Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.974
Filtrar
1.
Nat Commun ; 15(1): 3809, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714644

RESUMEN

Mammalian sex determination is controlled by antagonistic gene cascades operating in embryonic undifferentiated gonads. The expression of the Y-linked gene SRY is sufficient to trigger the testicular pathway, whereas its absence in XX embryos leads to ovarian differentiation. Yet, the potential involvement of non-coding regulation in this process remains unclear. Here we show that the deletion of a single microRNA cluster, miR-17~92, induces complete primary male-to-female sex reversal in XY mice. Sry expression is delayed in XY knockout gonads, which develop as ovaries. Sertoli cell differentiation is reduced, delayed and unable to sustain testicular development. Pre-supporting cells in mutant gonads undergo a transient state of sex ambiguity which is subsequently resolved towards the ovarian fate. The miR-17~92 predicted target genes are upregulated, affecting the fine regulation of gene networks controlling gonad development. Thus, microRNAs emerge as key components for mammalian sex determination, controlling Sry expression timing and Sertoli cell differentiation.


Asunto(s)
Diferenciación Celular , MicroARNs , Ovario , Células de Sertoli , Procesos de Determinación del Sexo , Proteína de la Región Y Determinante del Sexo , Testículo , Animales , MicroARNs/genética , MicroARNs/metabolismo , Femenino , Masculino , Células de Sertoli/metabolismo , Células de Sertoli/citología , Ratones , Ovario/metabolismo , Testículo/metabolismo , Proteína de la Región Y Determinante del Sexo/genética , Proteína de la Región Y Determinante del Sexo/metabolismo , Diferenciación Celular/genética , Procesos de Determinación del Sexo/genética , Regulación del Desarrollo de la Expresión Génica , Ratones Noqueados , Diferenciación Sexual/genética , Trastornos del Desarrollo Sexual/genética , Gónadas/metabolismo
2.
Front Endocrinol (Lausanne) ; 15: 1357594, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699384

RESUMEN

In mammals, gonadal somatic cell lineage differentiation determines the development of the bipotential gonad into either the ovary or testis. Sertoli cells, the only somatic cells in the spermatogenic tubules, support spermatogenesis during gonadal development. During embryonic Sertoli cell lineage differentiation, relevant genes, including WT1, GATA4, SRY, SOX9, AMH, PTGDS, SF1, and DMRT1, are expressed at specific times and in specific locations to ensure the correct differentiation of the embryo toward the male phenotype. The dysregulated development of Sertoli cells leads to gonadal malformations and male fertility disorders. Nevertheless, the molecular pathways underlying the embryonic origin of Sertoli cells remain elusive. By reviewing recent advances in research on embryonic Sertoli cell genesis and its key regulators, this review provides novel insights into sex determination in male mammals as well as the molecular mechanisms underlying the genealogical differentiation of Sertoli cells in the male reproductive ridge.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Células de Sertoli , Células de Sertoli/citología , Células de Sertoli/metabolismo , Células de Sertoli/fisiología , Masculino , Humanos , Animales , Reproducción/fisiología , Espermatogénesis/fisiología , Procesos de Determinación del Sexo/fisiología
3.
Sci Adv ; 10(18): eadj6979, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701204

RESUMEN

Nature has devised many ways of producing males and females. Here, we report on a previously undescribed mechanism for Lepidoptera that functions without a female-specific gene. The number of alleles or allele heterozygosity in a single Z-linked gene (BaMasc) is the primary sex-determining switch in Bicyclus anynana butterflies. Embryos carrying a single BaMasc allele develop into WZ (or Z0) females, those carrying two distinct alleles develop into ZZ males, while (ZZ) homozygotes initiate female development, have mismatched dosage compensation, and die as embryos. Consequently, selection against homozygotes has favored the evolution of spectacular allelic diversity: 205 different coding sequences of BaMasc were detected in a sample of 246 females. The structural similarity of a hypervariable region (HVR) in BaMasc to the HVR in Apis mellifera csd suggests molecular convergence between deeply diverged insect lineages. Our discovery of this primary switch highlights the fascinating diversity of sex-determining mechanisms and underlying evolutionary drivers.


Asunto(s)
Mariposas Diurnas , Procesos de Determinación del Sexo , Animales , Mariposas Diurnas/genética , Femenino , Masculino , Procesos de Determinación del Sexo/genética , Alelos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Homocigoto
4.
Sci Rep ; 14(1): 8867, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632280

RESUMEN

Papaya (Carica papaya) is a trioecious species with female, male, and hermaphrodite plants. Given the sex segregation, selecting hermaphroditic plants is vital for orchard establishment due to their greater commercial value. However, selecting hermaphrodite plants through sexing is laborious and costly. Moreover, environmental stressors can exacerbate the issue by potentially inducing abnormal flower development, thus affecting fruit quality. Despite these challenges, the molecular mechanisms governing sex development in papaya remain poorly understood. Thus, this study aimed to identify proteins associated with sex development in female and hermaphrodite flowers of papaya through comparative proteomic analysis. Proteins from flower buds at the early and late developmental stages of three papaya genotypes (UENF-CALIMAN 01, JS12, and Sunrise Solo 72/12) were studied via proteomic analysis via the combination of the shotgun method and nanoESI-HDMSE technology. In buds at an early stage of development, 496 (35.9%) proteins exhibited significantly different abundances between sexes for the SS72/12 genotype, 139 (10%) for the JS12 genotype, and 165 (11.9%) for the UC-01 genotype. At the final stage of development, there were 181 (13.5%) for SS72/12, 113 (8.4%) for JS12, and 125 (9.1%) for UC-01. The large group of differentially accumulated proteins (DAPs) between the sexes was related to metabolism, as shown by the observation of only the proteins that exhibited the same pattern of accumulation in the three genotypes. Specifically, carbohydrate metabolism proteins were up-regulated in hermaphrodite flower buds early in development, while those linked to monosaccharide and amino acid metabolism increased during late development. Enrichment of sporopollenin and phenylpropanoid biosynthesis pathways characterizes hermaphrodite samples across developmental stages, with predicted protein interactions highlighting the crucial role of phenylpropanoids in sporopollenin biosynthesis for pollen wall formation. Most of the DAPs played key roles in pectin, cellulose, and lignin synthesis and were essential for cell wall formation and male flower structure development, notably in the pollen coat. These findings suggest that hermaphrodite flowers require more energy for development, likely due to complex pollen wall formation. Overall, these insights illuminate the molecular mechanisms of papaya floral development, revealing complex regulatory networks and energetic demands in the formation of male reproductive structures.


Asunto(s)
Biopolímeros , Carica , Carotenoides , Carica/genética , Proteómica , Procesos de Determinación del Sexo , Flores/genética , Regulación de la Expresión Génica de las Plantas
5.
Curr Biol ; 34(9): 2002-2010.e3, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38579713

RESUMEN

Some organisms have developed a mechanism called environmental sex determination (ESD), which allows environmental cues, rather than sex chromosomes or genes, to determine offspring sex.1,2,3,4 ESD is advantageous to optimize sex ratios according to environmental conditions, enhancing reproductive success.5,6 However, the process by which organisms perceive and translate diverse environmental signals into offspring sex remains unclear. Here, we analyzed the environmental perception mechanism in the crustacean, Daphnia pulex, a seasonal (photoperiodic) ESD arthropod, capable of producing females under long days and males under short days.7,8,9,10 Through breeding experiments, we found that their circadian clock likely contributes to perception of day length. To explore this further, we created a genetically modified daphnid by knocking out the clock gene, period, using genome editing. Knockout disrupted the daphnid's ability to sustain diel vertical migration (DVM) under constant darkness, driven by the circadian clock, and leading them to produce females regardless of day length. Additionally, when exposed to an analog of juvenile hormone (JH), an endocrine factor synthesized in mothers during male production, or subjected to unfavorable conditions of high density and low food availability, these knockout daphnids produced males regardless of day length, like wild-type daphnids. Based on these findings, we propose that recognizing short days via the circadian clock is the initial step in sex determination. This recognition subsequently triggers male production by signaling the endocrine system, specifically via the JH signal. Establishment of a connection between these two processes may be the crucial element in evolution of ESD in Daphnia.


Asunto(s)
Relojes Circadianos , Daphnia , Fotoperiodo , Procesos de Determinación del Sexo , Animales , Daphnia/genética , Daphnia/fisiología , Relojes Circadianos/genética , Relojes Circadianos/fisiología , Femenino , Masculino
6.
Sci Rep ; 14(1): 9407, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688940

RESUMEN

The cladoceran crustacean Daphnia exhibits phenotypic plasticity, a phenomenon that leads to diverse phenotypes from one genome. Alternative usage of gene isoforms has been considered a key gene regulation mechanism for controlling different phenotypes. However, to understand the phenotypic plasticity of Daphnia, gene isoforms have not been comprehensively analyzed. Here we identified 25,654 transcripts derived from the 9710 genes expressed during environmental sex determination of Daphnia magna using the long-read RNA-Seq with PacBio Iso-Seq. We found that 14,924 transcripts were previously unidentified and 5713 genes produced two or more isoforms. By a combination of Illumina short-read RNA-Seq, we detected 824 genes that implemented switching of the highest expressed isoform between females and males. Among the 824 genes, we found isoform switching of an ortholog of CREB-regulated transcription coactivator, a major regulator of carbohydrate metabolism in animals, and a correlation of this switching event with the sexually dimorphic expression of carbohydrate metabolic genes. These results suggest that a comprehensive catalog of isoforms may lead to understanding the molecular basis for environmental sex determination of Daphnia. We also infer the applicability of the full-length isoform analyses to the elucidation of phenotypic plasticity in Daphnia.


Asunto(s)
Daphnia , Isoformas de Proteínas , Animales , Daphnia/genética , Daphnia/fisiología , Daphnia/embriología , Femenino , Masculino , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Procesos de Determinación del Sexo/genética , Partenogénesis/genética , Regulación del Desarrollo de la Expresión Génica , Embrión no Mamífero/metabolismo , Daphnia magna
7.
PeerJ ; 12: e17072, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525278

RESUMEN

Sex determination in chickens at an early embryonic stage has been a longstanding challenge in poultry production due to the unique ZZ:ZW sex chromosome system and various influencing factors. This review has summarized the genes related to the sex differentiation of chicken early embryos (mainly Dmrt1, Sox9, Amh, Cyp19a1, Foxl2, Tle4z1, Jun, Hintw, Ube2i, Spin1z, Hmgcs1, Foxd1, Tox3, Ddx4, cHemgn and Serpinb11 in this article), and has found that these contributions enhance our understanding of the genetic basis of sex determination in chickens, while identifying potential gene targets for future research. This knowledge may inform and guide the development of sex screening technologies for hatching eggs and support advancements in gene-editing approaches for chicken embryos. Moreover, these insights offer hope for enhancing animal welfare and promoting conservation efforts in poultry production.


Asunto(s)
Pollos , Diferenciación Sexual , Embrión de Pollo , Animales , Pollos/genética , Diferenciación Sexual/genética , Procesos de Determinación del Sexo/genética , Cromosomas Sexuales
8.
Science ; 383(6689): eadk5466, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38513029

RESUMEN

In many eukaryotes, genetic sex determination is not governed by XX/XY or ZW/ZZ systems but by a specialized region on the poorly studied U (female) or V (male) sex chromosomes. Previous studies have hinted at the existence of a dominant male-sex factor on the V chromosome in brown algae, a group of multicellular eukaryotes distantly related to animals and plants. The nature of this factor has remained elusive. Here, we demonstrate that an HMG-box gene acts as the male-determining factor in brown algae, mirroring the role HMG-box genes play in sex determination in animals. Over a billion-year evolutionary timeline, these lineages have independently co-opted the HMG box for male determination, representing a paradigm for evolution's ability to recurrently use the same genetic "toolkit" to accomplish similar tasks.


Asunto(s)
Algas Comestibles , Proteínas HMGB , Laminaria , Phaeophyceae , Cromosomas Sexuales , Procesos de Determinación del Sexo , Animales , Evolución Biológica , Phaeophyceae/genética , Cromosomas Sexuales/genética , Procesos de Determinación del Sexo/genética , Cromosoma Y , Proteínas HMGB/genética , Cromosomas de las Plantas/genética , Dominios HMG-Box , Algas Comestibles/genética , Laminaria/genética , Polen/genética
9.
PLoS Genet ; 20(3): e1011210, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38536778

RESUMEN

Sex is determined by multiple factors derived from somatic and germ cells in vertebrates. We have identified amhy, dmrt1, gsdf as male and foxl2, foxl3, cyp19a1a as female sex determination pathway genes in Nile tilapia. However, the relationship among these genes is largely unclear. Here, we found that the gonads of dmrt1;cyp19a1a double mutants developed as ovaries or underdeveloped testes with no germ cells irrespective of their genetic sex. In addition, the gonads of dmrt1;cyp19a1a;cyp19a1b triple mutants still developed as ovaries. The gonads of foxl3;cyp19a1a double mutants developed as testes, while the gonads of dmrt1;cyp19a1a;foxl3 triple mutants eventually developed as ovaries. In contrast, the gonads of amhy;cyp19a1a, gsdf;cyp19a1a, amhy;foxl2, gsdf;foxl2 double and amhy;cyp19a1a;cyp19a1b, gsdf;cyp19a1a;cyp19a1b triple mutants developed as testes with spermatogenesis via up-regulation of dmrt1 in both somatic and germ cells. The gonads of amhy;foxl3 and gsdf;foxl3 double mutants developed as ovaries but with germ cells in spermatogenesis due to up-regulation of dmrt1. Taking the respective ovary and underdeveloped testis of dmrt1;foxl3 and dmrt1;foxl2 double mutants reported previously into consideration, we demonstrated that once dmrt1 mutated, the gonad could not be rescued to functional testis by mutating any female pathway gene. The sex reversal caused by mutation of male pathway genes other than dmrt1, including its upstream amhy and downstream gsdf, could be rescued by mutating female pathway gene. Overall, our data suggested that dmrt1 is the only male pathway gene tested indispensable for sex determination and functional testis development in tilapia.


Asunto(s)
Procesos de Determinación del Sexo , Tilapia , Animales , Femenino , Masculino , Regulación del Desarrollo de la Expresión Génica , Gónadas/metabolismo , Ovario/metabolismo , Procesos de Determinación del Sexo/genética , Diferenciación Sexual/genética , Testículo/metabolismo , Tilapia/genética
10.
J Exp Zool A Ecol Integr Physiol ; 341(5): 597-605, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38497303

RESUMEN

The prevalence of environmental sex determination (ESD) in squamate reptiles is often overestimated in the literature. This is surprising because we have reliable data demonstrating ESD in only a few species. The documentation of ESD in three species of geckos presented here has significantly increased our knowledge, given that satisfactory evidence for ESD existed in only eight other gecko species. For the first time, we document the occurrence of ESD in the family Sphaerodactylidae. Our finding of unexpected variability in the shapes of reaction norms among geckos highlights that traditional descriptions using parameters such as pivotal temperature, that is, temperature producing a 50:50 sex ratio, are unsatisfactory. For example, the gecko Pachydactylus tigrinus lacks any pivotal temperature and its sex ratios are strongly female-biased across the entire range of viable temperatures. We argue for the effective capture of the relationship between temperature and sex ratio using specific nonlinear models rather than using classical simplistic descriptions and classifications of reaction norms.


Asunto(s)
Lagartos , Procesos de Determinación del Sexo , Razón de Masculinidad , Temperatura , Animales , Lagartos/fisiología , Femenino , Masculino , Procesos de Determinación del Sexo/fisiología , Especificidad de la Especie
11.
PLoS One ; 19(3): e0299900, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427681

RESUMEN

Eusocial insects such as termites, ants, bees, and wasps exhibit a reproductive division of labor. The developmental regulation of reproductive organ (ovaries and testes) is crucial for distinguishing between reproductive and sterile castes. The development of reproductive organ in insects is regulated by sex-determination pathways. The sex determination gene Doublesex (Dsx), encoding transcription factors, plays an important role in this pathway. Therefore, clarifying the function of Dsx in the developmental regulation of sexual traits is important to understand the social evolution of eusocial insects. However, no studies have reported the function of Dsx in hemimetabolous eusocial group termites. In this study, we searched for binding sites and candidate target genes of Dsx in species with available genome information as the first step in clarifying the function of Dsx in termites. First, we focused on the Reticulitermes speratus genome and identified 101 candidate target genes of Dsx. Using a similar method, we obtained 112, 39, and 76 candidate Dsx target genes in Reticulitermes lucifugus, Coptotermes formosanus, and Macrotermes natalensis, respectively. Second, we compared the candidate Dsx target genes between species and identified 37 common genes between R. speratus and R. lucifugus. These included several genes probably involved in spermatogenesis and longevity. However, only a few common target genes were identified between R. speratus and the other two species. Finally, Dsx dsRNA injection resulted in the differential expression of several target genes, including piwi-like protein and B-box type zinc finger protein ncl-1 in R. speratus. These results provide valuable resource data for future functional analyses of Dsx in termites.


Asunto(s)
Hormigas , Isópteros , Masculino , Animales , Isópteros/genética , Isópteros/metabolismo , Procesos de Determinación del Sexo/genética
12.
Gen Comp Endocrinol ; 351: 114482, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38432348

RESUMEN

In black porgy (Acanthopagrus schlegelii), the brain-pituitary-testis (Gnrh-Gths-Dmrt1) axis plays a vital role in male fate determination and maintenance, and then inhibiting female development in further (puberty). However, the feedback of gonadal hormones on regulating brain signaling remains unclear. In this study, we conducted short-term sex steroid treatment and surgery of gonadectomy to evaluate the feedback regulation between the gonads and the brain. The qPCR results show that male phase had the highest gths transcripts; treatment with estradiol-17ß (E2) or 17α-methyltestosterone (MT) resulted in the increased pituitary lhb transcripts. After surgery, apart from gnrh1, there is no difference in brain signaling genes between gonadectomy and sham fish. In the diencephalon/mesencephalon transcriptome, de novo assembly generated 283,528 unigenes; however, only 443 (0.16%) genes showed differentially expressed between sham and gonadectomy fish. In the present study, we found that exogenous sex steroids affect the gths transcription; this feedback control is related to the gonadal stage. Furthermore, gonadectomy may not affect gene expression of brain signaling (Gnrh-Gths axis). Our results support the communication between ovotestis and brain signaling (Gnrh-Gths-testicular Dmrt1) for the male fate.


Asunto(s)
Perciformes , Procesos de Determinación del Sexo , Animales , Femenino , Masculino , Maduración Sexual , Gónadas/metabolismo , Perciformes/metabolismo , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Estradiol/farmacología , Estradiol/metabolismo , Peces/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Encéfalo/metabolismo , Expresión Génica
13.
G3 (Bethesda) ; 14(5)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38466753

RESUMEN

Wild zebrafish (Danio rerio) have a ZZ/ZW chromosomal sex-determination system with the major sex locus on the right arm of chromosome-4 (Chr4R) near the largest heterochromatic block in the genome, suggesting that Chr4R transcriptomics might differ from the rest of the genome. To test this hypothesis, we conducted an RNA-seq analysis of adult ZW ovaries and ZZ testes in the Nadia strain and identified 4 regions of Chr4 with different gene expression profiles. Unique in the genome, protein-coding genes in a 41.7 Mb section (Region-2) were expressed in testis but silent in ovary. The AB lab strain, which lacks sex chromosomes, verified this result, showing that testis-biased gene expression in Region-2 depends on gonad biology, not on sex-determining mechanism. RNA-seq analyses in female and male brains and livers validated reduced transcripts from Region-2 in somatic cells, but without sex specificity. Region-2 corresponds to the heterochromatic portion of Chr4R and its content of genes and repetitive elements distinguishes it from the rest of the genome. Region-2 lacks protein-coding genes with human orthologs; has zinc finger genes expressed early in zygotic genome activation; has maternal 5S rRNA genes, maternal spliceosome genes, a concentration of tRNA genes, and a distinct set of repetitive elements. The colocalization of (1) genes silenced in ovaries but not in testes that are (2) expressed in embryos briefly at the onset of zygotic genome activation; (3) maternal-specific genes for translation machinery; (4) maternal-specific spliceosome components; and (5) adjacent genes encoding miR-430, which mediates maternal transcript degradation, suggest that this is a maternal-to-zygotic-transition gene regulatory block.


Asunto(s)
Cromosomas Sexuales , Pez Cebra , Animales , Pez Cebra/genética , Femenino , Masculino , Cromosomas Sexuales/genética , Cigoto/metabolismo , Procesos de Determinación del Sexo/genética , Transcriptoma , Testículo/metabolismo , Perfilación de la Expresión Génica
14.
Sci Rep ; 14(1): 4898, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418601

RESUMEN

Chameleons are well-known lizards with unique morphology and physiology, but their sex determination has remained poorly studied. Madagascan chameleons of the genus Furcifer have cytogenetically distinct Z and W sex chromosomes and occasionally Z1Z1Z2Z2/Z1Z2W multiple neo-sex chromosomes. To identify the gene content of their sex chromosomes, we microdissected and sequenced the sex chromosomes of F. oustaleti (ZZ/ZW) and F. pardalis (Z1Z1Z2Z2/Z1Z2W). In addition, we sequenced the genomes of a male and a female of F. lateralis (ZZ/ZW) and F. pardalis and performed a comparative coverage analysis between the sexes. Despite the notable heteromorphy and distinctiveness in heterochromatin content, the Z and W sex chromosomes share approximately 90% of their gene content. This finding demonstrates poor correlation of the degree of differentiation of sex chromosomes at the cytogenetic and gene level. The test of homology based on the comparison of gene copy number variation revealed that female heterogamety with differentiated sex chromosomes remained stable in the genus Furcifer for at least 20 million years. These chameleons co-opted for the role of sex chromosomes the same genomic region as viviparous mammals, lacertids and geckos of the genus Paroedura, which makes these groups excellent model for studies of convergent and divergent evolution of sex chromosomes.


Asunto(s)
Variaciones en el Número de Copia de ADN , Lagartos , Animales , Femenino , Masculino , Cromosomas Sexuales/genética , Secuencia de Bases , Lagartos/genética , Mamíferos/genética , Evolución Molecular , Procesos de Determinación del Sexo/genética
15.
Biol Reprod ; 110(5): 985-999, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38376238

RESUMEN

Sry on the Y-chromosome upregulates Sox9, which in turn upregulates a set of genes such as Fgf9 to initiate testicular differentiation in the XY gonad. In the absence of Sry expression, genes such as Rspo1, Foxl2, and Runx1 support ovarian differentiation in the XX gonad. These two pathways antagonize each other to ensure the development of only one gonadal sex in normal development. In the B6.YTIR mouse, carrying the YTIR-chromosome on the B6 genetic background, Sry is expressed in a comparable manner with that in the B6.XY mouse, yet, only ovaries or ovotestes develop. We asked how testicular and ovarian differentiation pathways interact to determine the gonadal sex in the B6.YTIR mouse. Our results showed that (1) transcript levels of Sox9 were much lower than in B6.XY gonads while those of Rspo1 and Runx1 were as high as B6.XX gonads at 11.5 and 12.5 days postcoitum. (2) FOXL2-positive cells appeared in mosaic with SOX9-positive cells at 12.5 days postcoitum. (3) SOX9-positive cells formed testis cords in the central area while those disappeared to leave only FOXL2-positive cells in the poles or the entire area at 13.5 days postcoitum. (4) No difference was found at transcript levels of all genes between the left and right gonads up to 12.5 days postcoitum, although ovotestes developed much more frequently on the left than the right at 13.5 days postcoitum. These results suggest that inefficient Sox9 upregulation and the absence of Rspo1 repression prevent testicular differentiation in the B6.YTIR gonad.


Asunto(s)
Factor de Transcripción SOX9 , Procesos de Determinación del Sexo , Testículo , Trombospondinas , Regulación hacia Arriba , Animales , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Masculino , Femenino , Ratones , Trombospondinas/genética , Trombospondinas/metabolismo , Procesos de Determinación del Sexo/genética , Procesos de Determinación del Sexo/fisiología , Testículo/metabolismo , Gónadas/metabolismo , Ovario/metabolismo , Proteína Forkhead Box L2/genética , Proteína Forkhead Box L2/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Regulación del Desarrollo de la Expresión Génica , Diferenciación Sexual/genética , Ratones Endogámicos C57BL
16.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339020

RESUMEN

The mechanism of fish gonadal sex differentiation is complex and regulated by multiple factors. It has been widely known that proper steroidogenesis in Leydig cells and sex-related genes in Sertoli cells play important roles in gonadal sex differentiation. In teleosts, the precise interaction of these signals during the sexual fate determination remains elusive, especially their effect on the bi-potential gonad during the critical stage of sexual fate determination. Recently, all-testis phenotypes have been observed in the cyp17a1-deficient zebrafish and common carp, as well as in cyp19a1a-deficient zebrafish. By mating cyp17a1-deficient fish with transgenic zebrafish Tg(piwil1:EGFP-nanos3UTR), germ cells in the gonads were labelled with enhanced green fluorescent protein (EGFP). We classified the cyp17a1-deficient zebrafish and their control siblings into primordial germ cell (PGC)-rich and -less groups according to the fluorescence area of the EGFP labelling. Intriguingly, the EGFP-labelled bi-potential gonads in cyp17a1+/+ fish from the PGC-rich group were significantly larger than those of the cyp17a1-/- fish at 23 days post-fertilization (dpf). Based on the transcriptome analysis, we observed that the cyp17a1-deficient fish of the PGC-rich group displayed a significantly upregulated expression of amh and gsdf compared to that of control fish. Likewise, the upregulated expressions of amh and gsdf were observed in cyp19a1a-deficient fish as examined at 23 dpf. This upregulation of amh and gsdf could be repressed by treatment with an exogenous supplement of estradiol. Moreover, tamoxifen, an effective antagonist of both estrogen receptor α and ß (ERα and Erß), upregulates the expression of amh and gsdf in wild-type (WT) fish. Using the cyp17a1- and cyp19a1a-deficient zebrafish, we provide evidence to show that the upregulated expression of amh and gsdf due to the compromised estrogen signaling probably determines their sexual fate towards testis differentiation. Collectively, our data suggest that estrogen signaling inhibits the expression of amh and gsdf during the critical time of sexual fate determination, which may broaden the scope of sex steroid hormones in regulating gonadal sex differentiation in fish.


Asunto(s)
Hormonas Peptídicas , Procesos de Determinación del Sexo , Pez Cebra , Animales , Femenino , Masculino , Hormona Antimülleriana/genética , Hormona Antimülleriana/metabolismo , Estrógenos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Gónadas/metabolismo , Ovario/metabolismo , Hormonas Peptídicas/genética , Testículo/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
18.
Evolution ; 78(2): 355-363, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37952174

RESUMEN

Although sex determination is ubiquitous in vertebrates, mechanisms of sex determination vary from environmentally to genetically influenced. In vertebrates, genetic sex determination is typically accomplished with sex chromosomes. Groups like mammals maintain conserved sex chromosome systems, while sex chromosomes in most vertebrate clades are not conserved across similar evolutionary timescales. One group inferred to have an evolutionarily stable mode of sex determination is Anguimorpha, a clade of charismatic taxa including monitor lizards, Gila monsters, and crocodile lizards. The common ancestor of extant anguimorphs possessed a ZW system that has been retained across the clade. However, the sex chromosome system in the endangered, monotypic family of crocodile lizards (Shinisauridae) has remained elusive. Here, we analyze genomic data to demonstrate that Shinisaurus has replaced the ancestral anguimorph ZW system on LG7 with a novel ZW system on LG3. The linkage group, LG3, corresponds to chromosome 9 in chicken, and this is the first documented use of this syntenic block as a sex chromosome in amniotes. Additionally, this ~1 Mb region harbors approximately 10 genes, including a duplication of the sex-determining transcription factor, Foxl2, critical for the determination and maintenance of sexual differentiation in vertebrates, and thus a putative primary sex-determining gene for Shinisaurus.


Asunto(s)
Lagartos , Animales , Lagartos/genética , Cromosomas Sexuales , Serpientes/genética , Genoma , Genómica , Procesos de Determinación del Sexo , Mamíferos/genética
19.
Annu Rev Anim Biosci ; 12: 233-259, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37863090

RESUMEN

Sexual reproduction is prevalent across diverse taxa. However, sex-determination mechanisms are so diverse that even closely related species often differ in sex-determination systems. Teleost fish is a taxonomic group with frequent turnovers of sex-determining mechanisms and thus provides us with great opportunities to investigate the molecular and evolutionary mechanisms underlying the turnover of sex-determining systems. Here, we compile recent studies on the diversity of sex-determination mechanisms in fish. We demonstrate that genes in the TGF-ß signaling pathway are frequently used for master sex-determining (MSD) genes. MSD genes arise via two main mechanisms, duplication-and-transposition and allelic mutations, with a few exceptions. We also demonstrate that temperature influences sex determination in many fish species, even those with sex chromosomes, with higher temperatures inducing differentiation into males in most cases. Finally, we review theoretical models for the turnover of sex-determining mechanisms and discuss what questions remain elusive.


Asunto(s)
Peces , Procesos de Determinación del Sexo , Masculino , Animales , Procesos de Determinación del Sexo/genética , Peces/genética , Cromosomas Sexuales/genética , Evolución Biológica , Mutación
20.
J Exp Zool A Ecol Integr Physiol ; 341(3): 230-241, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38155517

RESUMEN

Sex determination systems have greatly diversified between amphibians and reptiles, with such as the different sex chromosome compositions within a single species and transition between temperature-dependent sex determination (TSD) and genetic sex determination (GSD). In most sex chromosome studies on amphibians and reptiles, the whole-genome sequence of Xenopous tropicalis and chicken have been used as references to compare the chromosome homology of sex chromosomes among each of these taxonomic groups, respectively. In the present study, we reviewed existing reports on sex chromosomes, including karyotypes, in amphibians and reptiles. Furthermore, we compared the identified genetic linkages of sex chromosomes in amphibians and reptiles with the chicken genome as a reference, which is believed to resemble the ancestral tetrapod karyotype. Our findings revealed that sex chromosomes in amphibians are derived from genetic linkages homologous to various chicken chromosomes, even among several frogs within single families, such as Ranidae and Pipidae. In contrast, sex chromosomes in reptiles exhibit conserved genetic linkages with chicken chromosomes, not only across most species within a single family, but also within closely related families. The diversity of sex chromosomes in amphibians and reptiles may be attributed to the flexibility of their sex determination systems, including the ease of sex reversal in these animals.


Asunto(s)
Anfibios , Reptiles , Cromosomas Sexuales , Animales , Evolución Biológica , Ranidae/genética , Reptiles/genética , Cromosomas Sexuales/genética , Procesos de Determinación del Sexo , Anfibios/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA