Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
Microb Cell Fact ; 23(1): 234, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182107

RESUMEN

BACKGROUND: Several two-component systems of Streptomyces coelicolor, a model organism used for studying antibiotic production in Streptomyces, affect the expression of the bfr (SCO2113) gene that encodes a bacterioferritin, a protein involved in iron storage. In this work, we have studied the effect of the deletion mutant ∆bfr in S. coelicolor. RESULTS: The ∆bfr mutant exhibits a delay in morphological differentiation and produces a lesser amount of the two pigmented antibiotics (actinorhodin and undecylprodigiosin) compared to the wild type on complex media. The effect of iron in minimal medium was tested in the wild type and ∆bfr mutant. Consequently, we also observed different levels of production of the two pigmented antibiotics between the two strains, depending on the iron concentration and the medium (solid or liquid) used. Contrary to expectations, no differences in intracellular iron concentration were detected between the wild type and ∆bfr mutant. However, a higher level of reactive oxygen species in the ∆bfr mutant and a higher tolerance to oxidative stress were observed. Proteomic analysis showed no variation in iron response proteins, but there was a lower abundance of proteins related to actinorhodin and ribosomal proteins, as well as others related to secondary metabolite production and differentiation. Additionally, a higher abundance of proteins related to various types of stress, such as respiration and hypoxia among others, was also revealed. Data are available via ProteomeXchange with identifier PXD050869. CONCLUSION: This bacterioferritin in S. coelicolor (Bfr) is a new element in the complex regulation of secondary metabolism in S. coelicolor and, additionally, iron acts as a signal to modulate the biosynthesis of active molecules. Our model proposes an interaction between Bfr and iron-containing regulatory proteins. Thus, identifying these interactions would provide new information for improving antibiotic production in Streptomyces.


Asunto(s)
Antraquinonas , Antibacterianos , Proteínas Bacterianas , Ferritinas , Hierro , Streptomyces coelicolor , Streptomyces coelicolor/metabolismo , Streptomyces coelicolor/genética , Streptomyces coelicolor/crecimiento & desarrollo , Antibacterianos/biosíntesis , Antibacterianos/metabolismo , Ferritinas/metabolismo , Ferritinas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Hierro/metabolismo , Antraquinonas/metabolismo , Grupo Citocromo b/metabolismo , Grupo Citocromo b/genética , Regulación Bacteriana de la Expresión Génica , Prodigiosina/metabolismo , Prodigiosina/análogos & derivados , Prodigiosina/biosíntesis , Especies Reactivas de Oxígeno/metabolismo , Proteómica , Benzoisocromanquinonas
2.
Anticancer Agents Med Chem ; 24(19): 1383-1395, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113301

RESUMEN

The Prodiginins (PGs) natural pigments are secondary metabolites produced by a broad spectrum of gram-negative and gram-positive bacteria, notably by species within the Serratia and Streptomyces genera. These compounds exhibit diverse and potent biological activities, including anticancer, immunosuppressive, antimicrobial, antimalarial, and antiviral effects. Structurally, PGs share a common tripyrrolic core but possess variable side chains and undergo cyclization, resulting in structural diversity. Studies have investigated their antiproliferative effects on various cancer cell lines, with some PGs advancing to clinical trials for cancer treatment. This review aims to illuminate the molecular mechanisms underlying PG-induced apoptosis in cancer cells and explore the structure-activity relationships pertinent to their anticancer properties. Such insights may serve as a foundation for further research in anticancer drug development, potentially leading to the creation of novel, targeted therapies based on PGs or their derivatives.


Asunto(s)
Antineoplásicos , Proliferación Celular , Humanos , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Estructura-Actividad , Estructura Molecular , Prodigiosina/farmacología , Prodigiosina/química , Prodigiosina/síntesis química , Prodigiosina/análogos & derivados , Ensayos de Selección de Medicamentos Antitumorales , Apoptosis/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo
3.
Mol Microbiol ; 122(1): 68-80, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38845079

RESUMEN

Iron is an essential element for microbial survival and secondary metabolism. However, excess iron availability and overloaded secondary metabolites can hinder microbial growth and survival. Microorganisms must tightly control iron homeostasis and secondary metabolism. Our previous studies have found that the stringent starvation protein A (SspA) positively regulates prodiginine biosynthesis by activating iron uptake in Pseudoalteromonas sp. strain R3. It is believed that the interaction between SspA and the small nucleotide ppGpp is important for iron to exert regulation functions. However, the roles of ppGpp in iron absorption and prodiginine biosynthesis, and the underlying relationship between ppGpp and SspA in strain R3 remain unclear. In this study, we found that ppGpp accumulation in strain R3 could be induced by limiting iron. In addition, ppGpp not only positively regulated iron uptake and prodiginine biosynthesis via increasing the SspA level but also directly repressed iron uptake and prodiginine biosynthesis independent of SspA, highlighting the finding that ppGpp can stabilize both iron levels and prodiginine production. Notably, the abolishment of ppGpp significantly increased prodiginine production, thus providing a theoretical basis for manipulating prodiginine production in the future. This dynamic ppGpp-mediated interaction between iron uptake and prodiginine biosynthesis has significant implications for understanding the roles of nutrient uptake and secondary metabolism for the survival of bacteria in unfavorable environments.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Hierro , Prodigiosina , Pseudoalteromonas , Pseudoalteromonas/metabolismo , Pseudoalteromonas/genética , Hierro/metabolismo , Prodigiosina/metabolismo , Prodigiosina/biosíntesis , Prodigiosina/análogos & derivados , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Homeostasis , Metabolismo Secundario
4.
Appl Microbiol Biotechnol ; 108(1): 306, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656376

RESUMEN

The Streptomyces genus comprises Gram-positive bacteria known to produce over two-thirds of the antibiotics used in medical practice. The biosynthesis of these secondary metabolites is highly regulated and influenced by a range of nutrients present in the growth medium. In Streptomyces coelicolor, glucose inhibits the production of actinorhodin (ACT) and undecylprodigiosin (RED) by a process known as carbon catabolite repression (CCR). However, the mechanism mediated by this carbon source still needs to be understood. It has been observed that glucose alters the transcriptomic profile of this actinobacteria, modifying different transcriptional regulators, including some of the one- and two-component systems (TCSs). Under glucose repression, the expression of one of these TCSs SCO6162/SCO6163 was negatively affected. We aimed to study the role of this TCS on secondary metabolite formation to define its influence in this general regulatory process and likely establish its relationship with other transcriptional regulators affecting antibiotic biosynthesis in the Streptomyces genus. In this work, in silico predictions suggested that this TCS can regulate the production of the secondary metabolites ACT and RED by transcriptional regulation and protein-protein interactions of the transcriptional factors (TFs) with other TCSs. These predictions were supported by experimental procedures such as deletion and complementation of the TFs and qPCR experiments. Our results suggest that in the presence of glucose, the TCS SCO6162/SCO6163, named GarR/GarS, is an important negative regulator of the ACT and RED production in S. coelicolor. KEY POINTS: • GarR/GarS is a TCS with domains for signal transduction and response regulation • GarR/GarS is an essential negative regulator of the ACT and RED production • GarR/GarS putatively interacts with and regulates activators of ACT and RED.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Streptomyces coelicolor , Antraquinonas/metabolismo , Antibacterianos/biosíntesis , Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Benzoisocromanquinonas , Represión Catabólica , Glucosa/metabolismo , Prodigiosina/análogos & derivados , Prodigiosina/biosíntesis , Prodigiosina/metabolismo , Metabolismo Secundario/genética , Streptomyces coelicolor/metabolismo , Streptomyces coelicolor/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Eur J Pharmacol ; 974: 176608, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38663542

RESUMEN

Prodiginines have been studied extensively for their anticancer activity, however, the majority of the research has focused on prodigiosin. In this study, cycloheptylprodigiosin (S-1) is extracted from marine bacterium Spartinivicinus ruber MCCC 1K03745T, and its anticancer property was investigated. It exhibits remarkable cytotoxicity against a panel of human lung cancer cell lines, with the IC50 values ranging from 84.89 nM to 661.2 nM. After 6 h of treatment, S-1 gradually accumulates on mitochondria and lysosomes. While lower doses of S-1 induce cell cycle arrest, treatment with higher doses results in cell death in apoptotic independent manner in both NCI-H1299 and NCI-H460 cell lines. Interestingly, treatment with S-1 leads to the accumulation of LC3B-II via pathways that vary among different cell lines. In addition to its role as an autophagy inhibitor, S-1 also promotes autophagy initiation as demonstrated by the increment of EGFP fragment in the EGFP-LC3 degradation assay, however, inhibition of autophagy does not rescue cells from death induced by S-1. Mechanistically, S-1 impairs autophagic flux through disrupting acidic lysosomal pH and blocking the maturation of cathepsin D. Moreover, treatment with S-1 enhanced secretion of both pro- and mature forms of cathepsin D, coincident with disintegration of trans-Golgi network. Interestingly, S-1 does not induce ferroptosis, pyroptosis or necroptosis in NCI-H1299 cells. However, treatment of NCI-H460 cells with S-1 induces methuosis, which can be suppressed by Rac1 inhibitor EHT 1864. Our data demonstrate that S-1 is an effective anticancer agent with potential therapeutic application.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Catepsina D , Aparato de Golgi , Neoplasias Pulmonares , Prodigiosina , Humanos , Línea Celular Tumoral , Prodigiosina/farmacología , Prodigiosina/análogos & derivados , Catepsina D/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Antineoplásicos/farmacología , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Autofagia/efectos de los fármacos , Apoptosis/efectos de los fármacos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Muerte Celular/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
6.
J Microbiol Biotechnol ; 31(11): 1591-1600, 2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34584035

RESUMEN

Streptomyces coelicolor is a filamentous soil bacterium producing several kinds of antibiotics. S. coelicolor abs8752 is an abs (antibiotic synthesis deficient)-type mutation at the absR locus; it is characterized by an incapacity to produce any of the four antibiotics synthesized by its parental strain J1501. A chromosomal DNA fragment from S. coelicolor J1501, capable of complementing the abs- phenotype of the abs8752 mutant, was cloned and analyzed. DNA sequencing revealed that two complete ORFs (SCO6992 and SCO6993) were present in opposite directions in the clone. Introduction of SCO6992 in the mutant strain resulted in a remarkable increase in the production of two pigmented antibiotics, actinorhodin and undecylprodigiosin, in S. coelicolor J1501 and abs8752. However, introduction of SCO6993 did not show any significant difference compared to the control, suggesting that SCO6992 is primarily involved in stimulating the biosynthesis of antibiotics in S. coelicolor. In silico analysis of SCO6992 (359 aa, 39.5 kDa) revealed that sequences homologous to SCO6992 were all annotated as hypothetical proteins. Although a metalloprotease domain with a conserved metal-binding motif was found in SCO6992, the recombinant rSCO6992 did not show any protease activity. Instead, it showed very strong ß-glucuronidase activity in an API ZYM assay and toward two artificial substrates, p-nitrophenyl-ß-D-glucuronide and AS-BI-ß-D-glucuronide. The binding between rSCO6992 and Zn2+ was confirmed by circular dichroism spectroscopy. We report for the first time that SCO6992 is a novel protein with ß-glucuronidase activity, that has a distinct primary structure and physiological role from those of previously reported ß-glucuronidases.


Asunto(s)
Antibacterianos/biosíntesis , Proteínas Bacterianas/genética , Glucuronidasa/genética , Streptomyces coelicolor/genética , Secuencia de Aminoácidos , Antraquinonas/metabolismo , Proteínas Bacterianas/metabolismo , Dosificación de Gen , Regulación Bacteriana de la Expresión Génica , Prueba de Complementación Genética , Glucuronidasa/metabolismo , Mutación , Prodigiosina/análogos & derivados , Prodigiosina/biosíntesis , Alineación de Secuencia , Streptomyces coelicolor/enzimología
7.
Mol Biol Rep ; 48(8): 5965-5975, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34331180

RESUMEN

BACKGROUND: Prodiginines are bacterial red polypyrrole pigments and multifaceted secondary metabolites. These agents have anti-proliferative, immunosuppressive, antimicrobial, and anticancer effects. Recent analysis revealed that prodigiosin hypersensitizes Serratia marcescens to gamma radiation. In the present study, we report the cytotoxicity and genotoxicity properties of undecylprodigiosin and butylcycloheptylprodigiosin in the presence and absence of radiation through the MTT and alkaline comet experiments. METHODS AND RESULTS: Findings demonstrated that undecylprodigiosin was at least a fivefold more cytotoxic at low radiation doses (1 and 3 Gy) on both MCF7 and HDF lines rather than in the absence or high radiation doses (5 Gy) (P value < 0.05). Although butylcycloheptylprodigiosin toxicity on MCF7 and HDF was dose-dependent, it was not influenced by any radiation doses (P value > 0.05). Comet findings confirmed that these compounds' genotoxicity is only dose-dependent. Radiation had no significant effects on DNA damage on any of the cells (P value > 0.05). CONCLUSIONS: In general, it can be concluded that the prodiginines are cytotoxic agents that act as a double-edged sword, radiosensitizers and radio-protective, respectively at low and high radiation doses in cancer treatment process. As the results they could be used in antitumor therapies very soon.


Asunto(s)
Neoplasias/terapia , Prodigiosina/análogos & derivados , Antiinfecciosos , Antineoplásicos , Línea Celular , Daño del ADN , Humanos , Inmunosupresores , Células MCF-7 , Fármacos Fotosensibilizantes/farmacología , Prodigiosina/metabolismo , Prodigiosina/farmacología
8.
J Med Chem ; 64(12): 8739-8754, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34111350

RESUMEN

Highly efficient and straightforward synthetic routes toward the first total synthesis of 2-(p-hydroxybenzyl)-prodigiosins (2-5), isoheptylprodigiosin (6), and geometric isomers of tambjamine MYP1 ((E/Z)-7) have been developed. The crucial steps involved in these synthetic routes are the construction of methoxy-bipyrrole-carboxaldehydes (MBCs) and a 20-membered macrocyclic core and a regioselective demethylation of MBC analogues. These new synthetic routes enabled us to generate several natural prodiginines 24-27 in larger quantity. All of the synthesized natural products exhibited potent asexual blood-stage antiplasmodial activity at low nanomolar concentrations against a panel of Plasmodium falciparum parasites, with a great therapeutic index. Notably, prodiginines 6 and 24-27 provided curative in vivo efficacy against erythrocytic Plasmodium yoelii at 25 mg/kg × 4 days via oral route in a murine model. No overt clinical toxicity or behavioral change was observed in any mice treated with prodiginines and tambjamines.


Asunto(s)
Antimaláricos/uso terapéutico , Prodigiosina/análogos & derivados , Prodigiosina/uso terapéutico , Pirroles/uso terapéutico , Animales , Antimaláricos/síntesis química , Antimaláricos/toxicidad , Femenino , Células Hep G2 , Humanos , Ratones , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/efectos de los fármacos , Plasmodium yoelii/efectos de los fármacos , Prodigiosina/toxicidad , Pirroles/síntesis química , Pirroles/toxicidad , Estereoisomerismo , Relación Estructura-Actividad
9.
Curr Microbiol ; 78(7): 2569-2576, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33978787

RESUMEN

After separation of bacterial colonies on solid plates, purification, and screening through the agar cup-plate method, an antibiotic-resistant bacterial isolate was obtained, and named strain L20190601, the 16S rRNA gene sequence data of strain L20190601 to GenBank, NCBI have provided GenBank accession number MW931615. 16S rRNA gene sequencing revealed that this isolate was highly similar to a number of Streptomyces species. Among them, the homology with S. spectabilis was the highest, reaching 99.9, together with curved hyphal morphology and biochemical tests, allowed us to identify strain L20190601 as S. spectabilis. The red pigment produced by S. spectabilis strain L20190601 was structurally identified. An acid-base color reaction assay showed that when this pigment was dissolved in a solution at pH 3.0 and 9.0, the color of the solution was red and yellow, respectively. In addition, the analysis of absorption spectra revealed that at pH 8.0 and 3.0, the maximum absorption peaks were at 466 and 531 nm, respectively. These results are consistent with the spectral absorption characteristics of metacycloprodigiosin reported in the literature. Moreover, the retention time of purified pigments was identical to those of standard metacycloprodigiosin solutions. Mass spectrometry analysis revealed that the molecular weight of the red compound was 392.2 [M + H]+. Finally, metacycloprodigiosin was found to be effective against eight clinically common pathogens: Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Streptococcus pyogenes, Pseudomonas aeruginosa, Bacillus typhi, Candida albicans, and Trichophyton rubrum. In summary, metacycloprodigiosin exhibited strong antibacterial activity and a broad antibacterial spectrum, and thus is a promising compound for the development of a new type of antibacterial drug.


Asunto(s)
Microbiología del Suelo , Streptomyces , Antibacterianos/farmacología , Arthrodermataceae , Pruebas de Sensibilidad Microbiana , Prodigiosina/análogos & derivados , ARN Ribosómico 16S/genética , Streptomyces/genética
10.
FEMS Microbiol Lett ; 368(8)2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33881506

RESUMEN

Streptomyces are efficient chemists with a capacity to generate diverse and potent chemical scaffolds. The secondary metabolism of these soil-dwelling prokaryotes is stimulated upon interaction with other microbes in their complex ecosystem. We observed such an interaction when a Streptomyces isolate was cultivated in a media supplemented with dead yeast cells. Whole-genome analysis revealed that Streptomyces sp. MBK6 harbors the red cluster that is cryptic under normal environmental conditions. An interactive culture of MBK6 with dead yeast triggered the production of the red pigments metacycloprodigiosin and undecylprodigiosin. Streptomyces sp. MBK6 scavenges dead-yeast cells and preferentially grows in aggregates of sequestered yeasts within its mycelial network. We identified that the activation depends on the cluster-situated regulator, mbkZ, which may act as a cross-regulator. Cloning of this master regulator mbkZ in S. coelicolor with a constitutive promoter and promoter-deprived conditions generated different production levels of the red pigments. These surprising results were further validated by DNA-protein binding assays. The presence of the red cluster in Streptomyces sp. MBK6 provides a vivid example of horizontal gene transfer of an entire metabolic pathway followed by differential adaptation to a new environment through mutations in the receiver domain of the key regulatory protein MbkZ.


Asunto(s)
Pigmentos Biológicos/biosíntesis , Prodigiosina/análogos & derivados , Streptomyces/metabolismo , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Estructura Molecular , Prodigiosina/biosíntesis , Regiones Promotoras Genéticas , Saccharomyces cerevisiae , Metabolismo Secundario , Streptomyces/genética
11.
J Appl Genet ; 62(1): 165-182, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33415709

RESUMEN

Genetic manipulation of the undecylprodigiosin-producing strains and engineered culture medium approaches were applied as the most economical induction strategy for improving production. The hyper-producing recombinant strain ALAA-R20 was obtained after applying protoplast fusion strategy between the potent producer marine endophytic strains Streptomyces sp. ESRAA-10 (P1) and Streptomyces sp. ESRAA-31 (P2) of Dendronephthya hemprichi. Recombinant strain ALAA-R20 produced undecylprodigiosin yield higher than its parental strains ESRAA-10 and ESRAA-31 by 82.45% and 105.52% under submerged fermentation using modified R2YE medium. In order to reduce the costs of producing undecylprodigiosin, a solid-state fermentation (SSF) was applied. Scaled-up of optimized SSF parameters consisting of groundnut oil cake (GOC) sized to 3 mm, initial moisture content 80% with a mixture of dairy mill and fruit processing wastewaters (1:1), pH 7.0, inoculum size equal to 3 × 105 spores/g dry substrate (gds), incubation temperature 30 °C, and 7-day incubation period yielded the highest yield of 181.78 mg/gds of undecylprodigiosin by the recombinant strain Streptomyces sp. ALAA-R20. Extraction and purification of the pigment using the chromatographic techniques as well as mass spectral analysis exhibited maximum absorbance at 539 nm which is physiological property of the undecylprodigiosin. Undecylprodigiosin was stable over a wide temperature ranged from - 20 to 35 °C even after storage for 6 months. The maximum yield and stability of pigment was obtained at the acidic pH (acidified methanol, pH 4.0). Undecylprodigiosin obtained from the recombinant strain Streptomyces sp. ALAA-R20 demonstrated strong antimicrobial activity against all multidrug-resistant bacterial and fungal strains tested with minimum inhibitory, minimum bactericidal, and minimum fungicidal concentrations ranged between 0.5 and 4.0, 0.5 to 4.0, and 1.0 to 8.0 µg/mL, respectively. It also showed complete inhibition of cancer cells; HCT-116, HepG-2, MCF-7 and A-549 at 5, 8, 4, and 7 µM with IC50 equal to 2.0, 4.7, 1.2, and 2.8 µM, respectively.


Asunto(s)
Medios de Cultivo , Prodigiosina/análogos & derivados , Streptomyces , Fermentación , Microorganismos Modificados Genéticamente/metabolismo , Prodigiosina/biosíntesis , Streptomyces/genética , Streptomyces/metabolismo
12.
Appl Environ Microbiol ; 87(7)2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33483309

RESUMEN

Prodiginines are a family of red-pigmented secondary metabolites with multiple biological activities. The biosynthesis of prodiginines is affected by various physiological and environmental factors. Thus, prodiginine biosynthesis regulation is highly complex and multifaceted. Although the regulatory mechanism for prodiginine biosynthesis has been extensively studied in Serratia and Streptomyces species, little is known about that in the marine betaproteobacterium Pseudoalteromonas In this study, we report that stringent starvation protein A (SspA), an RNA polymerase-associated regulatory protein, is required for the biosynthesis of prodiginine in Pseudoalteromonas sp. strain R3. The strain lacking sspA (ΔsspA) fails to produce prodiginine, which resulted from the downregulation of the prodiginine biosynthetic gene (pig) cluster. The effect of SspA on prodiginine biosynthesis is independent of histone-like nucleoid structuring protein (H-NS) and RpoS (σS). Further analysis demonstrates that the ΔsspA strain has a significant decrease in the transcription of the siderophore biosynthesis gene (pvd) cluster, leading to the inhibition of siderophore production and iron uptake. The ΔsspA strain regains the ability to synthesize prodiginine by cocultivation with siderophore producers or the addition of iron. Therefore, we conclude that SspA-regulated prodiginine biosynthesis is due to decreased siderophore levels and iron deficiency. We further show that the iron homeostasis master regulator Fur is also essential for pig transcription and prodiginine biosynthesis. Overall, our results suggest that SspA indirectly regulates the biosynthesis of prodiginine, which is mediated by the siderophore-dependent iron uptake pathway.IMPORTANCE The red-pigmented prodiginines are attracting increasing interest due to their broad biological activities. As with many secondary metabolites, the biosynthesis of prodiginines is regulated by both environmental and physiological factors. At present, studies on the regulation of prodiginine biosynthesis are mainly restricted to Serratia and Streptomyces species. This work focused on the regulatory mechanism of prodiginine biosynthesis in Pseudoalteromonas sp. R3. We found that stringent starvation protein A (SspA) positively regulates prodiginine biosynthesis via affecting the siderophore-dependent iron uptake pathway. The connections among SspA, iron homeostasis, and prodiginine biosynthesis were investigated. These findings uncover a novel regulatory mechanism for prodigiosin biosynthesis.


Asunto(s)
Adhesinas Bacterianas/genética , Prodigiosina/análogos & derivados , Pseudoalteromonas/genética , Sideróforos/metabolismo , Adhesinas Bacterianas/metabolismo , Hierro/metabolismo , Prodigiosina/biosíntesis , Pseudoalteromonas/metabolismo
13.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32899258

RESUMEN

Atherosclerosis is a chronic inflammatory disease, whose progression and stability are modulated, among other factors, by an innate and adaptive immune response. Prodiginines are bacterial secondary metabolites with antiproliferative and immunomodulatory activities; however, their effect on the progression or vulnerability of atheromatous plaque has not been evaluated. This study assessed the therapeutic potential of prodigiosin and undecylprodigiosin on inflammatory marker expression and atherosclerosis. An in vitro and in vivo study was carried out. Migration, low-density lipoprotein (LDL) uptake and angiogenesis assays were performed on cell types involved in the pathophysiology of atherosclerosis. In addition, male LDL receptor null (Ldlr-/-) C57BL/6J mice were treated with prodigiosin or undecylprodigiosin for 28 days. Morphometric analysis of atherosclerotic plaques, gene expression of atherogenic factors in the aortic sinus and serum cytokine quantification were performed. The treatments applied had slight effects on the in vitro tests performed, highlighting the inhibitory effect on the migration of SMCs (smooth muscle cells). On the other hand, although no significant difference in atherosclerotic plaque progression was observed, gene expression of IL-4 and chemokine (C-C motif) ligand 2 (Ccl2) was downregulated. In addition, 50 µg/Kg/day of both treatments was sufficient to inhibit circulating tumor necrosis factor alpha (TNF-α), interleukin-2 (IL-2) and interferon-gamma (IFN-γ) in serum. These results suggested that prodigiosin and undecylprodigiosin modulated inflammatory markers and could have an impact in reducing atherosclerotic plaque vulnerability.


Asunto(s)
Aterosclerosis/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Inmunidad/efectos de los fármacos , Prodigiosina/análogos & derivados , Receptores de LDL/fisiología , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/patología , Citocinas/metabolismo , Inmunosupresores/farmacología , Lípidos/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Prodigiosina/farmacología
14.
Eur J Pharmacol ; 889: 173592, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32979354

RESUMEN

Prodiginines and tambjamines are anion-selective ionophores capable of facilitating the transport of anions across the plasma membrane in mammalian cells. One of the potential applications of these anionophores is the possibility of employing them as a substitutive therapy for pathologies involving anion channels, as in cystic fibrosis. We have studied the interaction of a large anion as gluconate with three prodiginine- and two tambjamine-like compounds. Apparent dissociation constants for the chloride, iodide and gluconate complexes were estimated from iodide influx experiments in mammalian cells exposed to different extracellular anion combinations. Our experiments indicate that gluconate is not transported by the prodiginines, leaving the anionophores free to transport chloride and iodide. Conversely, gluconate would be transported to some extent by the tambjamines, competing with halides for the anionophores, and consequently reducing their flux. This might be related to the different structural features of both families of compounds. These data have important implications for the selection of impermeable anions in the analysis of the anionophore mechanism.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Prodigiosina/análogos & derivados , Pirroles/metabolismo , Animales , Proteínas de Transporte de Anión/química , Gluconatos/metabolismo , Transporte Iónico/fisiología , Prodigiosina/química , Prodigiosina/metabolismo , Pirroles/química , Ratas , Ratas Endogámicas F344
15.
Eur J Pharmacol ; 888: 173465, 2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-32814079

RESUMEN

Melanoma is a type of skin cancer with an elevated incidence of metastasis and chemoresistance. Such features hamper treatment success of these neoplasms, demanding the search for new therapeutic options. Using a two-step resin-based approach, we recently demonstrated that cytotoxic prodiginines bind to the inhibitor of apoptosis protein, survivin. Herein, we explore the role of survivin in melanoma and whether its modulation is related to the antimelanoma properties of three cytotoxic prodiginines (prodigiosin, cyclononylprodigiosin, and nonylprodigiosin) isolated from marine bacteria. In melanoma patients and cell lines, survivin is overexpressed, and higher levels negatively impact survival. All three prodiginines caused a decrease in cell growth with reduced cytotoxicity after 24 h compared to 72 h treatment, suggesting that low concentrations promote cytostatic effects in SK-Mel-19 (BRAF mutant) and SK-Mel-28 (BRAF mutant), but not in SK-Mel-147 (NRAS mutant). An increase in G1 population was observed after 24 h treatment with prodigiosin and cyclononylprodigiosin in SK-Mel-19. Further studies indicate that prodigiosin induced apoptosis and DNA damage, as detected by increased caspase-3 cleavage and histone H2AX phosphorylation, further arguing for the downregulation of survivin. Computer simulations suggest that prodigiosin and cyclononylprodigiosin bind to the BIR domain of survivin. Moreover, knockdown of survivin increased long-term toxicity of prodigiosin, as observed by reduced clonogenic capacity, but did not alter short-term cytotoxicity. In summary, prodiginine treatment provoked cytostatic rather than cytotoxic effects, cell cycle arrest at G0/G1 phase, induction of apoptosis and DNA damage, downregulation of survivin, and decreased clonogenic capacity in survivin knockdown cells.


Asunto(s)
Melanoma/metabolismo , Prodigiosina/análogos & derivados , Prodigiosina/farmacología , Survivin/antagonistas & inhibidores , Survivin/biosíntesis , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Daño del ADN/efectos de los fármacos , Daño del ADN/fisiología , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Humanos , Melanoma/tratamiento farmacológico , Prodigiosina/uso terapéutico , Survivin/genética
16.
Cells ; 9(8)2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32708048

RESUMEN

Resistance of cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis represents the major hurdle to the clinical use of TRAIL or its derivatives. The discovery and development of lead compounds able to sensitize tumor cells to TRAIL-induced cell death is thus likely to overcome this limitation. We recently reported that marine actinomycetes' crude extracts could restore TRAIL sensitivity of the MDA-MB-231 resistant triple negative breast cancer cell line. We demonstrate in this study, that purified secondary metabolites originating from distinct marine actinomycetes (sharkquinone (1), resistomycin (2), undecylprodigiosin (3), butylcyclopentylprodigiosin (4), elloxizanone A (5) and B (6), carboxyexfoliazone (7), and exfoliazone (8)), alone, and in a concentration-dependent manner, induce killing in both MDA-MB-231 and HCT116 cell lines. Combined with TRAIL, these compounds displayed additive to synergistic apoptotic activity in the Jurkat, HCT116 and MDA-MB-231 cell lines. Mechanistically, these secondary metabolites induced and enhanced procaspase-10, -8, -9 and -3 activation leading to an increase in PARP and lamin A/C cleavage. Apoptosis induced by these compounds was blocked by the pan-caspase inhibitor QvD, but not by a deficiency in caspase-8, FADD or TRAIL agonist receptors. Activation of the intrinsic pathway, on the other hand, is likely to explain both their ability to trigger cell death and to restore sensitivity to TRAIL, as it was evidenced that these compounds could induce the downregulation of XIAP and survivin. Our data further highlight that compounds derived from marine sources may lead to novel anti-cancer drug discovery.


Asunto(s)
Actinobacteria/metabolismo , Organismos Acuáticos/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Descubrimiento de Drogas/métodos , Resistencia a Antineoplásicos/efectos de los fármacos , Metabolismo Secundario/fisiología , Survivin/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Apoptosis/efectos de los fármacos , Benzopirenos/metabolismo , Benzopirenos/farmacología , Caspasa 8/genética , Supervivencia Celular/efectos de los fármacos , Eliminación de Gen , Células HCT116 , Humanos , Células Jurkat , Oxazinas/metabolismo , Oxazinas/farmacología , Prodigiosina/análogos & derivados , Prodigiosina/metabolismo , Prodigiosina/farmacología , Quinonas/metabolismo , Quinonas/farmacología
17.
Curr Microbiol ; 77(10): 2575-2583, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32372105

RESUMEN

The aim of the study is the research and identification of a Streptomyces strain as a new producer of spectinabilin, undecylprodigiosin and metacycloprodigiosin. Among 54 actinomycete isolates isolated from El-Ogbane forest soils in Algeria, only one isolate, designated V002, was selected for its ability to produce prodigiosins. The selected strain was analysed for its ability to produce three different secondary metabolites as well as their biological activities. V002 belongs to the Streptomyces genus and has significant antimicrobial and antioxidant activities. The taxonomic position of V002 by 16S rRNA sequence analysis showed a similarity of 99.93% with Streptomyces lasiicapitis DSM 103124T and 98.96% with Streptomyces spectabilis DSM 40512T. Fractionation of crude secondary metabolites produced by the strain using HPLC-MS revealed the presence of spectinabilin, undecylprodigiosin and metacycloprodigiosin, which demonstrated significant activity. Strain V002 is considered a new producer of spectinabilin, undecylprodigiosin and metacycloprodigiosin with significant antimicrobial and antioxidant activity.


Asunto(s)
Antiinfecciosos , Antioxidantes , Argelia , ADN Bacteriano , Ácidos Grasos , Bosques , Filogenia , Prodigiosina/análogos & derivados , Pironas , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Microbiología del Suelo , Streptomyces
18.
Drug Discov Today ; 25(5): 828-836, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32251776

RESUMEN

Prodigiosin (PG), a red tripyrrole pigment, belongs to a member of the prodiginine family and is normally secreted by various sources including Serratia marcescens and other Gram-negative bacteria. The studies of PG have received innovative devotion as a result of reported antimicrobial, larvicidal and anti-nematoid immunomodulation and antitumor properties, owing to its antibiotic and cytotoxic activities. This review provides a comprehensive summary of research undertaken toward the isolation and structural elucidation of the prodiginine family of natural products. Additionally, the current evidence-based understanding of the biological activities and medicinal potential of PG is employed to determine the efficacy, with some reports of information related to pharmacokinetics, pharmacodynamics and toxicology.


Asunto(s)
Prodigiosina/biosíntesis , Prodigiosina/farmacología , Animales , Productos Biológicos/farmacología , Humanos , Prodigiosina/análogos & derivados , Serratia marcescens/metabolismo
19.
J Biosci Bioeng ; 130(1): 106-113, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32253091

RESUMEN

Monoclonal antibodies (mAbs) are active pharmaceutical ingredients in antibody drugs, produced mainly using recombinant Chinese hamster ovary (CHO) cells. The regulation of recombinant CHO cell proliferation can improve the productivity of heterologous proteins. Chemical compound approaches for cell cycle regulation have the advantages of simplicity and ease of use in industrial processes. However, CHO cells have genetic and phenotypic diversity, and the effects of such compounds might depend on cell line and culture conditions. Increasing the variety of cell cycle inhibitors is a promising strategy to overcome the dependency. Marine microorganisms are a vast and largely undeveloped source of secondary metabolites with physiological activity. In this study, we focused on secondary metabolites of marine microorganisms and evaluated their effectiveness as cell cycle inhibitory compounds. Of 720 extracts from microorganisms (400 actinomycetes and 320 filamentous fungi) collected from the Okinawan Sea, we identified nine extracts that decreased the specific growth rate and increased the specific production rate without reducing cell viability. After fractionating the extracts, the components of active fractions were estimated using time-of-flight mass spectrometry analysis. Then, four compounds, including staurosporine and undecylprodigiosin were deduced to be active compounds. These compounds have been reported to exert a cell cycle inhibitory effect on mammalian cells. These compounds might serve as additives to improve mAb production in CHO cells. This study indicates that secondary metabolites of marine microorganisms are a useful source for new cell cycle inhibitory compounds that can increase mAb production in CHO cells.


Asunto(s)
Actinobacteria/química , Ciclo Celular/efectos de los fármacos , Hongos/química , Inhibidores de Crecimiento/farmacología , Agua de Mar/microbiología , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Actinobacteria/metabolismo , Animales , Células CHO , División Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cricetinae , Cricetulus , Evaluación Preclínica de Medicamentos , Hongos/genética , Hongos/aislamiento & purificación , Hongos/metabolismo , Inhibidores de Crecimiento/metabolismo , Prodigiosina/análogos & derivados , Prodigiosina/metabolismo , Prodigiosina/farmacología , Estaurosporina/metabolismo , Estaurosporina/farmacología
20.
J Nat Prod ; 83(1): 159-163, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31904955

RESUMEN

Ion mobility spectrometry was utilized to corroborate the identity of streptorubin B (2) as the natural product produced by Streptomyces coelicolor. Natural product 2 was initially assigned as butylcycloheptylprodigiosin (3), and only relatively recently was this assignment clarified. We present additional evidence of this assignment by comparing collisional cross sections (Ω) of synthetic standards of 2, 3, and metacycloprodigiosin (4) to the cyclic prodiginine produced by S. coelicolor. Calculated theoretical Ω values demonstrate that cyclic prodiginines could be identified without standards. This work highlights ion mobility as an efficient tool for the dereplication of natural products.


Asunto(s)
Prodigiosina/análogos & derivados , Streptomyces coelicolor/química , Productos Biológicos , Espectrometría de Movilidad Iónica , Estructura Molecular , Prodigiosina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA