Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35.841
Filtrar
1.
PLoS One ; 19(5): e0301142, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38718088

RESUMEN

Steel cord materials were found to have internal porous microstructures and complex fluid flow properties. However, current studies have rarely reported the transport behavior of steel cord materials from a microscopic viewpoint. The computed tomography (CT) scanning technology and lattice Boltzmann method (LBM) were used in this study to reconstruct and compare the real three-dimensional (3D) pore structures and fluid flow in the original and tensile (by loading 800 N force) steel cord samples. The pore-scale LBM results showed that fluid velocities increased as displacement differential pressure increased in both the original and tensile steel cord samples, but with two different critical values of 3.3273 Pa and 2.6122 Pa, respectively. The original steel cord sample had higher maximal and average seepage velocities at the 1/2 sections of 3D construction images than the tensile steel cord sample. These phenomena should be attributed to the fact that when the original steel cord sample was stretched, its porosity decreased, pore radius increased, flow channel connectivity improved, and thus flow velocity increased. Moreover, when the internal porosity of tensile steel cord sample was increased by 1 time, lead the maximum velocity to increase by 1.52 times, and the average velocity was increased by 1.66 times. Furthermore, when the density range was determined to be 0-38, the pore phase showed the best consistency with the segmentation area. Depending on the Zou-He Boundary and Regularized Boundary, the relative error of simulated average velocities was only 0.2602 percent.


Asunto(s)
Acero , Acero/química , Porosidad , Resistencia a la Tracción , Hidrodinámica , Tomografía Computarizada por Rayos X
2.
Pak J Pharm Sci ; 37(1(Special)): 235-243, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38747275

RESUMEN

Stimulus-responsive mesoporous silica nanoparticles (MSNs) have displayed great potentiality for controlled-release and targeted drug delivery. In the current work, a supercritical fluid method was utilized to successfully prepare cinnamon oil loaded into chitosan grafted MSNs (CO@CS-MSNs). The influencing factors of drug loads, such as pressure, temperature, impregnation time and depressure time, were investigated. The structure of CO@CS-MSNs was demonstrated with Fourier-transform infrared (FT-IR) spectroscopy, transmission electron microscope (TEM), scanning electron microscopy (SEM), thermogravimetry (TG) as well as X-ray diffraction (XRD). The drug release assays in vitro at various pH conditions displayed that CO@CS-MSNs had an excellent pH-responsive release behavior, which confirmed that CO was loaded successfully into the CO@CS-MSNs. The findings indicated that the supercritical fluid approach is a non-destructive and efficient approach for stimulus-responsive MSNs, which is expected to further expand its application range.


Asunto(s)
Dióxido de Carbono , Quitosano , Cinnamomum zeylanicum , Liberación de Fármacos , Nanopartículas , Dióxido de Silicio , Quitosano/química , Dióxido de Silicio/química , Nanopartículas/química , Concentración de Iones de Hidrógeno , Dióxido de Carbono/química , Porosidad , Cinnamomum zeylanicum/química , Portadores de Fármacos/química , Aceites Volátiles/química , Aceites Volátiles/administración & dosificación , Difracción de Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Microscopía Electrónica de Rastreo , Preparaciones de Acción Retardada
3.
Molecules ; 29(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731508

RESUMEN

This study delves into the physicochemical properties of inorganic hydroxyapatite (HAp) and hybrid hydroxyapatite-chitosan (HAp-CTS) granules, also gold-enriched, which can be used as aggregates in biomicroconcrete-type materials. The impact of granules' surface modifications with citric acid (CA) or polyethylene glycol (PEG) was assessed. Citric acid modification induced increased specific surface area and porosity in inorganic granules, contrasting with reduced parameters in hybrid granules. PEG modification resulted in a slight increase in specific surface area for inorganic granules and a substantial rise for hybrid granules with gold nanoparticles. Varied effects on open porosity were observed based on granule type. Microstructural analysis revealed increased roughness for inorganic granules post CA modification, while hybrid granules exhibited smoother surfaces. Novel biomicroconcretes, based on α-tricalcium phosphate (α-TCP) calcium phosphate cement and developed granules as aggregates within, were evaluated for compressive strength. Compressive strength assessments showcased significant enhancement with PEG modification, emphasizing its positive impact. Citric acid modification demonstrated variable effects, depending on granule composition. The incorporation of gold nanoparticles further enriched the multifaceted approach to enhancing calcium phosphate-based biomaterials for potential biomedical applications. This study demonstrates the pivotal role of surface modifications in tailoring the physicochemical properties of granules, paving the way for advanced biomicroconcretes with improved compressive strength for diverse biomedical applications.


Asunto(s)
Ácido Cítrico , Durapatita , Polietilenglicoles , Ácido Cítrico/química , Durapatita/química , Polietilenglicoles/química , Oro/química , Materiales Biocompatibles/química , Ensayo de Materiales , Quitosano/química , Porosidad , Nanopartículas del Metal/química , Fenómenos Químicos , Fuerza Compresiva , Propiedades de Superficie
4.
Molecules ; 29(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38731585

RESUMEN

The techniques used to detect and quantify cyanocobalamin (vitamin B12) vary considerably in terms of detection sensitivity, from the most sensitive, based on radioisotopes and mass spectrometry (MS) with limits of detection (LOD) in fg mL-1, to fluorescence (FL) and surface plasmon resonance (SPR) biosensors with LOD values in the range of a few µg mL-1. For accurate quantification of an analyte present at trace levels in complex biological matrices, a selective separation and enrichment step is required to overcome matrix interferences and ensure sufficient detection sensitivity. In this study, iron oxide magnetic nanoparticles (IONPs) were used for the extraction and initial preconcentration of cyanocobalamin (vitamin B12). In the dependence of the magnetization on the H-field (hysteresis loop), no coercivity and remanence values were found at 300 K, indicating the superparamagnetic properties of the tested IONPs. Perfluorinated acids were used as amphiphilic agents to allow the sorption of cyanocobalamin onto the IONPs. FT-IR/ATR spectroscopy was used to confirm the sorption of cyanocobalamin on the IONPs. The influence of the addition of a homologous series of perfluorinated acids such as trifluoroacetic acid (TFAA), heptafluorobutyric acid (HFBA), and trichloroacetic acid (TCAA) to the extraction mixture was tested considering their type, mass, and time required for effective sorption. The adsorption kinetics and isotherm, described by the Freundlich and Langmuir equations, were analyzed. The maximum adsorption capacity (qm) exceeded 6 mg g-1 and was 8.9 mg g-1 and 7.7 mg g-1 for HFBA and TCAA, respectively, as the most efficient additives. After the desorption process using aqueous KH2PO4 solution, the sample was finally analyzed spectrophotometrically and chromatographically. The IONP-based method was successfully applied for the isolation of cyanocobalamin from human urine samples. The results showed that the developed approach is simple, cheap, accurate, and efficient for the determination of traces of cyanocobalamin in biological matrices.


Asunto(s)
Nanopartículas Magnéticas de Óxido de Hierro , Vitamina B 12 , Vitamina B 12/química , Vitamina B 12/análisis , Adsorción , Nanopartículas Magnéticas de Óxido de Hierro/química , Límite de Detección , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier
5.
Molecules ; 29(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38731608

RESUMEN

In this paper, Cu-BTC derived mesoporous CuS nanomaterial (m-CuS) was synthesized via a two-step process involving carbonization and sulfidation of Cu-BTC for colorimetric glutathione detection. The Cu-BTC was constructed by 1,3,5-benzenetri-carboxylic acid (H3BTC) and Cu2+ ions. The obtained m-CuS showed a large specific surface area (55.751 m2/g), pore volume (0.153 cm3/g), and pore diameter (15.380 nm). In addition, the synthesized m-CuS exhibited high peroxidase-like activity and could catalyze oxidation of the colorless substrate 3,3',5,5'-tetramethylbenzidine to a blue product. Peroxidase-like activity mechanism studies using terephthalic acid as a fluorescent probe proved that m-CuS assists H2O2 decomposition to reactive oxygen species, which are responsible for TMB oxidation. However, the catalytic activity of m-CuS for the oxidation of TMB by H2O2 could be potently inhibited in the presence of glutathione. Based on this phenomenon, the colorimetric detection of glutathione was demonstrated with good selectivity and high sensitivity. The linear range was 1-20 µM and 20-300 µM with a detection limit of 0.1 µM. The m-CuS showing good stability and robust peroxidase catalytic activity was applied for the detection of glutathione in human urine samples.


Asunto(s)
Colorimetría , Cobre , Glutatión , Peróxido de Hidrógeno , Nanoestructuras , Glutatión/análisis , Glutatión/química , Colorimetría/métodos , Cobre/química , Nanoestructuras/química , Catálisis , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Porosidad , Oxidación-Reducción , Ácidos Ftálicos/química , Humanos , Bencidinas/química , Límite de Detección
6.
Food Res Int ; 186: 114340, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729695

RESUMEN

Fruits are essential sources of nutrients in our daily diet; however, their spoilage is often intensified by mechanical damage and the ethylene phytohormone, resulting in significant economic losses and exacerbating hunger issues. To address these challenges, this study presented a straightforward in situ synthesis protocol for producing Z/SOPPU foam, a 3D porous-structured fruit packaging. This innovative packaging material offered advanced ethylene-adsorbing and cushioning capabilities achieved through stirring, heating, and standing treatments. The results demonstrated that the Z/SOPPU foam, with its porous structure, served as an excellent packaging material for fruits, maintaining the intact appearance of tomatoes even after being thrown 72 times from a height of 1.5 m. Additionally, it exhibited desirable hydrophobicity (contact angle of 114.31 ± 0.82°), degradability (2.73 ± 0.88 % per 4 weeks), and efficient ethylene adsorption (adsorption rate of 13.2 ± 1.7 mg/m3/h). These remarkable characteristics could be attributed to the unique 3D micron-porous configuration, consisting of soybean oil polyol polyurethane foam for mechanical strain cushioning and zein for enhanced ethylene adsorption efficiency. Overall, this research offers an effective and original approach to the rational design and fabrication of advanced bio-based fruit packaging.


Asunto(s)
Etilenos , Embalaje de Alimentos , Frutas , Poliuretanos , Aceite de Soja , Zeína , Etilenos/química , Poliuretanos/química , Embalaje de Alimentos/métodos , Porosidad , Frutas/química , Aceite de Soja/química , Zeína/química , Adsorción , Polímeros/química , Solanum lycopersicum/química , Interacciones Hidrofóbicas e Hidrofílicas
7.
ACS Biomater Sci Eng ; 10(5): 2827-2840, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38690985

RESUMEN

Silk fibroin, extracted from the silk of the Bombyx mori silkworm, stands out as a biomaterial due to its nontoxic nature, excellent biocompatibility, and adjustable biodegradability. Porous scaffolds, a type of biomaterial, are crucial for creating an optimal microenvironment that supports cell adhesion and proliferation, thereby playing an essential role in tissue remodeling and repair. Therefore, this review focuses on 3D porous silk fibroin-based scaffolds, first summarizing their preparation methods and then detailing their regenerative effects on bone, cartilage, tendon, vascular, neural, skin, hepatic, and tracheal epithelial tissue engineering in recent years.


Asunto(s)
Fibroínas , Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Porosidad , Animales , Humanos , Fibroínas/química , Bombyx , Materiales Biocompatibles/química , Seda/química
8.
J Nanobiotechnology ; 22(1): 246, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38735970

RESUMEN

Excessive production of reactive oxygen species (ROS) and inflammation are the key problems that impede diabetic wound healing. In particular, dressings with ROS scavenging capacity play a crucial role in the process of chronic wound healing. Herein, Zr-based large-pore mesoporous metal-organic frameworks (mesoMOFs) were successfully developed for the construction of spatially organized cascade bioreactors. Natural superoxide dismutase (SOD) and an artificial enzyme were spatially organized in these hierarchical mesoMOFs, forming a cascade antioxidant defense system, and presenting efficient intracellular and extracellular ROS scavenging performance. In vivo experiments demonstrated that the SOD@HMUiO-MnTCPP nanoparticles (S@M@H NPs) significantly accelerated diabetic wound healing. Transcriptomic and western blot results further indicated that the nanocomposite could inhibit fibroblast senescence and ferroptosis as well as the stimulator of interferon genes (STING) signaling pathway activation in macrophages mediated by mitochondrial oxidative stress through ROS elimination. Thus, the biomimetic multi-enzyme cascade catalytic system with spatial ordering demonstrated a high potential for diabetic wound healing, where senescence, ferroptosis, and STING signaling pathways may be potential targets.


Asunto(s)
Inflamación , Estructuras Metalorgánicas , Especies Reactivas de Oxígeno , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Ratones , Superóxido Dismutasa/metabolismo , Porosidad , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Células RAW 264.7 , Masculino , Ferroptosis/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Diabetes Mellitus Experimental , Nanopartículas/química , Humanos , Antioxidantes/farmacología , Nanocompuestos/química , Proteínas de la Membrana
9.
ACS Appl Mater Interfaces ; 16(19): 25404-25414, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38692284

RESUMEN

Liquid crystal elastomers (LCEs), as a classical two-way shape-memory material, are good candidates for developing artificial muscles that mimic the contraction, expansion, or rotational behavior of natural muscles. However, biomimicry is currently focused more on the actuation functions of natural muscles dominated by muscle fibers, whereas the tactile sensing functions that are dominated by neuronal receptors and synapses have not been well captured. Very few studies have reported the sensing concept for LCEs, but the signals were still donated by macroscopic actuation, that is, variations in angle or length. Herein, we develop a conductive porous LCE (CPLCE) using a solvent (dimethyl sulfoxide (DMSO))-templated photo-cross-linking strategy, followed by carbon nanotube (CNT) incorporation. The CPLCE has excellent reversible contraction/elongation behavior in a manner similar to the actuation functions of skeletal muscles. Moreover, the CPLCE shows excellent pressure-sensing performance by providing real-time electrical signals and is capable of microtouch sensing, which is very similar to natural tactile sensing. Furthermore, macroscopic actuation and tactile sensation can be integrated into a single system. Proof-of-concept studies reveal that the CPLCE-based artificial muscle is sensitive to external touch while maintaining its excellent actuation performance. The CPLCE with tactile sensation beyond reversible actuation is expected to benefit the development of versatile artificial muscles and intelligent robots.


Asunto(s)
Elastómeros , Cristales Líquidos , Nanotubos de Carbono , Cristales Líquidos/química , Elastómeros/química , Nanotubos de Carbono/química , Porosidad , Solventes/química , Tacto/fisiología , Órganos Artificiales , Músculo Esquelético/fisiología , Músculo Esquelético/química , Humanos
10.
ACS Appl Mater Interfaces ; 16(19): 25317-25332, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38706308

RESUMEN

This investigation aimed to construct a bilayer scaffold integrating alginate and gelatin with nanobioactive glass (BG), recognized for their efficacy in tissue regeneration and drug delivery. Scaffolds, namely, alginate/gelatin (AG), alginate-/actonel gelatin (AGD), alginate actenol/gelatin-45S5 BG (4AGD), and alginate-actonel/gelatin-59S BG (5AGD), were assembled using a cost-effective freeze-drying method, followed by detailed structural investigation via powder X-ray diffraction as well as morphological characterization using field emission scanning electron microscopy (FESEM). FESEM revealed a honeycomb-like morphology with distinct pore sizes for nutrient, oxygen, and drug transport. The scaffolds evidently exhibited hemocompatibility, high porosity, good swelling capacity, and biodegradability. In vitro studies demonstrated sustained drug release, particularly for scaffolds containing actonel. In vivo tests showed that the bilayer scaffold promoted new bone formation, surpassing the control group in bone area increase. The interaction of the scaffold with collagen and released ions improved the osteoblastic function and bone volume fraction. The findings suggest that this bilayer scaffold could be beneficial for treating critical-sized bone defects, especially in the mandibular and femoral regions.


Asunto(s)
Fémur , Vidrio , Mandíbula , Andamios del Tejido , Andamios del Tejido/química , Animales , Vidrio/química , Mandíbula/diagnóstico por imagen , Mandíbula/cirugía , Mandíbula/efectos de los fármacos , Fémur/efectos de los fármacos , Fémur/diagnóstico por imagen , Fémur/patología , Gelatina/química , Regeneración Ósea/efectos de los fármacos , Alginatos/química , Porosidad , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ingeniería de Tejidos
11.
ACS Appl Mater Interfaces ; 16(19): 24398-24409, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38712727

RESUMEN

Low-molecular weight proteins (LWPs) are important sources of biological information in biomarkers, signaling molecules, and pathology. However, the separation and analysis of LWPs in complex biological samples are challenging, mainly due to their low abundance and the complex sample pretreatment procedure. Herein, trypsin modified by poly(acrylic acid) (PAA) was encapsulated by a zeolitic imidazolate framework (ZIF-L). Mesopores were formed on the ZIF-L with the introduction of PAA. An alternative strategy for separation and pretreatment of LWPs was developed based on the prepared ZIF-L-encapsulated trypsin with adjustable pore size. The mesoporous structure of the prepared materials selectively excluded high-molecular weight proteins from the reaction system, allowing LWPs to enter the pores and react with the internal trypsin, resulting in an improved separation efficiency. The hydrophobicity of the ZIF-L simplified the digestion process by inducing significant structural changes in substrate proteins. In addition, the enzymatic activity was significantly enhanced by the developed encapsulation method that maintained the enzyme conformation, allowed low mass transfer resistance, and possessed a high enzyme-to-substrate ratio. As a result, the ZIF-L-encapsulated trypsin can achieve highly selective separation, valid denaturation, and efficient digestion of LWPs in a short time by simply mixing with substrate proteins, greatly simplifying the separation and pretreatment process of the traditional hydrolysis method. The prepared materials and the developed strategy demonstrated an excellent size-selective assay performance in model protein mixtures, showing great potential in the application of proteomics analysis.


Asunto(s)
Imidazoles , Tripsina , Zeolitas , Tripsina/química , Tripsina/metabolismo , Zeolitas/química , Imidazoles/química , Peso Molecular , Resinas Acrílicas/química , Porosidad , Proteínas/química
12.
Anal Chem ; 96(19): 7679-7686, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38698534

RESUMEN

Despite the success of surface-enhanced Raman spectroscopy (SERS) for detecting DNA immobilized on plasmonic metal surfaces, its quantitative response is limited by the rapid falloff of enhancement with distance from the metal surface and variations in sensitivity that depend on orientation and proximity to plasmonic "hot spots". In this work, we assess an alternative approach for enhancing detection by immobilizing DNA on the interior surfaces of porous silica particles. These substrates provide over a 1000-fold greater surface area for detection compared to a planar support. The porous silica substrate is a purely dielectric material with randomly oriented internal surfaces, where scattering is independent of proximity and orientation of oligonucleotides relative to the silica surface. We characterize the quantitative response of Raman scattering from DNA in porous silica particles with sequences used in previous SERS investigations of DNA for comparison. The results show that Raman scattering of DNA in porous silica is independent of distance of nucleotides from the silica surface, allowing detection of longer DNA strands with constant sensitivity. The surface area enhancement within particles is reproducible (<4% particle-to-particle variation) owing to the uniform internal pore structure and surface chemistry of the silica support. DNA immobilization with a bis-thiosuccinimide linker provides a Raman-active internal standard for quantitative interpretation of Raman scattering results. Despite the high (30 mM) concentrations of immobilized DNA within porous silica particles, they can be used to measure nanomolar binding affinities of target molecules to DNA by equilibrating a very small number of particles with a sufficiently large volume of low-concentration solution of target molecules.


Asunto(s)
ADN , Dióxido de Silicio , Espectrometría Raman , Propiedades de Superficie , Dióxido de Silicio/química , Espectrometría Raman/métodos , Porosidad , ADN/química , ADN/análisis
13.
Carbohydr Polym ; 338: 122148, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38763731

RESUMEN

Alginate-based materials present promising potential for emergency hemostasis due to their excellent properties, such as procoagulant capability, biocompatibility, low immunogenicity, and cost-effectiveness. However, the inherent deficiencies in water solubility and mechanical strength pose a threat to hemostatic efficiency. Here, we innovatively developed a macromolecular cross-linked alginate aerogel based on norbornene- and thiol-functionalized alginates through a combined thiol-ene cross-linking/freeze-drying process. The resulting aerogel features an interconnected macroporous structure with remarkable water-uptake capacity (approximately 9000 % in weight ratio), contributing to efficient blood absorption, while the enhanced mechanical strength of the aerogel ensures stability and durability during the hemostatic process. Comprehensive hemostasis-relevant assays demonstrated that the aerogel possessed outstanding coagulation capability, which is attributed to the synergistic impacts on concentrating effect, platelet enrichment, and intrinsic coagulation pathway. Upon application to in vivo uncontrolled hemorrhage models of tail amputation and hepatic injury, the aerogel demonstrated significantly superior performance compared to commercial alginate hemostatic agent, yielding reductions in clotting time and blood loss of up to 80 % and 85 %, respectively. Collectively, our work illustrated that the alginate porous aerogel overcomes the deficiencies of alginate materials while exhibiting exceptional performance in hemorrhage, rendering it an appealing candidate for rapid hemostasis.


Asunto(s)
Alginatos , Geles , Hemostasis , Hemostáticos , Alginatos/química , Animales , Hemostáticos/química , Hemostáticos/farmacología , Hemostasis/efectos de los fármacos , Geles/química , Porosidad , Hemorragia/tratamiento farmacológico , Coagulación Sanguínea/efectos de los fármacos , Ratones , Masculino , Reactivos de Enlaces Cruzados/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
14.
Eur Rev Med Pharmacol Sci ; 28(9): 3391-3402, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38766802

RESUMEN

OBJECTIVE: Although pure titanium (PT) and its alloys exhibit excellent mechanical properties, they lack biological activity as implants. The purpose of this study was to improve the biological activity of titanium implants through surface modification. MATERIALS AND METHODS: Titanium was processed into titanium discs, where the titanium discs served as anodes and stainless steel served as cathodes, and a copper- and cobalt-doped porous coating [pure titanium model (PTM)] was prepared on the surface of titanium via plasma electrolytic oxidation. The surface characteristics of the coating were evaluated using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and profilometry. The corrosion resistance of PTM was evaluated with an electrochemical workstation. The biocompatibility and bioactivity of coated bone marrow mesenchymal stem cells (BMSCs) were evaluated through in vitro cell experiments. RESULTS: A copper- and cobalt-doped porous coating was successfully prepared on the surface of titanium, and the doping of copper and cobalt did not change the surface topography of the coating. The porous coating increased the surface roughness of titanium and improved its resistance to corrosion. In addition, the porous coating doped with copper and cobalt promoted the adhesion and spreading of BMSCs. CONCLUSIONS: A porous coating doped with copper and cobalt was prepared on the surface of titanium through plasma electrolytic oxidation. The coating not only improved the roughness and corrosion resistance of titanium but also exhibited good biological activity.


Asunto(s)
Materiales Biocompatibles Revestidos , Cobalto , Cobre , Células Madre Mesenquimatosas , Propiedades de Superficie , Titanio , Titanio/química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Cobre/química , Porosidad , Cobalto/química , Animales , Corrosión , Ensayo de Materiales , Células Cultivadas , Prótesis e Implantes
15.
Sci Rep ; 14(1): 11450, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769394

RESUMEN

A mesoporous silica nanoparticle (MSN) coated with polydopamine (PDA) and loaded with umbelliprenin (UMB) was prepared and evaluated for its anti-cancer properties in this study. Then UMB-MSN-PDA was characterized by dynamic light scattering (DLS), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM) and FTIR methods. UV-visible spectrometry was employed to study the percentage of encapsulation efficiency (EE%). UMB-MSN-PDA mediated cell cytotoxicity and their ability to induce programmed cell death were evaluated by MTT, real-time qPCR, flow cytometry, and AO/PI double staining methods. The size of UMB-MSN-PDA was 196.7 with a size distribution of 0.21 and a surface charge of -41.07 mV. The EE% was 91.92%. FESEM and TEM showed the spherical morphology of the UMB-MSN-PDA. FTIR also indicated the successful interaction of the UMB and MSN and PDA coating. The release study showed an initial 20% release during the first 24 h of the study and less than 40% during 168 h. The lower cytotoxicity of the UMB-MSN-PDA against HFF normal cells compared to MCF-7 carcinoma cells suggested the safety of formulation on normal cells and tissues. The induction of apoptosis in MCF-7 cells was indicated by the upregulation of P53, caspase 8, and caspase 9 genes, enhanced Sub-G1 phase cells, and the AO/PI fluorescent staining. As a result of these studies, it may be feasible to conduct preclinical studies shortly to evaluate the formulation for its potential use in cancer treatment.


Asunto(s)
Antineoplásicos , Indoles , Nanopartículas , Polímeros , Dióxido de Silicio , Humanos , Indoles/química , Indoles/farmacología , Dióxido de Silicio/química , Polímeros/química , Nanopartículas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Porosidad , Células MCF-7 , Umbeliferonas/química , Umbeliferonas/farmacología , Portadores de Fármacos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos
16.
Jt Dis Relat Surg ; 35(2): 340-346, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38727113

RESUMEN

OBJECTIVES: The aim of this study was to investigate the effects of adding hexagonal boron nitride at four different concentrations to polymethylmethacrylate (PMMA) bone cement, which is commonly used in orthopedic surgeries, on the mechanical properties and microarchitecture of the bone cement. MATERIALS AND METHODS: The study included an unaltered control group and groups containing four different concentrations (40 g of bone cement with 0.5 g, 1 g, 1.5 g, 2 g) of hexagonal boron nitride. The samples used for mechanical tests were prepared at 20±2ºC in operating room conditions, using molds in accordance with the test standards. As a result of the tests, the pressure values at which the samples deformed were determined from the load-deformation graphs, and the megapascal (MPa) values at which the samples exhibited strength were calculated. RESULTS: The samples with 0.5 g boron added to the bone cement had significantly increased mechanical strength, particularly in the compression test. In the group where 2 g boron was added, it was noted that, compared to the other groups, the strength pressure decreased and the porosity increased. The porosity did not change particularly in the group where 0.5 g boron was added. CONCLUSION: Our study results demonstrate that adding hexagonal boron nitride (HBN) to bone cement at a low concentration (0.5 g / 40 g PPMA) significantly increases the mechanical strength in terms of MPa (compression forces) without adversely affecting porosity. However, the incorporation of HBN at higher concentrations increases porosity, thereby compromising the biomechanical properties of the bone cement, as evidenced by the negative impact on compression and four-point bending tests. Boron-based products have gained increased utilization in the medical field, and HBN is emerging as a promising chemical compound, steadily growing in significance.


Asunto(s)
Cementos para Huesos , Compuestos de Boro , Fuerza Compresiva , Ensayo de Materiales , Polimetil Metacrilato , Compuestos de Boro/química , Compuestos de Boro/farmacología , Polimetil Metacrilato/química , Cementos para Huesos/química , Ensayo de Materiales/métodos , Porosidad , Estrés Mecánico
17.
J Colloid Interface Sci ; 668: 678-690, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38710124

RESUMEN

Aerogels, as a unique porous material, are expected to be used as insulation materials to solve the global environmental and energy crisis. Using chitosan, citric acid, pectin and phytic acid as raw materials, an all-biomass-based aerogel with high modulus was prepared by the triple strategy of ionic, physical and chemical cross-linking through directional freezing technique. Based on this three-dimensional network, the aerogel exhibited excellent compressive modulus (24.89 ± 1.76 MPa) over a wide temperature range and thermal insulation properties. In the presence of chitosan, citric acid and phytic acid, the aerogel obtained excellent fire safety (LOI value up to 31.2%) and antibacterial properties (antibacterial activity against Staphylococcus aureus and Escherichia coli reached 81.98% and 67.43%). In addition, the modified aerogel exhibited excellent hydrophobicity (hydrophobic angle of 146°) and oil-water separation properties. More importantly, the aerogel exhibited a biodegradation rate of up to 40.31% for 35 days due to its all-biomass nature. This work provides a green and sustainable strategy for the production of highly environmentally friendly thermal insulation materials with high strength, flame retardant, antibacterial and hydrophobic properties.


Asunto(s)
Antibacterianos , Quitosano , Ácido Cítrico , Escherichia coli , Geles , Staphylococcus aureus , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Geles/química , Quitosano/química , Ácido Cítrico/química , Biomasa , Interacciones Hidrofóbicas e Hidrofílicas , Porosidad , Ácido Fítico/química , Pectinas/química , Reactivos de Enlaces Cruzados/química , Pruebas de Sensibilidad Microbiana , Propiedades de Superficie , Tamaño de la Partícula , Temperatura
18.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731827

RESUMEN

The reunion and restoration of large segmental bone defects pose significant clinical challenges. Conventional strategies primarily involve the combination of bone scaffolds with seeded cells and/or growth factors to regulate osteogenesis and angiogenesis. However, these therapies face inherent issues related to immunogenicity, tumorigenesis, bioactivity, and off-the-shelf transplantation. The biogenic micro-environment created by implanted bone grafts plays a crucial role in initiating the bone regeneration cascade. To address this, a highly porous bi-phasic ceramic synthetic bone graft, composed of hydroxyapatite (HA) and alumina (Al), was developed. This graft was employed to repair critical segmental defects, involving the creation of a 2 cm segmental defect in a canine tibia. The assessment of bone regeneration within the synthetic bone graft post-healing was conducted using scintigraphy, micro-CT, histology, and dynamic histomorphometry. The technique yielded pore sizes in the range of 230-430 µm as primary pores, 40-70 µm as secondary inner microchannels, and 200-400 nm as tertiary submicron surface holes. These three components are designed to mimic trabecular bone networks and to provide body fluid adsorption, diffusion, a nutritional supply, communication around the cells, and cell anchorage. The overall porosity was measured at 82.61 ± 1.28%. Both micro-CT imaging and histological analysis provided substantial evidence of robust bone formation and the successful reunion of the critical defect. Furthermore, an histology revealed the presence of vascularization within the newly formed bone area, clearly demonstrating trabecular and cortical bone formation at the 8-week mark post-implantation.


Asunto(s)
Regeneración Ósea , Tibia , Andamios del Tejido , Animales , Perros , Andamios del Tejido/química , Tibia/diagnóstico por imagen , Proyectos Piloto , Osteogénesis , Porosidad , Microtomografía por Rayos X , Durapatita , Trasplante Óseo/métodos , Sustitutos de Huesos
19.
Biomed Mater ; 19(4)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38697132

RESUMEN

During the process of malignant tumor treatment, photodynamic therapy (PDT) exerts poor efficacy due to the hypoxic environment of the tumor cells, and long-time chemotherapy reduces the sensitivity of tumor cells to chemotherapy drugs due to the presence of drug-resistant proteins on the cell membranes for drug outward transportation. Therefore, we reported a nano platform based on mesoporous silica coated with polydopamine (MSN@PDA) loading PDT enhancer MnO2, photosensitizer indocyanine green (ICG) and chemotherapeutic drug doxorubicin (DOX) (designated as DMPIM) to achieve a sequential release of different drugs to enhance treatment of malignant tumors. MSN was first synthesized by a template method, then DOX was loaded into the mesoporous channels of MSN, and locked by the PDA coating. Next, ICG was modified by π-π stacking on PDA, and finally, MnO2layer was accumulated on the surface of DOX@MSN@PDA- ICG@MnO2, achieving orthogonal loading and sequential release of different drugs. DMPIM first generated oxygen (O2) through the reaction between MnO2and H2O2after entering tumor cells, alleviating the hypoxic environment of tumors and enhancing the PDT effect of sequentially released ICG. Afterwards, ICG reacted with O2in tumor tissue to produce reactive oxygen species, promoting lysosomal escape of drugs and inactivation of p-glycoprotein (p-gp) on tumor cell membranes. DOX loaded in the MSN channels exhibited a delay of approximately 8 h after ICG release to exert the enhanced chemotherapy effect. The drug delivery system achieved effective sequential release and multimodal combination therapy, which achieved ideal therapeutic effects on malignant tumors. This work offers a route to a sequential drug release for advancing the treatment of malignant tumors.


Asunto(s)
Doxorrubicina , Liberación de Fármacos , Verde de Indocianina , Indoles , Compuestos de Manganeso , Óxidos , Fotoquimioterapia , Fármacos Fotosensibilizantes , Polímeros , Fotoquimioterapia/métodos , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Verde de Indocianina/química , Indoles/química , Animales , Compuestos de Manganeso/química , Humanos , Polímeros/química , Línea Celular Tumoral , Óxidos/química , Fármacos Fotosensibilizantes/química , Dióxido de Silicio/química , Ratones , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Portadores de Fármacos/química , Porosidad
20.
Int J Nanomedicine ; 19: 4253-4261, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38766662

RESUMEN

Purpose: Recently, Single-atom-loaded carbon-based material is a new environmentally friendly and stable photothermal antibacterial nanomaterial. It is still a great challenge to achieve single-atom loading on carbon materials. Materials and Methods: Herein, We doped single-atom Ag into ZIF-8-derived porous carbon to obtain Ag-doped ZIF-8-derived porous carbon(AgSA-ZDPC). The as-prepared samples were characterized by XRD, XPS, FESEM, EDX, TEM, and HAADF-STEM which confirmed that the single-atom Ag successfully doped into the porous carbon. Further, the photothermal properties and antimicrobial activity of AgSA-ZDPC have been tested. Results: The results showed that the temperature increased by 30 °C after near-infrared light irradiation(1 W/cm2) for 5 min which was better than ZIF-8-derived porous carbon(ZDPC). It also exhibits excellent photothermal stability after the laser was switched on and off 5 times. When the AgSA-ZDPC concentration was greater than 50 µg/mL and the near-infrared irradiation was performed for 5 min, the growth inhibition of S. aureus and E. coli was almost 100%. Conclusion: This work provides a simple method for the preparation of single-atom Ag-doped microporous carbon which has potential antibacterial application.


Asunto(s)
Antibacterianos , Carbono , Escherichia coli , Plata , Staphylococcus aureus , Antibacterianos/química , Antibacterianos/farmacología , Plata/química , Plata/farmacología , Porosidad , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Carbono/química , Carbono/farmacología , Rayos Infrarrojos , Pruebas de Sensibilidad Microbiana , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Zeolitas/química , Zeolitas/farmacología , Imidazoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA