Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52.412
Filtrar
1.
Technol Cancer Res Treat ; 23: 15330338241250244, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38693842

RESUMEN

Single biofilm biomimetic nanodrug delivery systems based on single cell membranes, such as erythrocytes and cancer cells, have immune evasion ability, good biocompatibility, prolonged blood circulation, and high tumor targeting. Because of the different characteristics and functions of each single cell membrane, more researchers are using various hybrid cell membranes according to their specific needs. This review focuses on several different types of biomimetic nanodrug-delivery systems based on composite biofilms and looks forward to the challenges and possible development directions of biomimetic nanodrug-delivery systems based on composite biofilms to provide reference and ideas for future research.


Asunto(s)
Antineoplásicos , Biopelículas , Biomimética , Sistemas de Liberación de Medicamentos , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Biopelículas/efectos de los fármacos , Biomimética/métodos , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Materiales Biomiméticos/química , Animales , Portadores de Fármacos/química
2.
ACS Appl Bio Mater ; 7(5): 3403-3413, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38700026

RESUMEN

The delivery of drugs to the brain in the therapy of diseases of the central nervous system (CNS) remains a continuing challenge because of the lack of delivery systems that can cross the blood-brain barrier (BBB). Therefore, there is a need to develop an innovative delivery method for the treatment of CNS diseases. Thus, we have investigated the interaction of γ-aminobutyric acid (GABA) and S-(-)-γ-amino-α-hydroxybutyric acid (GAHBA) with the GABA receptor by performing a docking study. Both GABA and GAHBA show comparable binding affinities toward the receptor. In this study, we developed surface-modified solid lipid nanoparticles (SLNs) using GAHBA-derived lipids that can cross the BBB. CLB-loaded SLNs were characterized by a number of methods including differential scanning calorimetry, dynamic light scattering, UV-vis spectroscopy, and transmission electron microscopy. The blank and CLB-loaded SLN suspensions were found to exhibit good storage stability. Also, the SLNs showed a higher encapsulation efficiency for CLB drugs. In vitro release kinetics of CLB at physiological temperature was also investigated. The results of the in vitro cell cytotoxicity assay and flow cytometry studies in the human glioma U87MG cell line and human prostate cancer PC3 cell line suggested a higher efficacy of the GAHBA-modified CLB-loaded SLNs in U87MG cells. The transcription level of GABA receptor expression in the target organ and cell line was analyzed by a reverse transcription polymerase chain reaction study. The in vivo biodistribution and brain uptake in C57BL6 mice and SPECT/CT imaging in Wistar rats investigated using 99mTc-labeled SLN and autoradiography suggest that the SLNs have an increasing brain uptake. We have demonstrated the delivery of the anticancer drug chlorambucil (CLB) to glioma.


Asunto(s)
Encéfalo , Clorambucilo , Lípidos , Nanopartículas , Tamaño de la Partícula , Clorambucilo/química , Clorambucilo/farmacología , Clorambucilo/administración & dosificación , Nanopartículas/química , Animales , Encéfalo/metabolismo , Lípidos/química , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ensayo de Materiales , Propiedades de Superficie , Ratones , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Sistemas de Liberación de Medicamentos , Ratas , Portadores de Fármacos/química , Línea Celular Tumoral
3.
ACS Appl Bio Mater ; 7(5): 3337-3345, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38700956

RESUMEN

A stimuli-responsive drug delivery nanocarrier with a core-shell structure combining photothermal therapy and chemotherapy for killing cancer cells was constructed in this study. The multifunctional nanocarrier ReS2@mSiO2-RhB entails an ReS2 hierarchical nanosphere coated with a fluorescent mesoporous silica shell. The three-dimensional hierarchical ReS2 nanostructure is capable of effectively absorbing near-infrared (NIR) light and converting it into heat. These ReS2 nanospheres were generated by a hydrothermal synthesis process leading to the self-assembly of few-layered ReS2 nanosheets. The mesoporous silica shell was further coated on the surface of the ReS2 nanospheres through a surfactant-templating sol-gel approach to provide accessible mesopores for drug uploading. A fluorescent dye (Rhodamine B) was covalently attached to silica precursors and incorporated during synthesis in the mesoporous silica walls toward conferring imaging capability to the nanocarrier. Doxorubicin (DOX), a known cancer drug, was used in a proof-of-concept study to assess the material's ability to function as a drug delivery carrier. While the silica pores are not capped, the drug molecule loading and release take advantage of the pH-governed electrostatic interactions between the drug and silica wall. The ReS2@mSiO2-RhB enabled a drug loading content as high as 19.83 mg/g doxorubicin. The ReS2@mSiO2-RhB-DOX nanocarrier's cumulative drug release rate at pH values that simulate physiological conditions showed significant pH responsiveness, reaching 59.8% at pH 6.8 and 98.5% and pH 5.5. The in vitro testing using HeLa cervical cancer cells proved that ReS2@mSiO2-RhB-DOX has a strong cancer eradication ability upon irradiation with an NIR laser owing to the combined drug delivery and photothermal effect. The results highlight the potential of ReS2@mSiO2-RhB nanoparticles for combined cancer therapy in the future.


Asunto(s)
Doxorrubicina , Liberación de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Ensayo de Materiales , Nanopartículas , Tamaño de la Partícula , Terapia Fototérmica , Renio , Dióxido de Silicio , Dióxido de Silicio/química , Humanos , Doxorrubicina/farmacología , Doxorrubicina/química , Concentración de Iones de Hidrógeno , Nanopartículas/química , Renio/química , Renio/farmacología , Disulfuros/química , Porosidad , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/síntesis química , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/química , Antineoplásicos/farmacología , Portadores de Fármacos/química , Células HeLa
4.
Eur J Pharm Biopharm ; 199: 114310, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705311

RESUMEN

Nanoparticle-based drug delivery systems hold potential in chemotherapy, but their limited accumulation in tumor tissues hinders effective drug concentration for combating tumor growth. Hence, altering the physicochemical properties of nanoparticles, particularly their surface charge, can enhance their performance. This study utilized a computational model to explore a nanoparticle drug delivery system capable of dynamically adjusting its surface charge. In the model, nanoparticles in the bloodstream were assigned a neutral or positive charge, which, upon reaching the tumor microenvironment, switched to a neutral or negative charge, and releasing chemotherapy drugs into the extracellular space. Results revealed that circulating nanoparticles with a positive surface charge, despite having a shorter circulation and high clearance rate compared to their neutral counterparts, could accumulate significantly in the tissue due to their high transvascular rate. After extravasation, neutralized surface-charged nanoparticles tended to accumulate only near blood microvessels due to their low diffusion rate, resulting in substantial released drug drainage back into the bloodstream. On the other hand, nanoparticles with a negative surface charge in the tumor's extracellular space, due to the reduction of nano-bio interactions, were able to penetrate deeper into the tumor, and increasing drug bioavailability by reducing the volume of drained drugs. Furthermore, the analysis suggested that burst drug release yields a higher drug concentration than sustained drug release, however their creation of bioavailability dependent on nanoparticle accumulation in the tissue. The study's findings demonstrate the potential of this delivery system and offer valuable insights for future research in this area.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Humanos , Microambiente Tumoral/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Disponibilidad Biológica , Liberación de Fármacos , Sistema de Administración de Fármacos con Nanopartículas/química , Simulación por Computador , Distribución Tisular , Portadores de Fármacos/química
5.
ACS Nano ; 18(20): 13117-13129, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38727027

RESUMEN

The complexity, heterogeneity, and drug resistance of diseases necessitate a shift in therapeutic paradigms from monotherapy to combination therapy, which could augment treatment efficiency. Effective treatment of advanced osteoarthritis (OA) requires addressing three key factors contributing to its deterioration: chronic joint inflammation, lubrication dysfunction, and cartilage-tissue degradation. Herein, we present a supramolecular nanomedicine of multifunctionality via molecular recognition and self-assembly. The employed macrocyclic carrier, zwitterion-modified cavitand (CV-2), not only accurately loads various drugs but also functions as a therapeutic agent with lubricating properties for the treatment of OA. Kartogenin (KGN), a drug for articular cartilage regeneration and protection, and flurbiprofen (FP), an anti-inflammatory agent, were coloaded onto CV-2 assembly, forming a supramolecular nanomedicine KGN&FP@CV-2. The three-in-one combination therapy of KGN&FP@CV-2 addresses the three pathological features for treating OA collectively, and thus provides long-term therapeutic benefits for OA through sustained drug release and intrinsic lubrication in vivo. The multifunctional integration of macrocyclic delivery and therapeutics provides a simple, flexible, and universal platform for the synergistic treatment of diseases involving multiple drugs.


Asunto(s)
Flurbiprofeno , Osteoartritis , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , Animales , Flurbiprofeno/química , Flurbiprofeno/administración & dosificación , Flurbiprofeno/farmacología , Ácidos Ftálicos/química , Ácidos Ftálicos/farmacología , Sistemas de Liberación de Medicamentos , Humanos , Portadores de Fármacos/química , Lubrificación , Liberación de Fármacos , Ratones , Masculino , Anilidas
6.
Artículo en Inglés | MEDLINE | ID: mdl-38757428

RESUMEN

Natural bioactive compounds from plants exhibit substantial pharmacological potency and therapeutic value. However, the development of most plant bioactive compounds is hindered by low solubility and instability. Conventional pharmaceutical forms, such as tablets and capsules, only partially overcome these limitations, restricting their efficacy. With the recent development of nanotechnology, nanocarriers can enhance the bioavailability, stability, and precise intracellular transport of plant bioactive compounds. Researchers are increasingly integrating nanocarrier-based drug delivery systems (NDDS) into the development of natural plant compounds with significant success. Moreover, natural products benefit from nanotechnological enhancement and contribute to the innovation and optimization of nanocarriers via self-assembly, grafting modifications, and biomimetic designs. This review aims to elucidate the collaborative and reciprocal advancement achieved by integrating nanocarriers with botanical products, such as bioactive compounds, polysaccharides, proteins, and extracellular vesicles. This review underscores the salient challenges in nanomedicine, encompassing long-term safety evaluations of nanomedicine formulations, precise targeting mechanisms, biodistribution complexities, and hurdles in clinical translation. Further, this study provides new perspectives to leverage nanotechnology in promoting the development and optimization of natural plant products for nanomedical applications and guiding the progression of NDDS toward enhanced efficiency, precision, and safety. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.


Asunto(s)
Productos Biológicos , Portadores de Fármacos , Productos Biológicos/química , Humanos , Portadores de Fármacos/química , Animales , Nanomedicina , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Nanotecnología
7.
Sci Rep ; 14(1): 11400, 2024 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762571

RESUMEN

The current study developed an innovative design for the production of smart multifunctional core-double shell superparamagnetic nanoparticles (NPs) with a focus on the development of a pH-responsive drug delivery system tailored for the controlled release of Phenytoin, accompanied by real-time monitoring capabilities. In this regard, the ultra-small superparamagnetic iron oxide@silica NPs (IO@Si MNPs) were synthesized and then coated with a layer of gelatin containing Phenytoin as an antiepileptic drug. The precise saturation magnetization value for the resultant NPs was established at 26 emu g-1. The polymeric shell showed a pH-sensitive behavior with the capacity to regulate the release of encapsulated drug under neutral pH conditions, simultaneously, releasing more amount of the drug in a simulated tumorous-epileptic acidic condition. The NPs showed an average size of 41.04 nm, which is in the desired size range facilitating entry through the blood-brain barrier. The values of drug loading and encapsulation efficiency were determined to be 2.01 and 10.05%, respectively. Moreover, kinetic studies revealed a Fickian diffusion process of Phenytoin release, and diffusional exponent values based on the Korsmeyer-Peppas equation were achieved at pH 7.4 and pH 6.3. The synthesized NPs did not show any cytotoxicity. Consequently, this new design offers a faster release of PHT at the site of a tumor in response to a change in pH, which is essential to prevent epileptic attacks.


Asunto(s)
Anticonvulsivantes , Sistemas de Liberación de Medicamentos , Gelatina , Fenitoína , Dióxido de Silicio , Gelatina/química , Anticonvulsivantes/química , Anticonvulsivantes/administración & dosificación , Dióxido de Silicio/química , Concentración de Iones de Hidrógeno , Fenitoína/química , Fenitoína/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Humanos , Compuestos Férricos/química , Liberación de Fármacos , Portadores de Fármacos/química , Nanopartículas Magnéticas de Óxido de Hierro/química , Nanopartículas de Magnetita/química , Nanopartículas/química , Tamaño de la Partícula
8.
Sci Rep ; 14(1): 11350, 2024 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762628

RESUMEN

A new 3D metal-organic frameworks [Cd6(L)4(bipy)3(H2O)2·H2O] (1) was gained by employing Cd(II) and organic ligand [H3L = 4,4',4''-(benzene-1,3,5-triyltris(oxy))tribenzoic acid)benzene acid; bipy = 4,4'-bipyridine] in the solvothermal condition, which has been fully examined via single-X ray diffraction, FTIR and elemental analysis and so on. Using natural polysaccharides hyaluronic acid (HA) and carboxymethyl chitosan (CMCS) as raw materials, we successfully prepared HA/CMCS hydrogels and observed their internal micromorphology by scanning electron microscopy. Using doxorubicin (Dox) as a drug model, we synthesized a novel metal gel particle loaded with doxorubicin, and their encapsulation and release effects were studied using fluorescence spectroscopy, followed by further investigation of their components through thermogravimetric analysis. Based on this, the therapeutic effect on leukemia was evaluated. Finally, an enhanced learning method for automatically designing new ligand structures from host ligands was proposed. Through generative modeling and molecular docking simulations, the biological behavior of the host and predicted cadmium complexes was extensively studied.


Asunto(s)
Quitosano , Doxorrubicina , Hidrogeles , Leucemia , Doxorrubicina/química , Doxorrubicina/farmacología , Hidrogeles/química , Quitosano/química , Quitosano/análogos & derivados , Humanos , Leucemia/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Cadmio/química , Ácido Hialurónico/química , Estructuras Metalorgánicas/química , Portadores de Fármacos/química , Línea Celular Tumoral , Animales , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacología
9.
Int J Nanomedicine ; 19: 4339-4356, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774026

RESUMEN

Background: The in vivo barriers and multidrug resistance (MDR) are well recognized as great challenges for the fulfillment of antitumor effects of current drugs, which calls for the development of novel therapeutic agents and innovative drug delivery strategies. Nanodrug (ND) combining multiple drugs with distinct modes of action holes the potential to circumvent these challenges, while the introduction of photothermal therapy (PTT) can give further significantly enhanced efficacy in cancer therapy. However, facile preparation of ND which contains dual drugs and photothermal capability with effective cancer treatment ability has rarely been reported. Methods: In this study, we selected curcumin (Cur) and doxorubicin (Dox) as two model drugs for the creation of a cocktail ND (Cur-Dox ND). We utilized polyvinylpyrrolidone (PVP) as a stabilizer and regulator to prepare Cur-Dox ND in a straightforward one-pot method. Results: The size of the resulting Cur-Dox ND can be easily adjusted by tuning the charged ratios. It was noted that both loaded drugs in Cur-Dox ND can realize their functions in the same target cell. Especially, the P-glycoprotein inhibition effect of Cur can synergistically cooperate with Dox, leading to enhanced inhibition of 4T1 cancer cells. Furthermore, Cur-Dox ND exhibited pH-responsive dissociation of loaded drugs and a robust photothermal translation capacity to realize multifunctional combat of cancer for photothermal enhanced anticancer performance. We further demonstrated that this effect can also be realized in 3D multicellular model, which possibly attributed to its superior drug penetration as well as photothermal-enhanced cellular uptake and drug release. Conclusion: In summary, Cur-Dox ND might be a promising ND for better cancer therapy.


Asunto(s)
Curcumina , Doxorrubicina , Povidona , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacocinética , Povidona/química , Curcumina/química , Curcumina/farmacología , Curcumina/farmacocinética , Línea Celular Tumoral , Animales , Ratones , Humanos , Nanopartículas/química , Tamaño de la Partícula , Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Terapia Fototérmica/métodos , Liberación de Fármacos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Portadores de Fármacos/química , Supervivencia Celular/efectos de los fármacos
10.
Pak J Pharm Sci ; 37(1(Special)): 235-243, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38747275

RESUMEN

Stimulus-responsive mesoporous silica nanoparticles (MSNs) have displayed great potentiality for controlled-release and targeted drug delivery. In the current work, a supercritical fluid method was utilized to successfully prepare cinnamon oil loaded into chitosan grafted MSNs (CO@CS-MSNs). The influencing factors of drug loads, such as pressure, temperature, impregnation time and depressure time, were investigated. The structure of CO@CS-MSNs was demonstrated with Fourier-transform infrared (FT-IR) spectroscopy, transmission electron microscope (TEM), scanning electron microscopy (SEM), thermogravimetry (TG) as well as X-ray diffraction (XRD). The drug release assays in vitro at various pH conditions displayed that CO@CS-MSNs had an excellent pH-responsive release behavior, which confirmed that CO was loaded successfully into the CO@CS-MSNs. The findings indicated that the supercritical fluid approach is a non-destructive and efficient approach for stimulus-responsive MSNs, which is expected to further expand its application range.


Asunto(s)
Dióxido de Carbono , Quitosano , Cinnamomum zeylanicum , Liberación de Fármacos , Nanopartículas , Dióxido de Silicio , Quitosano/química , Dióxido de Silicio/química , Nanopartículas/química , Concentración de Iones de Hidrógeno , Dióxido de Carbono/química , Porosidad , Cinnamomum zeylanicum/química , Portadores de Fármacos/química , Aceites Volátiles/química , Aceites Volátiles/administración & dosificación , Difracción de Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Microscopía Electrónica de Rastreo , Preparaciones de Acción Retardada
11.
Int J Biol Macromol ; 268(Pt 1): 131769, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38692999

RESUMEN

This study investigates the synthesis of selenium nanoparticles (SeNPs), owing to the low cost and abundance of selenium. However, the toxicity of SeNP prompts the development of a selenium nanocomposite (SeNC) containing pectin, keratin, and ferulic acid to improve the bioactivity of Se[0]. Further, incorporating the SeNC in a suitable formulation for drug delivery as a transdermal patch was worth studying. Accordingly, various analytical techniques were used to characterize the SeNPs and the SeNC, confirming successful synthesis and encapsulation. The SeNC exhibited notable particle size of 448.2 ± 50.2 nm, high encapsulation efficiency (98.90 % ± 2.4 %), 28.1 ± 0.45 drug loading, and sustained drug release at pH 5.5. Zeta potential and XPS confirmed the zero-oxidation state. The supramolecular structure was evident from spectral analysis endorsing the semi-crystalline nature of the SeNC and SEM images showcasing flower-shaped structures. Further, the SeNC demonstrated sustained drug release (approx. 22 % at 48 h) and wound-healing potential in L929 fibroblast cells. Subsequently, the SeNC loaded into a gelling agent exhibited shear thinning properties and improved drug release by nearly 58 %. A 3D printed reservoir-type transdermal patch was developed utilizing the SeNC-loaded gel, surpassing commercially available patches in characteristics such as % moisture uptake, tensile strength, and hydrophobicity. The patch, evaluated through permeation studies and CAM assay, exhibited controlled drug release and angiogenic properties for enhanced wound healing. The study concludes that this patch can serve as a smart dressing with tailored functionality for different wound stages, offering a promising novel drug delivery system for wound healing.


Asunto(s)
Liberación de Fármacos , Queratinas , Nanogeles , Pectinas , Impresión Tridimensional , Selenio , Parche Transdérmico , Selenio/química , Pectinas/química , Queratinas/química , Animales , Nanogeles/química , Ratones , Oxidación-Reducción , Cicatrización de Heridas/efectos de los fármacos , Línea Celular , Nanocompuestos/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Tamaño de la Partícula
12.
Int J Nanomedicine ; 19: 3991-4005, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720939

RESUMEN

Purpose: Surgical site infections pose a significant challenge for medical services. Systemic antibiotics may be insufficient in preventing bacterial biofilm development. With the local administration of antibiotics, it is easier to minimize possible complications, achieve drugs' higher concentration at the injured site, as well as provide their more sustained release. Therefore, the main objective of the proposed herein studies was the fabrication and characterization of innovative hydrogel-based composites for local vancomycin (VAN) therapy. Methods: Presented systems are composed of ionically gelled chitosan particles loaded with vancomycin, embedded into biomimetic collagen/chitosan/hyaluronic acid-based hydrogels crosslinked with genipin and freeze-dried to serve in a flake/disc-like form. VAN-loaded carriers were characterized for their size, stability, and encapsulation efficiency (EE) using dynamic light scattering technique, zeta potential measurements, and UV-Vis spectroscopy, respectively. The synthesized composites were tested in terms of their physicochemical and biological features. Results: Spherical structures with sizes of about 200 nm and encapsulation efficiencies reaching values of approximately 60% were obtained. It was found that the resulting particles exhibit stability over time. The antibacterial activity of the developed materials against Staphylococcus aureus was established. Moreover, in vitro cell culture study revealed that the surfaces of all prepared systems are biocompatible as they supported the proliferation and adhesion of the model MG-63 cells. In addition, we have demonstrated significantly prolonged VAN release while minimizing the initial burst effect for the composites compared to bare nanoparticles and verified their desired physicochemical features during swellability, and degradation experiments. Conclusion: It is expected that the developed herein system will enable direct delivery of the antibiotic at an exposed to infections surgical site, providing drugs sustained release and thus will reduce the risk of systemic toxicity. This strategy would both inhibit biofilm formation and accelerate the healing process.


Asunto(s)
Antibacterianos , Quitosano , Hidrogeles , Staphylococcus aureus , Vancomicina , Vancomicina/química , Vancomicina/farmacología , Vancomicina/administración & dosificación , Vancomicina/farmacocinética , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Hidrogeles/química , Hidrogeles/farmacología , Staphylococcus aureus/efectos de los fármacos , Humanos , Quitosano/química , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Portadores de Fármacos/química , Colágeno/química , Colágeno/farmacología , Tamaño de la Partícula , Liberación de Fármacos , Infección de la Herida Quirúrgica/prevención & control , Infección de la Herida Quirúrgica/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Biopelículas/efectos de los fármacos
13.
AAPS PharmSciTech ; 25(5): 104, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724836

RESUMEN

Salinomycin (Sal) has been recently discovered as a novel chemotherapeutic agent against various cancers including prostate cancer which is one of the most commonly diagnosed cancers affecting male populations worldwide. Herein we designed salinomycin nanocarrier (Sal-NPs) to extend its systemic circulation and to increase its anticancer potential. Prepared nanoform showed high encapsulation and sustained release profile for salinomycin. The present study elucidated the cytotoxicity and mechanism of apoptotic cell death of Sal-NPs against prostate cancer both in vitro and in vivo. At all measured concentrations, Sal-NPs showed more significant cytotoxicity to DU145 and PC3 cells than Sal alone. This effect was mediated by apoptosis, as confirmed by ROS generation, loss of MMP and cell cycle arrest at the G1 phase in both cells. Sal-NPs efficiently inhibited migration of PC3 and DU145 cells via effectively downregulating the epithelial mesenchymal transition. Also, the results confirmed that Sal-NPs can effectively inhibit the induction of Prostate adenocarcinoma in male Wistar rats. Sal-NPs treatment exhibited a decrease in tumour sizes, a reduction in prostate weight, and an increase in body weight, which suggests that Sal-NPs is more effective than salinomycin alone. Our results suggest that the molecular mechanism underlying the Sal-NPs anticancer effect may lead to the development of a potential therapeutic strategy for treating prostate adenocarcinoma.


Asunto(s)
Adenocarcinoma , Antineoplásicos , Apoptosis , Portadores de Fármacos , Transición Epitelial-Mesenquimal , Nanopartículas , Neoplasias de la Próstata , Piranos , Ratas Wistar , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Animales , Piranos/farmacología , Piranos/administración & dosificación , Apoptosis/efectos de los fármacos , Humanos , Ratas , Línea Celular Tumoral , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Adenocarcinoma/metabolismo , Portadores de Fármacos/química , Nanopartículas/química , Transición Epitelial-Mesenquimal/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Movimiento Celular/efectos de los fármacos , Células PC-3 , Sistemas de Liberación de Medicamentos/métodos , Policétidos Poliéteres
14.
AAPS PharmSciTech ; 25(5): 106, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724834

RESUMEN

The primary factor underlying the virulence of Candida albicans is its capacity to form biofilms, which in turn leads to recurrent complications. Over-the-counter antifungal treatments have proven ineffective in eliminating fungal biofilms and the inflammatory cytokines produced during fungal infections. Chitosan nanoparticles offer broad and versatile therapeutic potential as both antifungal agents and carriers for antifungal drugs to combat biofilm-associated Candida infections. In our study, we endeavoured to develop chitosan nanoparticles utilising chitosan and the antifungal crosslinker phytic acid targeting C. albicans. Phytic acid, known for its potent antifungal and anti-inflammatory properties, efficiently crosslinks with chitosan. The nanoparticles were synthesised using the ionic gelation technique and subjected to analyses including Fourier transform infrared spectroscopy, dynamic light scattering, and zeta potential analysis. The synthesised nanoparticles exhibited dimensions with a diameter (Dh) of 103 ± 3.9 nm, polydispersity index (PDI) of 0.33, and zeta potential (ZP) of 37 ± 2.5 mV. These nanoparticles demonstrated an antifungal effect with a minimum inhibitory concentration (MIC) of 140 ± 2.2 µg/mL, maintaining cell viability at approximately 90% of the MIC value and reducing cytokine levels. Additionally, the nanoparticles reduced ergosterol content and exhibited a 62% ± 1.2 reduction in biofilm susceptibility, as supported by colony-forming unit (CFU) and XTT assays-furthermore, treatment with nanoparticles reduced exopolysaccharide production and decreased secretion of aspartyl protease by C. albicans. Our findings suggest that the synthesised nanoparticles effectively combat Candida albicans infections. In vivo studies conducted on a mouse model of vaginal candidiasis confirmed the efficacy of the nanoparticles in combating fungal infections in vivo.


Asunto(s)
Antifúngicos , Biopelículas , Candida albicans , Quitosano , Pruebas de Sensibilidad Microbiana , Nanopartículas , Ácido Fítico , Quitosano/química , Biopelículas/efectos de los fármacos , Nanopartículas/química , Antifúngicos/farmacología , Antifúngicos/administración & dosificación , Animales , Candida albicans/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana/métodos , Ácido Fítico/farmacología , Ácido Fítico/administración & dosificación , Ácido Fítico/química , Femenino , Candidiasis/tratamiento farmacológico , Tamaño de la Partícula , Portadores de Fármacos/química , Reactivos de Enlaces Cruzados/química , Citocinas/metabolismo
15.
Drug Des Devel Ther ; 18: 1469-1495, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38707615

RESUMEN

This manuscript offers a comprehensive overview of nanotechnology's impact on the solubility and bioavailability of poorly soluble drugs, with a focus on BCS Class II and IV drugs. We explore various nanoscale drug delivery systems (NDDSs), including lipid-based, polymer-based, nanoemulsions, nanogels, and inorganic carriers. These systems offer improved drug efficacy, targeting, and reduced side effects. Emphasizing the crucial role of nanoparticle size and surface modifications, the review discusses the advancements in NDDSs for enhanced therapeutic outcomes. Challenges such as production cost and safety are acknowledged, yet the potential of NDDSs in transforming drug delivery methods is highlighted. This contribution underscores the importance of nanotechnology in pharmaceutical engineering, suggesting it as a significant advancement for medical applications and patient care.


Asunto(s)
Disponibilidad Biológica , Nanotecnología , Solubilidad , Humanos , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/administración & dosificación , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Portadores de Fármacos/química , Animales
16.
Int J Nanomedicine ; 19: 3861-3890, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708178

RESUMEN

Introduction: Cystic fibrosis (CF) is associated with pulmonary Pseudomonas aeruginosa infections persistent to antibiotics. Methods: To eradicate pseudomonal biofilms, solid lipid nanoparticles (SLNs) loaded with quorum-sensing-inhibitor (QSI, disrupting bacterial crosstalk), coated with chitosan (CS, improving internalization) and immobilized with alginate lyase (AL, destroying alginate biofilms) were developed. Results: SLNs (140-205 nm) showed prolonged release of QSI with no sign of acute toxicity to A549 and Calu-3 cells. The CS coating improved uptake, whereas immobilized-AL ensured >1.5-fold higher uptake and doubled SLN diffusion across the artificial biofilm sputum model. Respirable microparticles comprising SLNs in carbohydrate matrix elicited aerodynamic diameters MMAD (3.54, 2.48 µm) and fine-particle-fraction FPF (65, 48%) for anionic and cationic SLNs, respectively. The antimicrobial and/or antibiofilm activity of SLNs was explored in Pseudomonas aeruginosa reference mucoid/nonmucoid strains as well as clinical isolates. The full growth inhibition of planktonic bacteria was dependent on SLN type, concentration, growth medium, and strain. OD measurements and live/dead staining proved that anionic SLNs efficiently ceased biofilm formation and eradicated established biofilms, whereas cationic SLNs unexpectedly promoted biofilm progression. AL immobilization increased biofilm vulnerability; instead, CS coating increased biofilm formation confirmed by 3D-time lapse confocal imaging. Incubation of SLNs with mature biofilms of P. aeruginosa isolates increased biofilm density by an average of 1.5-fold. CLSM further confirmed the binding and uptake of the labeled SLNs in P. aeruginosa biofilms. Considerable uptake of CS-coated SLNs in non-mucoid strains could be observed presumably due to interaction of chitosan with LPS glycolipids in the outer cell membrane of P. aeruginosa. Conclusion: The biofilm-destructive potential of QSI/SLNs/AL inhalation is promising for site-specific biofilm-targeted interventional CF therapy. Nevertheless, the intrinsic/extrinsic fundamentals of nanocarrier-biofilm interactions require further investigation.


Asunto(s)
Antibacterianos , Biopelículas , Quitosano , Liposomas , Nanopartículas , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Biopelículas/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Humanos , Infecciones por Pseudomonas/tratamiento farmacológico , Nanopartículas/química , Quitosano/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/farmacocinética , Portadores de Fármacos/química , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/microbiología , Lípidos/química , Lípidos/farmacología , Percepción de Quorum/efectos de los fármacos , Células A549 , Alginatos/química
17.
Int J Nanomedicine ; 19: 3847-3859, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708182

RESUMEN

Background: Dihydroartemisinin (DHA) has emerged as a promising candidate for anticancer therapy. However, the application of DHA in clinics has been hampered by several limitations including poor bioavailability, short circulation life, and low solubility, significantly restricting its therapeutic efficacy and leading to notable side effects during the treatment. Purpose: We present DHA-loaded zeolitic imidazolate framework-8 (D-ZIF) with controllable and targeted DHA release properties, leading to enhanced antitumor effects while reducing potential side effects. Methods: D-ZIF was prepared by one-pot synthesis method using methylimidazole (MIM), Zn(NO3)2•6H2O and DHA. We characterized the physical and chemical properties of D-ZIF by TEM, DLS, XRD, FT-IR, and TG. We measured the drug loading efficiency and the cumulative release of DHA in different pH conditions. We evaluated the cytotoxicity of D-ZIF on renal cell carcinoma (RCC786-O), glioma cells (U251), TAX-resistant human lung adenocarcinoma (A549-TAX) cells by CCK8 in vitro. We explored the possible antitumor mechanism of D-ZIF by Western blot. We evaluated the biocompatibility and hemolysis of D-ZIF and explored the in vivo antitumor efficiency in mice model by TUNEL testing and blood biomarker evaluations. Results: D-ZIF showed rhombic dodecahedral morphology with size of 129±7.2 nm and possessed a noticeable DHA encapsulation efficiency (72.9%). After 48 hours, D-ZIF released a cumulative 70.0% of the loaded DHA at pH 6.5, and only 42.1% at pH 7.4. The pH-triggered programmed release behavior of D-ZIF could enhance anticancer effect of DHA while minimizing side effects under normal physiological conditions. Compared with the free DHA group with 31.75% of A549-TAX cell apoptosis, the percentage of apoptotic cells was approximately 76.67% in the D-ZIF group. D-ZIF inhibited tumor growth by inducing tumor cell apoptosis through the mechanism of ROS production and regulation of Nrf2/HO-1 and P38 MAPK signaling pathways. D-ZIF showed potent effects in treating tumors with high safety in vivo. Conclusion: This pH-responsive release mechanism enhanced the targeting efficiency of DHA towards tumor cells, thereby increasing drug concentration in tumor sites with negligible side effects. Herein, D-ZIF holds great promise for curing cancers with minimal adverse effects.


Asunto(s)
Antineoplásicos , Artemisininas , Resistencia a Antineoplásicos , Imidazoles , Neoplasias Pulmonares , Estructuras Metalorgánicas , Especies Reactivas de Oxígeno , Artemisininas/química , Artemisininas/farmacología , Artemisininas/farmacocinética , Animales , Humanos , Especies Reactivas de Oxígeno/metabolismo , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacocinética , Estructuras Metalorgánicas/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Ratones , Resistencia a Antineoplásicos/efectos de los fármacos , Línea Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/farmacocinética , Concentración de Iones de Hidrógeno , Células A549 , Liberación de Fármacos , Ratones Desnudos , Apoptosis/efectos de los fármacos , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Hemólisis/efectos de los fármacos
18.
Carbohydr Polym ; 337: 122145, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710553

RESUMEN

Hyaluronic acid (HA) has emerged as a promising biopolymer for various biomedical applications due to its biocompatibility, biodegradability, and intrinsic ability to interact with cell surface receptors, making it an attractive candidate for drug delivery systems and tissue engineering. Chemical modification of HA has opened up versatile possibilities to tailor its properties, enabling the development of advanced drug delivery systems and biomaterials with enhanced functionalities and targeted applications. This review analyzes the strategies and applications of chemically modified HA in the field of drug delivery and biomaterial development. The first part of the review focuses on the different methods and functional groups used for the chemical modification of HA, highlighting the impact of these modifications on its physicochemical properties, degradation behavior and interactions with drugs. The second part of the review evaluates the use of chemically modified HA in the development of advanced biomedical materials including nano- and microparticles, hydrogels and mucoadhesive materials with tailored drug release profiles, site-specific targeting and stimuli-responsive behavior. Thus, the review consolidates the current advances and future perspectives in the field of chemical modification of HA, underscoring its immense potential to drive the development of advanced drug delivery systems and biomaterials with diverse biomedical applications.


Asunto(s)
Materiales Biocompatibles , Sistemas de Liberación de Medicamentos , Ácido Hialurónico , Hidrogeles , Ácido Hialurónico/química , Humanos , Sistemas de Liberación de Medicamentos/métodos , Materiales Biocompatibles/química , Hidrogeles/química , Animales , Liberación de Fármacos , Portadores de Fármacos/química , Ingeniería de Tejidos/métodos , Nanopartículas/química
19.
AAPS PharmSciTech ; 25(5): 96, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710855

RESUMEN

Central nervous system-related disorders have become a continuing threat to human life and the current statistic indicates an increasing trend of such disorders worldwide. The primary therapeutic challenge, despite the availability of therapies for these disorders, is to sustain the drug's effective concentration in the brain while limiting its accumulation in non-targeted areas. This is attributed to the presence of the blood-brain barrier and first-pass metabolism which limits the transportation of drugs to the brain irrespective of popular and conventional routes of drug administration. Therefore, there is a demand to practice alternative routes for predictable drug delivery using advanced drug delivery carriers to overcome the said obstacles. Recent research attracted attention to intranasal-to-brain drug delivery for promising targeting therapeutics in the brain. This review emphasizes the mechanisms to deliver therapeutics via different pathways for nose-to-brain drug delivery with recent advancements in delivery and formulation aspects. Concurrently, for the benefit of future studies, the difficulties in administering medications by intranasal pathway have also been highlighted.


Asunto(s)
Administración Intranasal , Barrera Hematoencefálica , Encéfalo , Sistemas de Liberación de Medicamentos , Administración Intranasal/métodos , Humanos , Sistemas de Liberación de Medicamentos/métodos , Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Animales , Portadores de Fármacos/química , Preparaciones Farmacéuticas/administración & dosificación , Mucosa Nasal/metabolismo
20.
AAPS PharmSciTech ; 25(5): 94, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710898

RESUMEN

This study introduces and assesses the potential of a Luliconazole-loaded nanofiber (LUL-NF) patch, fabricated through electrospinning, for enhancing topical drug delivery. The primary objectives involve evaluating the nanofiber structure, characterizing physical properties, determining drug loading and release kinetics, assessing antifungal efficacy, and establishing the long-term stability of the NF patch. LUL-NF patches were fabricated via electrospinning and observed by SEM at approximately 200 nm dimensions. The comprehensive analysis included physical properties (thickness, folding endurance, swelling ratio, weight, moisture content, and drug loading) and UV analysis for drug quantification. In vitro studies explored sustained drug release kinetics, while microbiological assays evaluated antifungal efficacy against Candida albicans and Aspergillus Niger. Stability studies confirmed long-term viability. Comparative analysis with the pure drug, placebo NF patch, LUL-NF patch, and Lulifod gel was conducted using agar diffusion, revealing enhanced performance of the LUL-NF patch. SEM analysis revealed well-defined LUL-NF patches (0.80 mm thickness) with exceptional folding endurance (> 200 folds) and a favorable swelling ratio (12.66 ± 0.73%). The patches exhibited low moisture uptake (3.4 ± 0.09%) and a moisture content of 11.78 ± 0.54%. Drug loading in 1 cm2 section was 1.904 ± 0.086 mg, showing uniform distribution and sustained release kinetics in vitro. The LUL-NF patch demonstrated potent antifungal activity. Stability studies affirmed long-term stability, and comparative analysis highlighted increased inhibition compared to a pure drug, LUL-NF patch, and a commercial gel. The electrospun LUL-NF patch enhances topical drug delivery, promising extended therapy through single-release, one-time application, and innovative drug delivery strategies, supported by thorough analysis.


Asunto(s)
Antifúngicos , Aspergillus niger , Candida albicans , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Imidazoles , Nanofibras , Antifúngicos/administración & dosificación , Antifúngicos/farmacología , Antifúngicos/química , Nanofibras/química , Candida albicans/efectos de los fármacos , Aspergillus niger/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Imidazoles/química , Imidazoles/administración & dosificación , Imidazoles/farmacología , Preparaciones de Acción Retardada , Pruebas de Sensibilidad Microbiana/métodos , Portadores de Fármacos/química , Estabilidad de Medicamentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA