Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.066
Filtrar
1.
Hippocampus ; 34(9): 454-463, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39150316

RESUMEN

Estrogens are believed to modulate cognitive functions in part through the modulation of synaptic transmission in the cortex and hippocampus. Administration of 17ß-estradiol (E2) can rapidly enhance excitatory synaptic transmission in the hippocampus and facilitate excitatory synaptic transmission in rat lateral entorhinal cortex via activation of the G protein-coupled estrogen receptor-1 (GPER1). To assess the mechanisms through which GPER1 activation facilitates synaptic transmission, we assessed the effects of acute 10 nM E2 administration on pharmacologically isolated evoked excitatory and inhibitory synaptic currents in layer II/III entorhinal neurons. Female Long-Evans rats were ovariectomized between postnatal day (PD) 63 and 74 and implanted with a subdermal E2 capsule to maintain continuous low levels of E2. Electrophysiological recordings were obtained between 7 and 20 days after ovariectomy. Application of E2 for 20 min did not significantly affect AMPA or NMDA receptor-mediated excitatory synaptic currents. However, GABA receptor-mediated inhibitory synaptic currents (IPSCs) were markedly reduced by E2 and returned towards baseline levels during the 20-min washout period. The inhibition of GABA-mediated IPSCs was blocked in the presence of the GPER1 receptor antagonist G15. GPER1 can modulate protein kinase A (PKA), but blocking PKA with intracellular KT5720 did not prevent the E2-induced reduction in IPSCs. GPER1 can also stimulate extracellular signal-regulated kinase (ERK), a negative modulator of GABAA receptors, and blocking activation of ERK with PD90859 prevented the E2-induced reduction of IPSCs. E2 can therefore result in a rapid GPER1 and ERK signaling-mediated reduction in GABA-mediated IPSCs. This provides a novel mechanism through which E2 can rapidly modulate synaptic excitability in entorhinal layer II/III neurons and may also contribute to E2 and ERK-dependent alterations in synaptic transmission in other brain areas.


Asunto(s)
Corteza Entorrinal , Estradiol , Quinasas MAP Reguladas por Señal Extracelular , Neuronas , Ratas Long-Evans , Receptores Acoplados a Proteínas G , Animales , Corteza Entorrinal/efectos de los fármacos , Corteza Entorrinal/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Estradiol/farmacología , Femenino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Receptores de Estrógenos/metabolismo , Ovariectomía , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Técnicas de Placa-Clamp , Estrógenos/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores
2.
Neurobiol Dis ; 199: 106590, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38996987

RESUMEN

The infralimbic cortex (IL) is part of the medial prefrontal cortex (mPFC), exerting top-down control over structures that are critically involved in the development of alcohol use disorder (AUD). Activity of the IL is tightly controlled by γ-aminobutyric acid (GABA) transmission, which is susceptible to chronic alcohol exposure and withdrawal. This inhibitory control is regulated by various neuromodulators, including 5-hydroxytryptamine (5-HT; serotonin). We used chronic intermittent ethanol vapor inhalation exposure, a model of AUD, in male Sprague-Dawley rats to induce alcohol dependence (Dep) followed by protracted withdrawal (WD; 2 weeks) and performed ex vivo electrophysiology using whole-cell patch clamp to study GABAergic transmission in layer V of IL pyramidal neurons. We found that WD increased frequencies of spontaneous inhibitory postsynaptic currents (sIPSCs), whereas miniature IPSCs (mIPSCs; recorded in the presence of tetrodotoxin) were unaffected by either Dep or WD. The application of 5-HT (50 µM) increased sIPSC frequencies and amplitudes in naive and Dep rats but reduced sIPSC frequencies in WD rats. Additionally, 5-HT2A receptor antagonist M100907 and 5-HT2C receptor antagonist SB242084 reduced basal GABA release in all groups to a similar extent. The blockage of either 5-HT2A or 5-HT2C receptors in WD rats restored the impaired response to 5-HT, which then resembled responses in naive rats. Our findings expand our understanding of synaptic inhibition in the IL in AUD, indicating that antagonism of 5-HT2A and 5-HT2C receptors may restore GABAergic control over IL pyramidal neurons. SIGNIFICANCE STATEMENT: Impairment in the serotonergic modulation of GABAergic inhibition in the medial prefrontal cortex contributes to alcohol use disorder (AUD). We used a well-established rat model of AUD and ex vivo whole-cell patch-clamp electrophysiology to characterize the serotonin modulation of GABAergic transmission in layer V infralimbic (IL) pyramidal neurons in ethanol-naive, ethanol-dependent (Dep), and ethanol-withdrawn (WD) male rats. We found increased basal inhibition following WD from chronic alcohol and altered serotonin modulation. Exogenous serotonin enhanced GABAergic transmission in naive and Dep rats but reduced it in WD rats. 5-HT2A and 5-HT2C receptor blockage in WD rats restored the typical serotonin-mediated enhancement of GABAergic inhibition. Our findings expand our understanding of synaptic inhibition in the infralimbic neurons in AUD.


Asunto(s)
Alcoholismo , Etanol , Potenciales Postsinápticos Inhibidores , Corteza Prefrontal , Ratas Sprague-Dawley , Serotonina , Síndrome de Abstinencia a Sustancias , Transmisión Sináptica , Ácido gamma-Aminobutírico , Animales , Masculino , Serotonina/metabolismo , Ratas , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Alcoholismo/metabolismo , Alcoholismo/fisiopatología , Etanol/farmacología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Síndrome de Abstinencia a Sustancias/metabolismo , Síndrome de Abstinencia a Sustancias/fisiopatología , Ácido gamma-Aminobutírico/metabolismo , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo
3.
J Neurophysiol ; 132(2): 501-513, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38958282

RESUMEN

Neuromodulation in the retina is crucial for effective processing of retinal signal at different levels of illuminance. Intrinsically photosensitive retinal ganglion cells (ipRGCs), the neurons that drive nonimage-forming visual functions, express a variety of neuromodulatory receptors that tune intrinsic excitability as well as synaptic inputs. Past research has examined actions of neuromodulators on light responsiveness of ipRGCs, but less is known about how neuromodulation affects synaptic currents in ipRGCs. To better understand how neuromodulators affect synaptic processing in ipRGC, we examine actions of opioid and dopamine agonists have on inhibitory synaptic currents in ipRGCs. Although µ-opioid receptor (MOR) activation had no effect on γ-aminobutyric acid (GABA) currents, dopamine [via the D1-type dopamine receptor (D1R)]) amplified GABAergic currents in a subset of ipRGCs. Furthermore, this D1R-mediated facilitation of the GABA conductance in ipRGCs was mediated by a cAMP/PKA-dependent mechanism. Taken together, these findings reinforce the idea that dopamine's modulatory role in retinal adaptation affects both nonimage-forming and image-forming visual functions.NEW & NOTEWORTHY Neuromodulators such as dopamine are important regulators of retinal function. Here, we demonstrate that dopamine increases inhibitory inputs to intrinsically photosensitive retinal ganglion cells (ipRGCs), in addition to its previously established effect on intrinsic light responsiveness. This indicates that dopamine, in addition to its ability to intrinsically modulate ipRGC activity, can also affect synaptic inputs to ipRGCs, thereby tuning retina circuits involved in nonimage-forming visual functions.


Asunto(s)
Dopamina , Receptores de GABA-A , Células Ganglionares de la Retina , Animales , Células Ganglionares de la Retina/fisiología , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Dopamina/metabolismo , Dopamina/farmacología , Receptores de GABA-A/metabolismo , Ratones , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/antagonistas & inhibidores , Ratones Endogámicos C57BL , Receptores Opioides mu/metabolismo , Masculino , Potenciales Postsinápticos Inhibidores/fisiología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Femenino , Agonistas de Dopamina/farmacología
4.
Sci Rep ; 14(1): 17461, 2024 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075105

RESUMEN

GABAergic transmission is influenced by post-translational modifications, like phosphorylation, impacting channel conductance, allosteric modulator sensitivity, and membrane trafficking. O-GlcNAcylation is a post-translational modification involving the O-linked attachment of ß-N-acetylglucosamine on serine/threonine residues. Previously we reported an acute increase in O-GlcNAcylation elicits a long-term depression of evoked GABAAR inhibitory postsynaptic currents (eIPSCs) onto hippocampal principal cells. Importantly, O-GlcNAcylation and phosphorylation can co-occur or compete for the same residue; whether they interact in modulating GABAergic IPSCs is unknown. We tested this by recording IPSCs from hippocampal principal cells and pharmacologically increased O-GlcNAcylation, before or after increasing serine phosphorylation using the adenylate cyclase activator, forskolin. Although forskolin had no significant effect on baseline eIPSC amplitude, we found that a prior increase in O-GlcNAcylation unmasks a forskolin-dependent increase in eIPSC amplitude, reversing the O-GlcNAc-induced eIPSC depression. Inhibition of adenylate cyclase or protein kinase A did not prevent the potentiating effect of forskolin, indicating serine phosphorylation is not the mechanism. Surprisingly, increasing O-GlcNAcylation also unmasked a potentiating effect of the neurosteroids 5α-pregnane-3α,21-diol-20-one (THDOC) and progesterone on eIPSC amplitude in about half of the recorded cells, mimicking forskolin. Our findings show that under conditions of heightened O-GlcNAcylation, the neurosteroid site on synaptic GABAARs is possibly accessible to agonists, permitting strengthening of synaptic inhibition.


Asunto(s)
Colforsina , Hipocampo , Receptores de GABA-A , Sinapsis , Colforsina/farmacología , Animales , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo , Sinapsis/efectos de los fármacos , Fosforilación/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Ratas , Neuroesteroides/metabolismo , Neuroesteroides/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Masculino , Transmisión Sináptica/efectos de los fármacos , Ratas Sprague-Dawley
5.
J Neurophysiol ; 132(1): 277-289, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38864824

RESUMEN

Prefrontal cortical (PFC) dysfunction has been linked to disorders exhibiting deficits in cognitive performance, attention, motivation, and impulse control. Neurons of the PFC are susceptible to glutamatergic excitotoxicity, an effect associated with cortical degeneration in frontotemporal disorders (FTDs). PFC susceptibility to environmental toxicant exposure, one possible contributor to sporadic FTD, has not been systematically studied. Here, we tested the ability of a well-known environmental neurotoxicant, methylmercury (MeHg), to induce hyperexcitability in medial prefrontal cortex (mPFC) excitatory pyramidal neurons, using whole cell patch-clamp recording. Acute MeHg exposure (20 µM) produced significant mPFC dysfunction, with a shift in the excitatory to inhibitory (E-I) balance toward increased excitability. Both excitatory postsynaptic current (EPSC) and inhibitory postsynaptic current (IPSC) charges were significantly increased after MeHg exposure. MeHg increased EPSC frequency, but there was no observable effect on IPSC frequency, EPSC amplitude or IPSC amplitude. Neither evoked AMPA receptor- nor NMDA receptor-mediated EPSC amplitudes were affected by MeHg. However, excitatory synapses experienced a significant reduction in paired-pulse depression and probability of release. In addition, MeHg induced temporal synchrony in spontaneous IPSCs, reflecting mPFC inhibitory network dysfunction. MeHg exposure also produced increased intrinsic excitability in mPFC neurons, with an increase in action potential firing rate. The observed effects of MeHg on mPFC reflect key potential mechanisms for neuropsychological symptoms from MeHg poisoning. Therefore, MeHg has a significant effect on mPFC circuits known to contribute to cognitive and emotional function and might contribute to etiology of neurodegenerative diseases, such as FTD.NEW & NOTEWORTHY Prefrontal cortical neurons are highly susceptible to glutamatergic excitotoxicity associated with neuronal degeneration in frontal dementia and to environmental toxicant exposure, one potential contributor to FTD. However, this has not been systematically studied. Our results demonstrate that methylmercury exposure leads to hyperexcitability of prefrontal cortical neurons by shifting excitatory to inhibitory (E-I) balance and raising sensitivity for spiking. Our results provide a mechanism by which environmental neurotoxicants may contribute to pathogenesis of diseases such as FTD.


Asunto(s)
Potenciales Postsinápticos Excitadores , Compuestos de Metilmercurio , Corteza Prefrontal , Células Piramidales , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiopatología , Animales , Compuestos de Metilmercurio/toxicidad , Masculino , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Ratas , Ratas Sprague-Dawley , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiopatología
6.
J Neurosci ; 44(32)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38942471

RESUMEN

The mechanisms utilized by neurons to regulate the efficacy of phasic and tonic inhibition and their impacts on synaptic plasticity and behavior are incompletely understood. Cleft lip and palate transmembrane protein 1 (Clptm1) is a membrane-spanning protein that interacts with multiple γ-aminobutyric acid type A receptor (GABAAR) subunits, trapping them in the endoplasmic reticulum and Golgi network. Overexpression and knock-down studies suggest that Clptm1 modulates GABAAR-mediated phasic inhibition and tonic inhibition as well as activity-induced inhibitory synaptic homeostasis in cultured hippocampal neurons. To investigate the role of Clptm1 in the modulation of GABAARs in vivo, we generated Clptm1 knock-out (KO) mice. Here, we show that genetic KO of Clptm1 elevated phasic and tonic inhibitory transmission in both male and female heterozygous mice. Although basal excitatory synaptic transmission was not affected, Clptm1 haploinsufficiency significantly blocked high-frequency stimulation-induced long-term potentiation (LTP) in hippocampal CA3→CA1 synapses. In the hippocampus-dependent contextual fear-conditioning behavior task, both male and female Clptm1 heterozygous KO mice exhibited impairment in contextual fear memory. In addition, LTP and contextual fear memory were rescued by application of L-655,708, a negative allosteric modulator of the extrasynaptic GABAAR α5 subunit. These results suggest that haploinsufficiency of Clptm1 contributes to cognitive deficits through altered synaptic transmission and plasticity by elevation of inhibitory neurotransmission, with tonic inhibition playing a major role.


Asunto(s)
Haploinsuficiencia , Proteínas de la Membrana , Ratones Noqueados , Plasticidad Neuronal , Receptores de GABA-A , Transmisión Sináptica , Animales , Ratones , Masculino , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Femenino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Transmisión Sináptica/fisiología , Plasticidad Neuronal/fisiología , Plasticidad Neuronal/genética , Ratones Endogámicos C57BL , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Potenciación a Largo Plazo/genética , Hipocampo/metabolismo , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/fisiopatología , Miedo/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Memoria/fisiología , Inhibición Neural/fisiología
7.
Neurobiol Dis ; 164: 105610, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34995754

RESUMEN

Aberrant glucocorticoid signaling via glucocorticoid receptors (GR) plays a critical role in alcohol use disorder (AUD). Acute alcohol withdrawal and protracted abstinence in dependent rats are associated with increased GR signaling and changes in GR-mediated transcriptional activity in the rat central nucleus of the amygdala (CeA). The GR antagonist mifepristone decreases alcohol consumption in dependent rats during acute withdrawal and protracted abstinence. Regulation of CeA synaptic activity by GR is currently unknown. Here, we utilized mifepristone and the selective GR antagonist CORT118335 (both at 10 µM) as pharmacological tools to dissect the role of GR on GABA transmission in male, adult Sprague-Dawley rats using slice electrophysiology. We subjected rats to chronic intermittent alcohol vapor exposure for 5-7 weeks to induce alcohol dependence. A subset of dependent rats subsequently underwent protracted alcohol withdrawal for 2 weeks, and air-exposed rats served as controls. Mifepristone reduced the frequency of pharmacologically-isolated spontaneous inhibitory postsynaptic currents (sIPSC) in the CeA (medial subdivision) without affecting postsynaptic measures in all groups, suggesting decreased GABA release with the largest effect in dependent rats. CORT118335 did not significantly alter GABA transmission in naïve, but decreased sIPSC frequency in dependent rats. Similarly, mifepristone decreased amplitudes of evoked inhibitory postsynaptic potentials only in dependent rats and during protracted withdrawal. Collectively, our study provides insight into regulation of CeA GABAergic synapses by GR. Chronic ethanol enhances the efficiency of mifepristone and CORT118335, thus highlighting the potential of drugs targeting GR as a promising pharmacological avenue for the treatment of AUD.


Asunto(s)
Alcoholismo/fisiopatología , Amígdala del Cerebelo/efectos de los fármacos , Neuronas GABAérgicas/efectos de los fármacos , Antagonistas de Hormonas/farmacología , Mifepristona/farmacología , Receptores de Glucocorticoides/antagonistas & inhibidores , Sinapsis/efectos de los fármacos , Amígdala del Cerebelo/fisiopatología , Animales , Neuronas GABAérgicas/fisiología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley , Sinapsis/fisiología
8.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34502543

RESUMEN

To elucidate why naftopidil increases the frequency of spontaneous synaptic currents in only some substantia gelatinosa (SG) neurons, post-hoc analyses were performed. Blind patch-clamp recording was performed using slice preparations of SG neurons from the spinal cords of adult rats. Spontaneous inhibitory and excitatory postsynaptic currents (sIPSCs and sEPSCs, respectively) were recorded. The ratios of the frequency and amplitude of the sIPSCs and sEPSCs following the introduction of naftopidil compared with baseline, and after the application of naftopidil, serotonin (5-HT), and prazosin, compared with noradrenaline (NA) were evaluated. First, the sIPSC analysis indicated that SG neurons reached their full response ratio for NA at 50 µM. Second, they responded to 5-HT (50 µM) with a response ratio similar to that for NA, but prazosin (10 µM) did not change the sEPSCs and sIPSCs. Third, the highest concentration of naftopidil (100 µM) led to two types of response in the SG neurons, which corresponded with the reactions to 5-HT and prazosin. These results indicate that not all neurons were necessarily activated by naftopidil, and that the micturition reflex may be regulated in a sophisticated manner by inhibitory mechanisms in these interneurons.


Asunto(s)
Antagonistas Adrenérgicos alfa/farmacología , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Sustancia Gelatinosa/efectos de los fármacos , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Naftalenos/farmacología , Neuronas/fisiología , Norepinefrina/farmacología , Piperazinas/farmacología , Prazosina/farmacología , Ratas Sprague-Dawley , Serotonina/farmacología , Sustancia Gelatinosa/citología , Sustancia Gelatinosa/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
9.
Mol Pharmacol ; 100(3): 217-223, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34135098

RESUMEN

Regulators of G protein signaling (RGS) proteins modulate signaling by G protein-coupled receptors. Using a knock-in transgenic mouse model with a mutation in Gαo that does not bind RGS proteins (RGS-insensitive), we determined the effect of RGS proteins on presynaptic µ opioid receptor (MOR)-mediated inhibition of GABA release in the ventrolateral periaqueductal gray (vlPAG). The MOR agonists [d-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) and met-enkephalin (ME) inhibited evoked inhibitory postsynaptic currents (eIPSCs) in the RGS-insensitive mice compared with wild-type (WT) littermates, respectively. Fentanyl inhibited eIPSCs similarly in both WT and RGS-insensitive mice. There were no differences in opioid agonist inhibition of spontaneous GABA release between the genotypes. To further probe the mechanism underlying these differences between opioid inhibition of evoked and spontaneous GABA release, specific myristoylated Gα peptide inhibitors for Gαo1 and Gαi1-3 that block receptor-G protein interactions were used to test the preference of agonists for MOR-Gα complexes. The Gαo1 inhibitor reduced DAMGO inhibition of eIPSCs, but Gαi1-3 inhibitors had no effect. Both Gαo1 and Gαi1-3 inhibitors separately reduced fentanyl inhibition of eIPSCs but had no effects on ME inhibition. Gαi1-3 inhibitors blocked the inhibitory effects of ME and fentanyl on miniature postsynaptic current (mIPSC) frequency, but both Gαo1 and Gαi1-3 inhibitors were needed to block the effects of DAMGO. Finally, baclofen-mediated inhibition of GABA release is unaffected in the RGS-insensitive mice and in the presence of Gαo1 and Gαi1-3 inhibitor peptides, suggesting that GABAB receptor coupling to G proteins in vlPAG presynaptic terminals is different than MOR coupling. SIGNIFICANCE STATEMENT: Presynaptic µ opioid receptors (MORs) in the ventrolateral periaqueductal gray are critical for opioid analgesia and are negatively regulated by RGS proteins. These data in RGS-insensitive mice provide evidence that MOR agonists differ in preference for Gαo versus Gαi and regulation by RGS proteins in presynaptic terminals, providing a mechanism for functional selectivity between agonists. The results further define important differences in MOR and GABAB receptor coupling to G proteins that could be exploited for new pain therapies.


Asunto(s)
Subunidad alfa de la Proteína de Unión al GTP Gi2/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/fisiología , Terminales Presinápticos/fisiología , Receptores Opioides mu/fisiología , Ácido gamma-Aminobutírico/metabolismo , Analgésicos Opioides/farmacología , Animales , Baclofeno/farmacología , Femenino , Subunidad alfa de la Proteína de Unión al GTP Gi2/antagonistas & inhibidores , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/antagonistas & inhibidores , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Ratones , Ratones Transgénicos , Modelos Animales , Proteínas RGS/metabolismo , Receptores de GABA-B/metabolismo , Receptores Opioides mu/agonistas
10.
Mol Neurobiol ; 58(10): 4787-4801, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34173171

RESUMEN

Glutamate delta-1 receptor (GluD1) is a member of the ionotropic glutamate receptor family expressed at excitatory synapses and functions as a synaptogenic protein by interacting with presynaptic neurexin. We have previously shown that GluD1 plays a role in the maintenance of excitatory synapses in a region-specific manner. Loss of GluD1 leads to reduced excitatory neurotransmission in medium spiny neurons (MSNs) in the dorsal striatum, but not in the ventral striatum (both core and shell of the nucleus accumbens (NAc)). Here, we found that GluD1 loss leads to reduced inhibitory neurotransmission in MSNs of the NAc core as evidenced by a reduction in the miniature inhibitory postsynaptic current frequency and amplitude. Presynaptic effect of GluD1 loss was further supported by an increase in paired pulse ratio of evoked inhibitory responses indicating reduced release probability. Furthermore, analysis of GAD67 puncta indicated a reduction in the number of putative inhibitory terminals. The changes in mIPSC were independent of cannabinoid or dopamine signaling. A role of feed-forward inhibition was tested by selective ablation of GluD1 from PV neurons which produced modest reduction in mIPSCs. Behaviorally, local ablation of GluD1 from NAc led to hypolocomotion and affected anxiety- and depression-like behaviors. When GluD1 was ablated from the dorsal striatum, several behavioral phenotypes were altered in opposite manner compared to GluD1 ablation from NAc. Our findings demonstrate that GluD1 regulates inhibitory neurotransmission in the NAc by a combination of pre- and postsynaptic mechanisms which is critical for motor control and behaviors relevant to neuropsychiatric disorders.


Asunto(s)
Ansiedad/metabolismo , Glutamato Deshidrogenasa/biosíntesis , Potenciales Postsinápticos Inhibidores/fisiología , Inhibición Neural/fisiología , Núcleo Accumbens/metabolismo , Transmisión Sináptica/fisiología , Animales , Ansiedad/genética , Antagonistas de Aminoácidos Excitadores/farmacología , Glutamato Deshidrogenasa/antagonistas & inhibidores , Glutamato Deshidrogenasa/genética , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Ratones , Ratones Noqueados , Inhibición Neural/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Interacción Social/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
11.
Neuropharmacology ; 192: 108601, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33971215

RESUMEN

The dorsolateral bed nucleus of the stria terminalis (BNSTDL) has high expression of oxytocin (OT) receptors (OTR), which were shown to facilitate cued fear. However, the role of OTR in the modulation of BNSTDL activity remains elusive. BNSTDL contains GABA-ergic neurons classified based on intrinsic membrane properties into three types. Using in vitro patch-clamp recordings in male rats, we demonstrate that OT selectively excites and increases spontaneous firing rate of Type I BNSTDL neurons. As a consequence, OT increases the frequency, but not amplitude, of spontaneous inhibitory post-synaptic currents (sIPSCs) selectively in Type II neurons, an effect abolished by OTR antagonist or tetrodotoxin, and reduces spontaneous firing rate in these neurons. These results suggest an indirect effect of OT in Type II neurons, which is mediated via OT-induced increase in firing of Type I interneurons. As Type II BNSTDL neurons were shown projecting to the central amygdala (CeA), we also recorded from retrogradely labeled BNST→CeA neurons and we show that OT increases the frequency of sIPSC in these Type II BNST→CeA output neurons. In contrast, in Type III neurons, OT reduces the amplitude, but not frequency, of both sIPSCs and evoked IPSCs via a postsynaptic mechanism without changing their intrinsic excitability. We present a model of fine-tuned modulation of BNSTDL activity by OT, which selectively excites BNSTDL interneurons and inhibits Type II BNST→CeA output neurons. These results suggest that OTR in the BNST might facilitate cued fear by inhibiting the BNST→CeA neurons.


Asunto(s)
Núcleo Amigdalino Central/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Interneuronas/efectos de los fármacos , Oxitocina/farmacología , Núcleos Septales/efectos de los fármacos , Animales , Núcleo Amigdalino Central/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Interneuronas/fisiología , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Núcleos Septales/fisiología
12.
Neuropharmacology ; 191: 108573, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33945826

RESUMEN

Currently available antidepressants, such as selective serotonin reuptake inhibitors (SSRIs) and serotonin and norepinephrine reuptake inhibitors (SNRIs), generally require weeks to months to produce a therapeutic response, but the mechanism of action underlying the delayed onset of antidepressant-like action remains to be elucidated. The balance between excitatory glutamatergic pyramidal neurons and inhibitory γ-aminobutyric acid (GABA) interneurons, i.e., the excitation:inhibition functional (E:I) balance, in the medial prefrontal cortex (mPFC) is critical in regulating several behaviors and might play an important mediating role in the mechanism of rapid antidepressant-like action reported by several studies. In the present study, the multichannel electrophysiological technique was used to record the firing activities of pyramidal neurons and interneurons and investigate the effects of a single dose of fluoxetine and ketamine (both 10 mg/kg, i.p.) on the E:I functional balance in the rat mPFC after 90 min or 24 h, and the forced swimming test (FST) was used to evaluate the antidepressant-like effects of fluoxetine and ketamine. The present study also explored the effects of chronic treatment with fluoxetine (10 mg/kg, i.g.) for 7 d or 21 d on the E:I functional balance in the mPFC. The present results suggested that a single dose of ketamine could both significantly increase the firing activities of pyramidal neurons and significantly decrease the firing activities of interneurons in the mPFC and exerted significant antidepressant-like action on the FST after 90 min and 24 h, but fluoxetine had no such effects under the same conditions. However, chronic treatment with fluoxetine for 21 d (but not 7 d) could significantly affect the firing activities of pyramidal neurons and interneurons in the mPFC. Taken together, the present results indicated that rapid regulation of the E:I functional balance in the mPFC might be an important common mechanism of rapid-acting antidepressants and the delayed onset of SSRIs might be partly attributed to their inability to rapidly regulate the E:I functional balance in the mPFC. The present study provided a new entry point to the development of rapid-acting antidepressants.


Asunto(s)
Antidepresivos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Animales , Conducta Animal/efectos de los fármacos , Fármacos actuantes sobre Aminoácidos Excitadores , Fluoxetina/farmacología , Ácido Glutámico , Interneuronas/efectos de los fármacos , Ketamina/farmacología , Masculino , Células Piramidales/efectos de los fármacos , Ratas , Ratas Endogámicas WF
13.
Neurosci Lett ; 756: 135950, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-33979698

RESUMEN

The mechanisms of general anaesthetics such as propofol have drawn substantial attention. The effects of propofol on inhibitory postsynaptic currents are not exactly the same in different brain nuclei. Recent studies revealed that the paraventricular thalamic nucleus (PVT) is a critical nucleus modulating wakefulness. However, the effects of propofol on PVT neurons and the mechanisms underlying such effects remain unknown. Here, we performed the whole-cell recording of the PVT neurons in acute brain slices and bath application of propofol. We found that propofol hyperpolarized the membrane potentials of the PVT neurons and suppressed the action potentials induced by step-current injection. Propofol did not affect the spontaneous inhibitory postsynaptic currents (sIPSCs) amplitude or frequency, but prolonged the sIPSCs half-width. Besides, propofol increased miniature inhibitory synaptic currents (mIPSCs) frequency and half-width. Furthermore, propofol could induce GABAA receptors-mediated tonic inhibitory currents dose-dependently. Thus, our results demonstrate that propofol hyperpolarizes PVT neurons by modulating inhibitory currents via GABAA receptors in mice.


Asunto(s)
Anestésicos Intravenosos/farmacología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Propofol/farmacología , Animales , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones , Técnicas de Placa-Clamp
14.
Int J Mol Sci ; 22(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918982

RESUMEN

Lithium (Li+) salt is widely used as a therapeutic agent for treating neurological and psychiatric disorders. Despite its therapeutic effects on neurological and psychiatric disorders, it can also disturb the neuroendocrine axis in patients under lithium therapy. The hypothalamic area contains GABAergic and glutamatergic neurons and their receptors, which regulate various hypothalamic functions such as the release of neurohormones, control circadian activities. At the neuronal level, several neurotransmitter systems are modulated by lithium exposure. However, the effect of Li+ on hypothalamic neuron excitability and the precise action mechanism involved in such an effect have not been fully understood yet. Therefore, Li+ action on hypothalamic neurons was investigated using a whole-cell patch-clamp technique. In hypothalamic neurons, Li+ increased the GABAergic synaptic activities via action potential independent presynaptic mechanisms. Next, concentration-dependent replacement of Na+ by Li+ in artificial cerebrospinal fluid increased frequencies of GABAergic miniature inhibitory postsynaptic currents without altering their amplitudes. Li+ perfusion induced inward currents in the majority of hypothalamic neurons independent of amino-acids receptor activation. These results suggests that Li+ treatment can directly affect the hypothalamic region of the brain and regulate the release of various neurohormones involved in synchronizing the neuroendocrine axis.


Asunto(s)
Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Litio/farmacología , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Animales , Humanos , Hipotálamo/metabolismo , Hipotálamo/patología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Técnicas de Placa-Clamp , Área Preóptica/efectos de los fármacos , Área Preóptica/metabolismo , Receptores de Aminoácidos/metabolismo , Transmisión Sináptica/efectos de los fármacos
15.
Neuropharmacology ; 189: 108530, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33741404

RESUMEN

Adolescents are phenotypically characterized with hyper-sensitivity to stress and inappropriate response to stress-inducing events. Despite behavioral distinctions from adults, investigations of developmental shifts in the function of stress peptide corticotropin-releasing factor (CRF) are generally limited. Rodent models have determined that CRF receptor 1 (CRFR1) activation within the central amygdala is associated with a stress response and induces increased GABAergic synaptic neurotransmission within adult males. To investigate age- and sex-specific function of this system, we performed whole-cell patch clamp electrophysiology in brain slices from naive adolescent (postnatal days (P) 40-49) and adult (>P70) male and female Sprague Dawley rats to assess GABAergic activity in the medial central amygdala (CeM). Our results indicate a dynamic influence of age and sex on neuronal excitability within this region, as well as basal spontaneous and miniature (m) inhibitory post-synaptic currents (IPSCs) in the CeM. In addition to replicating prior findings of CRFR1-regulated increases in mIPSC frequency in adult males, we found that the selective CRFR1 agonist, Stressin-1, attenuated mIPSC frequency in adolescent males, at a concentration that did not produce an effect in adult males. Importantly, this age-specific distinction was absent in females, as Stressin-1 attenuated mIPSC frequency in both adolescent and adult females. Finally, an increase in mIPSC frequency in response to the CRF1R antagonist, NBI 35965, was observed only in the CeM of adult males. Together, these data emphasize the robust influence of age and sex on neurophysiological function of a brain region involved in the production of the stress response.


Asunto(s)
Núcleo Amigdalino Central/metabolismo , Neuronas GABAérgicas/metabolismo , Receptores de Hormona Liberadora de Corticotropina/agonistas , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Acenaftenos/farmacología , Factores de Edad , Animales , Núcleo Amigdalino Central/efectos de los fármacos , Femenino , Neuronas GABAérgicas/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Factores Sexuales
16.
Neuropharmacology ; 187: 108492, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33582153

RESUMEN

In this work, modulation by orexin-A of the release of glutamate and GABA from bipolar and amacrine cells respectively was studied by examining the effects of the neuropeptide on miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) of rat retinal ganglion cells (GCs). Using RNAscope in situ hybridization in combination with immunohistochemistry, we showed positive signals for orexin receptor-1 (OX1R) mRNA in the bipolar cell terminals and those for orexin receptor-2 (OX2R) mRNA in the amacrine cell terminals. With whole-cell patch-clamp recordings in rat retinal slices, we demonstrated that application of orexin-A reduced the interevent interval of mEPSCs of GCs through OX1R. However, it increased the interevent interval of mIPSCs, mediated by GABAA receptors, through OX2R. Furthermore, orexin-A-induced reduction of mEPSC interevent interval was abolished by the application of PI-PLC inhibitors or PKC inhibitors. In contrast, orexin-A-induced increase of GABAergic mIPSC interevent interval was mimicked by 8-Br-cAMP or an adenylyl cyclase activator, but was eliminated by PKA antagonists. Finally, application of nimodipine, an L-type Ca2+ channel blocker, increased both mEPSC and mIPSC interevent interval, and co-application of orexin-A no longer changed the mEPSCs and mIPSCs. We conclude that orexin-A increases presynaptic glutamate release onto GCs by activating L-type Ca2+ channels in bipolar cells, a process that is mediated by an OX1R/PI-PLC/PKC signaling pathway. However, orexin-A decreases presynaptic GABA release onto GCs by inhibiting L-type Ca2+ channels in amacrine cells, a process that is mediated by an OX2R/cAMP-PKA signaling pathway.


Asunto(s)
Células Amacrinas/metabolismo , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Inhibidores/genética , Receptores de Orexina/genética , Orexinas/metabolismo , Células Bipolares de la Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Transmisión Sináptica/genética , Células Amacrinas/efectos de los fármacos , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Ácido Glutámico/efectos de los fármacos , Ácido Glutámico/metabolismo , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Receptores de Orexina/metabolismo , Orexinas/farmacología , Técnicas de Placa-Clamp , Fosfoinositido Fosfolipasa C/antagonistas & inhibidores , Fosfoinositido Fosfolipasa C/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Ratas , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Células Bipolares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo
17.
Nat Commun ; 12(1): 1216, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33619249

RESUMEN

To design potentially more effective therapies, we need to further understand the mechanisms underlying epilepsy. Here, we uncover the role of Rev-erbα in circadian regulation of epileptic seizures. We first show up-regulation of REV-ERBα/Rev-erbα in brain tissues from patients with epilepsy and a mouse model. Ablation or pharmacological modulation of Rev-erbα in mice decreases the susceptibility to acute and chronic seizures, and abolishes diurnal rhythmicity in seizure severity, whereas activation of Rev-erbα increases the animal susceptibility. Rev-erbα ablation or antagonism also leads to prolonged spontaneous inhibitory postsynaptic currents and elevated frequency in the mouse hippocampus, indicating enhanced GABAergic signaling. We also identify the transporters Slc6a1 and Slc6a11 as regulators of Rev-erbα-mediated clearance of GABA. Mechanistically, Rev-erbα promotes the expressions of Slc6a1 and Slc6a11 through transcriptional repression of E4bp4. Our findings propose Rev-erbα as a regulator of synaptic function at the crosstalk between pathways regulating the circadian clock and epilepsy.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Regulación de la Expresión Génica , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Convulsiones/genética , Enfermedad Aguda , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Enfermedad Crónica , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/patología , Epilepsia del Lóbulo Temporal/fisiopatología , Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/patología , Humanos , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Isoquinolinas/farmacología , Excitación Neurológica/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Convulsiones/patología , Convulsiones/fisiopatología , Bibliotecas de Moléculas Pequeñas/farmacología , Tiofenos/farmacología , Ácido gamma-Aminobutírico/metabolismo
18.
Neuropharmacology ; 187: 108488, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33556384

RESUMEN

Neonatal hypoxic-ischemic encephalopathy (NHIE) is one of the most prevalent causes of death during the perinatal period. The lack of exposure to oxytocin is associated with NHIE-mediated severe brain injury. However, the underlying mechanism is not fully understood. This study combined immunohistochemistry with electrophysiological recordings of hippocampal CA1 neurons to investigate the role of oxytocin in an in vitro model of hypoxic-ischemic (HI) injury (oxygen and glucose deprivation, OGD) in postnatal day 7-10 rats. Immunohistochemical analysis showed that oxytocin largely reduced the relative intensity of TOPRO-3 staining following OGD in the hippocampal CA1 region. Whole-cell patch-clamp recording revealed that the OGD-induced onset time of anoxic depolarization (AD) was significantly delayed by oxytocin. This protective effect of oxytocin was blocked by pretreatment with [d(CH2)51, Tyr (Me)2, Thr4, Orn8, des-Gly-NH29] vasotocin (dVOT, an oxytocin receptor antagonist) or bicuculline (a GABAA receptor antagonist). Interestingly, oxytocin enhanced inhibitory postsynaptic currents in CA1 pyramidal neurons, which were abolished by tetrodotoxin or dVOT. In contrast, oxytocin had no effect on excitatory postsynaptic currents but induced an inward current in 86% of the pyramidal neurons tested. Taken together, these results demonstrate that oxytocin receptor signaling plays a critical role in attenuating neonatal neural death by facilitating GABAergic transmission, which may help to regulate the excitatory-inhibitory balance in local neuronal networks in NHIE patients.


Asunto(s)
Región CA1 Hipocampal/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Hipoxia-Isquemia Encefálica/metabolismo , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Oxitócicos/farmacología , Oxitocina/farmacología , Receptores de GABA-A/metabolismo , Receptores de Oxitocina/metabolismo , Animales , Animales Recién Nacidos , Región CA1 Hipocampal/metabolismo , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Hipoxia-Isquemia Encefálica/patología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Neuronas/metabolismo , Técnicas de Placa-Clamp , Ratas
19.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540803

RESUMEN

Distinct from ovarian estradiol, the steroid hormone 17ß-estradiol (E2) is produced in the brain and is involved in numerous functions, particularly acting as a neurosteroid. However, the physiological role of E2 and the mechanism of its effects are not well known. In hippocampal slices, 17ß-estradiol has been found to cause a modest increase in fast glutamatergic transmission; because some of these effects are rapid and acute, they might be mediated by membrane-associated receptors via nongenomic action. Moreover, activation of membrane estrogen receptors can rapidly modulate neuron function in a sex-specific manner. To further investigate the neurological role of E2, we examined the effect of E2, as an estrogen receptor (ER) agonist, on synaptic transmission in slices of the prefrontal cortex (PFC) and hippocampus in both male and female mice. Whole-cell recordings of spontaneous excitatory postsynaptic currents (sEPSC) in the PFC showed that E2 acts as a neuromodulator in glutamatergic transmission in the PFC in both sexes, but often in a cell-specific manner. The sEPSC amplitude and/or frequency responded to E2 in three ways, namely by significantly increasing, decreasing or having no response. Additional experiments using an agonist selective for ERß, diarylpropionitrile (DPN) showed that in males the sEPSC and spontaneous inhibitory postsynaptic currents sIPSC responses were similar to their E2 responses, but in females the estrogen receptor ß (ERß) agonist DPN did not influence excitatory transmission in the PFC. In contrast, in the hippocampus of both sexes E2 potentiated the gluatmatergic synaptic transmission in a subset of hippocampal cells. These data indicate that activation of E2 targeting probably a estrogen subtypes or different downstream signaling affect synaptic transmission in the brain PFC and hippocampus between males versus females mice.


Asunto(s)
Estradiol/farmacología , Receptor alfa de Estrógeno/fisiología , Hipocampo/metabolismo , Corteza Prefrontal/metabolismo , Transmisión Sináptica/fisiología , Animales , Receptor alfa de Estrógeno/agonistas , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , GABAérgicos/farmacología , Hipocampo/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL , Nitrilos/farmacología , Técnicas de Placa-Clamp , Corteza Prefrontal/efectos de los fármacos , Propionatos/farmacología , Caracteres Sexuales , Transmisión Sináptica/efectos de los fármacos
20.
Epilepsia ; 62(2): 542-556, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33452820

RESUMEN

OBJECTIVE: Many antiseizure drugs (ASDs) act on voltage-dependent sodium channels, and the molecular basis of these effects is well established. In contrast, how ASDs act on the level of neuronal networks is much less understood. METHODS: In the present study, we determined the effects of eslicarbazepine (S-Lic) on different types of inhibitory neurons, as well as inhibitory motifs. Experiments were performed in hippocampal slices from both sham-control and chronically epileptic pilocarpine-treated rats. RESULTS: We found that S-Lic causes an unexpected reduction of feed-forward inhibition in the CA1 region at high concentrations (300 µM), but not at lower concentrations (100 µM). Concurrently, 300 but not 100 µM S-Lic significantly reduced maximal firing rates in putative feed-forward interneurons located in the CA1 stratum radiatum of sham-control and epileptic animals. In contrast, feedback inhibition was not inhibited by S-Lic. Instead, application of S-Lic, in contrast to previous data for other drugs like carbamazepine (CBZ), resulted in a lasting potentiation of feedback inhibitory post-synaptic currents (IPSCs) only in epileptic and not in sham-control animals, which persisted after washout of S-Lic. We hypothesized that this plasticity of inhibition might rely on anti-Hebbian potentiation of excitatory feedback inputs onto oriens-lacunosum moleculare (OLM) interneurons, which is dependent on Ca2+ -permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Indeed, we show that blocking Ca2+ -permeable AMPA receptors completely prevents upmodulation of feedback inhibition. SIGNIFICANCE: These results suggest that S-Lic affects inhibitory circuits in the CA1 hippocampal region in unexpected ways. In addition, ASD actions may not be sufficiently explained by acute effects on their target channels, rather, it may be necessary to take plasticity of inhibitory circuits into account.


Asunto(s)
Anticonvulsivantes/farmacología , Región CA1 Hipocampal/efectos de los fármacos , Dibenzazepinas/farmacología , Epilepsia/fisiopatología , Interneuronas/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Adamantano/análogos & derivados , Adamantano/farmacología , Animales , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiopatología , Calcio/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Epilepsia/inducido químicamente , Retroalimentación Fisiológica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Interneuronas/metabolismo , Potenciación a Largo Plazo , Agonistas Muscarínicos/toxicidad , Plasticidad Neuronal , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Pilocarpina/toxicidad , Ratas , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA