because of the rapid increase in resistance in bacteria against existing antibiotics, which can also be attributed to the formation of resilient biofilms. However, their widespread use is limited because of their poor absorption, higher dosage requirements, and delayed onset of the bioactivity to elicit a desired response. Here we developed a short AMP that specifically targeted Fusobacterium nucleatum. We conjugated 23R to a statherin-derived peptide (SDP) through rational design; this conjugate binds to FomA, a major porin protein of F. nucleatum. The SDP-tagged 23R exhibited rapid and highly specific bactericidal efficacy against F. nucleatum. Further, IC50 values were in the nanomolar range, and they were 100-fold lower than those obtained with unconjugated 23R. In a human gut microbiota model, 0.1 nM SDP-23R achieved 99% clearance of F. nucleatum ATCC 25586 without markedly altering resident microbiota. Here we demonstrated that binding-peptide-coupled AMPs show increased killing efficacy and specificity for the target pathogen without affecting the resident microbiota.


Asunto(s)
Antibacterianos , Péptidos Antimicrobianos , Fusobacterium nucleatum , Fusobacterium nucleatum/efectos de los fármacos , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Microbioma Gastrointestinal/efectos de los fármacos , Biopelículas/efectos de los fármacos , Porinas/metabolismo , Porinas/genética , Porinas/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética
7.
Nat Commun ; 15(1): 4185, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760367

RESUMEN

Bacteriophage infection, a pivotal process in microbiology, initiates with the phage's tail recognizing and binding to the bacterial cell surface, which then mediates the injection of viral DNA. Although comprehensive studies on the interaction between bacteriophage lambda and its outer membrane receptor, LamB, have provided rich information about the system's biochemical properties, the precise molecular mechanism remains undetermined. This study revealed the high-resolution cryo-electron microscopy (cryo-EM) structures of the bacteriophage lambda tail complexed with its irreversible Shigella sonnei 3070 LamB receptor and the closed central tail fiber. These structures reveal the complex processes that trigger infection and demonstrate a substantial conformational change in the phage lambda tail tip upon LamB binding. Providing detailed structures of bacteriophage lambda infection initiation, this study contributes to the expanding knowledge of lambda-bacterial interaction, which holds significance in the fields of microbiology and therapeutic development.


Asunto(s)
Bacteriófago lambda , Microscopía por Crioelectrón , Shigella sonnei , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Bacteriófago lambda/fisiología , Shigella sonnei/virología , Shigella sonnei/metabolismo , Proteínas de la Cola de los Virus/metabolismo , Proteínas de la Cola de los Virus/química , Proteínas de la Cola de los Virus/genética , Porinas/metabolismo , Porinas/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/ultraestructura , Unión Proteica , Modelos Moleculares , Conformación Proteica , Receptores Virales
8.
Chemphyschem ; 25(14): e202400147, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38625051

RESUMEN

We investigated, by using all-atom molecular dynamics simulations, the effect of the outer membrane of Gram-negative bacteria, composed in the outer leaflet by polar/charged lipopolysaccharides (LPS), on the electrostatic properties of general porins from the Enterobacteriaceae family. General porins constitute the main path for the facilitated diffusion of polar antibiotics through the outer membrane. As model system we selected OmpK36 from Klebsiella pneumoniae, the ortholog of OmpC from Escherichia coli. This species presents high variability of amino acid composition of porins, with the effect to increase its resistance to the penetration of antibiotics. The various properties we analyzed seem to indicate that LPS acts as an independent layer without affecting the internal electrostatic properties of OmpK36. The only apparent effect on the microsecond time scale we sampled is the appearance of calcium ions, when present at moderate concentration in solution, inside the pore. However, we noticed increased fluctuations of the polarization density and only minor changes on its average value.


Asunto(s)
Lipopolisacáridos , Simulación de Dinámica Molecular , Porinas , Electricidad Estática , Lipopolisacáridos/química , Porinas/química , Porinas/metabolismo , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/química , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/química , Enterobacteriaceae/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/química
9.
J Mol Recognit ; 37(4): e3087, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38686731

RESUMEN

Epitope imprinting has shown better prospects to synthesize synthetic receptors for proteins. Here, dual epitope imprinted polymer electrode (DEIP) matrix was fabricated on gold surface of electrochemical quartz crystal microbalance (EQCM) for recognition of target epitope sequence in blood samples of patients suffering from brain fever. Epitope sequences from outer membrane protein Por B of Neisseria meningitidis (MC58) bacteria predicted through immunoinformatic tools were chosen for imprinting. Self-assembled monolayers (SAM) of cysteine appended epitope sequences on gold nanoparticles were subjected to polymerization prior to electrodeposition on gold coated EQCM electrode. The polymeric matrix was woven around the cysteine appended epitope SAMs through multiple monomers (3-sulfo propyl methacrylate potassium salt (3-SPMAP), benzyl methacrylate (BMA)) and crosslinker (N, N'-methylene-bis-acrylamide). On extraction of the peptide sequences, imprinted cavities were able to selectively and specifically bind targeted epitope sequences in laboratory samples as well as 'real' samples of patients. Selectivity of sensor was examined through mismatched peptide sequences and certain plasma proteins also. The sensor was able to show specific binding towards the blood samples of infected patients, even in the presence of 'matrix' and other plasma proteins such as albumin and globulin. Even other peptide sequences, similar to epitope sequences only with one or two amino acid mismatches were also unable to show any binding. The analytical performance of DEIP-EQCM sensor was tested through selectivity, specificity, matrix effect, detection limit (0.68-1.01 nM), quantification limit (2.05-3.05 nM) and reproducibility (RSD ~ 5%). Hence, a diagnostic tool for bacterium causing meningitis is successfully fabricated in a facile manner which will broaden the clinical access and make efficient population screening feasible.


Asunto(s)
Electrodos , Epítopos , Oro , Impresión Molecular , Neisseria meningitidis , Tecnicas de Microbalanza del Cristal de Cuarzo , Epítopos/inmunología , Epítopos/química , Humanos , Neisseria meningitidis/inmunología , Oro/química , Técnicas Biosensibles/métodos , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Nanopartículas del Metal/química , Porinas/química , Porinas/inmunología
10.
Biomolecules ; 14(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38540723

RESUMEN

Mitochondria are most likely descendants of strictly aerobic prokaryotes from the class Alphaproteobacteria. The mitochondrial matrix is surrounded by two membranes according to its relationship with Gram-negative bacteria. Similar to the bacterial outer membrane, the mitochondrial outer membrane acts as a molecular sieve because it also contains diffusion pores. However, it is more actively involved in mitochondrial metabolism because it plays a functional role, whereas the bacterial outer membrane has only passive sieving properties. Mitochondrial porins, also known as eukaryotic porins or voltage-dependent anion-selective channels (VDACs) control the permeability properties of the mitochondrial outer membrane. They contrast with most bacterial porins because they are voltage-dependent. They switch at relatively small transmembrane potentials of 20 to 30 mV in closed states that exhibit different permeability properties than the open state. Whereas the open state is preferentially permeable to anionic metabolites of mitochondrial metabolism, the closed states prefer cationic solutes, in particular, calcium ions. Mitochondrial porins are encoded in the nucleus, synthesized at cytoplasmatic ribosomes, and post-translationally imported through special transport systems into mitochondria. Nineteen beta strands form the beta-barrel cylinders of mitochondrial and related porins. The pores contain in addition an α-helical structure at the N-terminal end of the protein that serves as a gate for the voltage-dependence. Similarly, they bind peripheral proteins that are involved in mitochondrial function and compartment formation. This means that mitochondrial porins are localized in a strategic position to control mitochondrial metabolism. The special features of the role of mitochondrial porins in apoptosis and cancer will also be discussed in this article.


Asunto(s)
Canales Iónicos , Canales Aniónicos Dependientes del Voltaje , Canales Iónicos/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Porinas/análisis , Porinas/química , Porinas/metabolismo , Membranas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Potenciales de la Membrana
11.
Nat Methods ; 21(4): 609-618, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38443507

RESUMEN

Precise identification and quantification of amino acids is crucial for many biological applications. Here we report a copper(II)-functionalized Mycobacterium smegmatis porin A (MspA) nanopore with the N91H substitution, which enables direct identification of all 20 proteinogenic amino acids when combined with a machine-learning algorithm. The validation accuracy reaches 99.1%, with 30.9% signal recovery. The feasibility of ultrasensitive quantification of amino acids was also demonstrated at the nanomolar range. Furthermore, the capability of this system for real-time analyses of two representative post-translational modifications (PTMs), one unnatural amino acid and ten synthetic peptides using exopeptidases, including clinically relevant peptides associated with Alzheimer's disease and cancer neoantigens, was demonstrated. Notably, our strategy successfully distinguishes peptides with only one amino acid difference from the hydrolysate and provides the possibility to infer the peptide sequence.


Asunto(s)
Nanoporos , Aminoácidos/química , Péptidos/química , Secuencia de Aminoácidos , Porinas/química , Porinas/metabolismo
12.
Protein Sci ; 33(3): e4912, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38358254

RESUMEN

Outer membrane proteins perform essential functions in uptake and secretion processes in bacteria. MspA is an octameric channel protein in the outer membrane of Mycobacterium smegmatis and is structurally distinct from any other known outer membrane protein. MspA is the founding member of a family with more than 3000 homologs and is one of the most widely used proteins in nanotechnological applications due to its advantageous pore structure and extraordinary stability. While a conserved C-terminal signal sequence is essential for folding and protein assembly in the outer membrane of Gram-negative bacteria, the molecular determinants of these processes are unknown for MspA. In this study, we show that mutation and deletion of methionine 183 in the highly conserved C-terminus of MspA and mutation of the conserved tryptophan 40 lead to a complete loss of protein in heat extracts of M. smegmatis. Swapping these residues partially restores the heat stability of MspA indicating that methionine 183 and tryptophan 40 form a conserved sulfur-π electron interaction, which stabilizes the MspA monomer. Flow cytometry showed that all MspA mutants are surface-accessible demonstrating that oligomerization and membrane integration in M. smegmatis are not affected. Thus, the conserved C-terminus of MspA is essential for its thermal stability, but it is not required for protein assembly in its native membrane, indicating that this process is mediated by a mechanism distinct from that in Gram-negative bacteria. These findings will benefit the rational design of MspA-like pores to tailor their properties in current and future applications.


Asunto(s)
Mycobacterium , Triptófano , Triptófano/metabolismo , Porinas/química , Porinas/genética , Porinas/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Metionina/metabolismo
13.
Nat Methods ; 21(1): 92-101, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37749214

RESUMEN

Natural proteins are composed of 20 proteinogenic amino acids and their post-translational modifications (PTMs). However, due to the lack of a suitable nanopore sensor that can simultaneously discriminate between all 20 amino acids and their PTMs, direct sequencing of protein with nanopores has not yet been realized. Here, we present an engineered hetero-octameric Mycobacterium smegmatis porin A (MspA) nanopore containing a sole Ni2+ modification. It enables full discrimination of all 20 proteinogenic amino acids and 4 representative modified amino acids, Nω,N'ω-dimethyl-arginine (Me-R), O-acetyl-threonine (Ac-T), N4-(ß-N-acetyl-D-glucosaminyl)-asparagine (GlcNAc-N) and O-phosphoserine (P-S). Assisted by machine learning, an accuracy of 98.6% was achieved. Amino acid supplement tablets and peptidase-digested amino acids from peptides were also analyzed using this strategy. This capacity for simultaneous discrimination of all 20 proteinogenic amino acids and their PTMs suggests the potential to achieve protein sequencing using this nanopore-based strategy.


Asunto(s)
Nanoporos , Aminoácidos/química , Proteínas/metabolismo , Porinas/química , Porinas/metabolismo , Péptidos/química
14.
J Phys Chem B ; 127(50): 10766-10777, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38064341

RESUMEN

Efficient permeation into Gram-negative bacterial cells is a much-desired property in the design of antibacterial agents. The goal is to arrive at one or more chemical modifications of molecules that improve their uptake into the cell while maintaining a good binding affinity to the intracellular target. Previously, we proposed a mechanistic rationale for the fast permeation of bulky antibiotics that involves induced conformational dynamics in the constriction loop L3 of the OmpF channel. This flexibility is caused by the perturbation of a hydrogen bond network stabilizing the L3 loop due to the strong interactions of the positively charged moiety on the antibiotic with the residues of the L3 loop. In the present work, we examine how differences in the charge profile of antibiotic molecules can affect the permeation process, in particular, the L3 dynamics. To this end, we have performed all-atom molecular dynamics simulations to study the permeation process of molecules with differences in the net charge through the Escherichia coli OmpF channel. The results from these simulations suggest that a positively charged moiety on the antibiotic is responsible for strong interactions with the negatively charged residues of the L3 loop, promoting conformational dynamics in the L3 loop. In contrast, antibiotics without a positively charged moiety are unable to initiate such a dynamic response in the L3 loop. This distinct behavior of the L3 loop in the presence of molecules with different charge characteristics provides a plausible mechanism whereby large molecules with an appropriate charge distribution can leverage an L3 dynamic-dependent pathway to permeate efficiently. The results are relevant to the structure-based design of molecules with improved uptake properties achieved through systematic chemical modifications that effectively engage the L3 loop.


Asunto(s)
Antibacterianos , Porinas , Antibacterianos/química , Porinas/química , Simulación de Dinámica Molecular , Escherichia coli/metabolismo
15.
Nano Lett ; 23(20): 9437-9444, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37818841

RESUMEN

Nucleoside drugs, which are analogues of natural nucleosides, have been widely applied in the clinical treatment of viral infections and cancers. The development of nucleoside drugs, repurposing of existing drugs, and combined use of multiple drug types have made the rapid sensing of nucleoside drugs urgently needed. Nanopores are emerging single-molecule sensors that have high resolution to resolve even minor structural differences between chemical compounds. Here, an engineered Mycobacterium smegmatis porin A hetero-octamer was used to perform general nucleoside drug analysis. Ten nucleoside drugs were simultaneously detected and fully discriminated. An accuracy of >99.9% was consequently reported. This sensing capacity was further demonstrated in direct nanopore analysis of ribavirin buccal tablets, confirming its sensing reliability against complex samples and environments. No sample separation is needed, however, significantly minimizing the complexity of the measurement. This technique may inspire nanopore applications in pharmaceutical production and pharmacokinetics measurements.


Asunto(s)
Nanoporos , Nucleósidos , Reproducibilidad de los Resultados , Porinas/química , Mycobacterium smegmatis/química
16.
J Mol Biol ; 435(22): 168292, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37769963

RESUMEN

In protein evolution, diversification is generally driven by genetic duplication. The hallmarks of this mechanism are visible in the repeating topology of various proteins. In outer membrane ß-barrels, duplication is visible with ß-hairpins as the repeating unit of the barrel. In contrast to the overall use of duplication in diversification, a computational study hypothesized evolutionary mechanisms other than hairpin duplications leading to increases in the number of strands in outer membrane ß-barrels. Specifically, the topology of some 16- and 18-stranded ß-barrels appear to have evolved through a loop to ß-hairpin transition. Here we test this novel evolutionary mechanism by creating a chimeric protein from an 18-stranded ß-barrel and an evolutionarily related 16-stranded ß-barrel. The chimeric combination of the two was created by replacing loop L3 of the 16-stranded barrel with the sequentially matched transmembrane ß-hairpin region of the 18-stranded barrel. We find the resulting chimeric protein is stable and has characteristics of increased strand number. This study provides the first experimental evidence supporting the evolution through a loop to ß-hairpin transition.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Porinas , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Evolución Molecular Dirigida , Porinas/química , Porinas/genética , Dominios Proteicos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Pliegue de Proteína , Conformación Proteica en Lámina beta
17.
Nature ; 621(7979): 586-591, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37704725

RESUMEN

Many animal- and plant-pathogenic bacteria use a type III secretion system to deliver effector proteins into host cells1,2. Elucidation of how these effector proteins function in host cells is critical for understanding infectious diseases in animals and plants3-5. The widely conserved AvrE-family effectors, including DspE in Erwinia amylovora and AvrE in Pseudomonas syringae, have a central role in the pathogenesis of diverse phytopathogenic bacteria6. These conserved effectors are involved in the induction of 'water soaking' and host cell death that are conducive to bacterial multiplication in infected tissues. However, the exact biochemical functions of AvrE-family effectors have been recalcitrant to mechanistic understanding for three decades. Here we show that AvrE-family effectors fold into a ß-barrel structure that resembles bacterial porins. Expression of AvrE and DspE in Xenopus oocytes results in inward and outward currents, permeability to water and osmolarity-dependent oocyte swelling and bursting. Liposome reconstitution confirmed that the DspE channel alone is sufficient to allow the passage of small molecules such as fluorescein dye. Targeted screening of chemical blockers based on the predicted pore size (15-20 Å) of the DspE channel identified polyamidoamine dendrimers as inhibitors of the DspE/AvrE channels. Notably, polyamidoamines broadly inhibit AvrE and DspE virulence activities in Xenopus oocytes and during E. amylovora and P. syringae infections. Thus, we have unravelled the biochemical function of a centrally important family of bacterial effectors with broad conceptual and practical implications in the study of bacterial pathogenesis.


Asunto(s)
Proteínas Bacterianas , Células Vegetales , Enfermedades de las Plantas , Porinas , Agua , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Muerte Celular , Fluoresceína/metabolismo , Liposomas/metabolismo , Oocitos/metabolismo , Oocitos/microbiología , Células Vegetales/metabolismo , Células Vegetales/microbiología , Enfermedades de las Plantas/microbiología , Porinas/química , Porinas/metabolismo , Pliegue de Proteína , Soluciones/metabolismo , Agua/metabolismo , Xenopus laevis , Concentración Osmolar
18.
J Phys Chem B ; 127(28): 6316-6324, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37432843

RESUMEN

Supported lipid bilayers (SLBs) are commonly used to investigate interactions between cell membranes and their environment. These model platforms can be formed on electrode surfaces and analyzed using electrochemical methods for bioapplications. Carbon nanotube porins (CNTPs) integrated with SLBs have emerged as promising artificial ion channel platforms. In this study, we present the integration and ion transport characterization of CNTPs in in vivo environments. We combine experimental and simulation data obtained from electrochemical analysis to analyze the membrane resistance of the equivalent circuits. Our results show that carrying CNTPs on a gold electrode results in high conductance for monovalent cations (K+ and Na+) and low conductance for divalent cations (Ca2+).


Asunto(s)
Membrana Dobles de Lípidos , Nanotubos de Carbono , Membrana Dobles de Lípidos/química , Nanotubos de Carbono/química , Membrana Celular/química , Canales Iónicos , Porinas/química , Transporte Iónico
19.
Phys Chem Chem Phys ; 25(18): 12712-12722, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37098836

RESUMEN

Transmembrane ß-barrel proteins are key systems for transport phenomena in biology. Based on their broad substrate specificity, they represent good candidates for present and future technological applications, such as DNA/RNA and protein sequencing, sensing of biomedical analytes, and production of blue energy. For a better understanding of the process at the molecular level, we applied parallel tempering simulations in the WTE ensemble to compare two ß-barrel porins from Escherichia coli, OmpF and OmpC. Our analysis showed a different behavior of the two highly homologous porins, where subtle amino acid substitutions can modulate critical properties of mass transport. Interestingly, the differences can be mapped to the respective environmental conditions under which the two porins are expressed. Apart from reporting on the advantages of the enhanced sampling methods in assessing the molecular properties of nanopores, our comparative analysis provided new and key results to better understand biological function and technical applications. Eventually, we showed how results from molecular simulations align well with experimental single-channel measurements, thus demonstrating the mature evolution of numerical methodologies for predicting properties in this field crucial for future biomedical applications.


Asunto(s)
Escherichia coli , Porinas , Escherichia coli/metabolismo , Secuencia de Aminoácidos , Porinas/química , Proteínas de la Membrana Bacteriana Externa/química , Proteínas Bacterianas/metabolismo
20.
J Biol Phys ; 49(3): 309-327, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37010721

RESUMEN

Copper (Cu), one of the heavy metals, plays a vital role in many complex biochemical reactions as a trace element. However, it often becomes toxic when its concentration in the cell exceeds a certain level. Homeostasis of metals in the cell is primarily related to regulating metal transport into and out of the cell. Therefore, it is thought that porin proteins, which have a role in membrane permeability, may also play a role in developing Cu resistance. This study identified the differences between the molecular profiles of wild-type Escherichia coli W3110 and its seven different porin mutants exposed to Cu ions using attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy. The results showed that the absence of porin genes elicits global changes in the structure and composition of membrane lipids and proteins, in both the absence and presence of Cu. The lack of porin genes significantly elevated the amounts of fatty acids and phospholipids. When the alterations in protein secondary structures were compared, the quantity of amide I proteins was diminished by the presence of Cu. However, the amount of amide II proteins increased in porin mutant groups independent of Cu presence or absence. The DNAs are transformed from B- and Z-form to A-form due to porin mutations and the presence of Cu ions. The lack of porin genes increased polysaccharide content independent of Cu presence. This study can help characterize Cu detoxification efficiency and guide for obtaining active living cells to be used in bioremediation.


Asunto(s)
Escherichia coli , Porinas , Escherichia coli/genética , Escherichia coli/metabolismo , Porinas/genética , Porinas/química , Porinas/metabolismo , Cobre/toxicidad , Espectroscopía Infrarroja por Transformada de Fourier/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA