Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.906
Filtrar
1.
Carbohydr Polym ; 338: 122196, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38763723

RESUMEN

Triple negative breast cancer (TNBC) represents the most aggressive and heterogenous disease, and combination therapy holds promising potential. Here, an enzyme-responsive polymeric prodrug with self-assembly properties was synthesized for targeted co-delivery of paclitaxel (PTX) and ursolic acid (UA). Hyaluronic acid (HA) was conjugated with UA, yielding an amphiphilic prodrug with 13.85 mol% UA and a CMC of 32.3 µg/mL. The HA-UA conjugate exhibited ∼14 % and 47 % hydrolysis at pH 7.4 and in tumor cell lysate. HA-UA/PTX NPs exhibited a spherical structure with 173 nm particle size, and 0.15 PDI. The nanoparticles showed high drug loading (11.58 %) and entrapment efficiency (76.87 %) of PTX. Release experiments revealed accelerated drug release (∼78 %) in the presence of hyaluronidase enzyme. Cellular uptake in MDA-MB-231 cells showed enhanced uptake of HA-UA/PTX NPs through CD44 receptor-mediated endocytosis. In vitro, HA-UA/PTX NPs exhibited higher cytotoxicity, apoptosis, and mitochondrial depolarization compared to PTX alone. In vivo, HA-UA/PTX NPs demonstrated improved pharmacokinetic properties, with 2.18, 2.40, and 2.35-fold higher AUC, t1/2, and MRT compared to free PTX. Notably, HA-UA/PTX NPs exhibited superior antitumor efficacy with a 90 % tumor inhibition rate in 4T1 tumor model and low systemic toxicity, showcasing their significant potential as carriers for TNBC combination therapy.


Asunto(s)
Ácido Hialurónico , Nanopartículas , Paclitaxel , Neoplasias de la Mama Triple Negativas , Triterpenos , Ácido Ursólico , Triterpenos/química , Triterpenos/farmacología , Ácido Hialurónico/química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Humanos , Nanopartículas/química , Animales , Femenino , Paclitaxel/farmacología , Paclitaxel/química , Paclitaxel/administración & dosificación , Paclitaxel/uso terapéutico , Línea Celular Tumoral , Liberación de Fármacos , Apoptosis/efectos de los fármacos , Ratones , Portadores de Fármacos/química , Profármacos/química , Profármacos/farmacología , Ratones Endogámicos BALB C , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/química
2.
Sci Transl Med ; 16(748): eadj4504, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38776389

RESUMEN

Despite the wide availability of several safe and effective vaccines that prevent severe COVID-19, the persistent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that can evade vaccine-elicited immunity remains a global health concern. In addition, the emergence of SARS-CoV-2 VOCs that can evade therapeutic monoclonal antibodies underscores the need for additional, variant-resistant treatment strategies. Here, we characterize the antiviral activity of GS-5245, obeldesivir (ODV), an oral prodrug of the parent nucleoside GS-441524, which targets the highly conserved viral RNA-dependent RNA polymerase (RdRp). We show that GS-5245 is broadly potent in vitro against alphacoronavirus HCoV-NL63, SARS-CoV, SARS-CoV-related bat-CoV RsSHC014, Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 WA/1, and the highly transmissible SARS-CoV-2 BA.1 Omicron variant. Moreover, in mouse models of SARS-CoV, SARS-CoV-2 (WA/1 and Omicron B1.1.529), MERS-CoV, and bat-CoV RsSHC014 pathogenesis, we observed a dose-dependent reduction in viral replication, body weight loss, acute lung injury, and pulmonary function with GS-5245 therapy. Last, we demonstrate that a combination of GS-5245 and main protease (Mpro) inhibitor nirmatrelvir improved outcomes in vivo against SARS-CoV-2 compared with the single agents. Together, our data support the clinical evaluation of GS-5245 against coronaviruses that cause or have the potential to cause human disease.


Asunto(s)
Antivirales , Profármacos , SARS-CoV-2 , Animales , SARS-CoV-2/efectos de los fármacos , Profármacos/farmacología , Profármacos/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Ratones , Administración Oral , Chlorocebus aethiops , Células Vero , Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Replicación Viral/efectos de los fármacos , Nucleósidos/farmacología , Nucleósidos/uso terapéutico , Nucleósidos/química , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Femenino , Modelos Animales de Enfermedad
3.
Mol Cell ; 84(10): 1948-1963.e11, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38759627

RESUMEN

The yeast glucose-induced degradation-deficient (GID) E3 ubiquitin ligase forms a suite of complexes with interchangeable receptors that selectively recruit N-terminal degron motifs of metabolic enzyme substrates. The orthologous higher eukaryotic C-terminal to LisH (CTLH) E3 complex has been proposed to also recognize substrates through an alternative subunit, WDR26, which promotes the formation of supramolecular CTLH E3 assemblies. Here, we discover that human WDR26 binds the metabolic enzyme nicotinamide/nicotinic-acid-mononucleotide-adenylyltransferase 1 (NMNAT1) and mediates its CTLH E3-dependent ubiquitylation independently of canonical GID/CTLH E3-family substrate receptors. The CTLH subunit YPEL5 inhibits NMNAT1 ubiquitylation and cellular turnover by WDR26-CTLH E3, thereby affecting NMNAT1-mediated metabolic activation and cytotoxicity of the prodrug tiazofurin. Cryoelectron microscopy (cryo-EM) structures of NMNAT1- and YPEL5-bound WDR26-CTLH E3 complexes reveal an internal basic degron motif of NMNAT1 essential for targeting by WDR26-CTLH E3 and degron mimicry by YPEL5's N terminus antagonizing substrate binding. Thus, our data provide a mechanistic understanding of how YPEL5-WDR26-CTLH E3 acts as a modulator of NMNAT1-dependent metabolism.


Asunto(s)
Nicotinamida-Nucleótido Adenililtransferasa , Profármacos , Ubiquitina-Proteína Ligasas , Ubiquitinación , Humanos , Células HEK293 , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Profármacos/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/genética , Especificidad por Sustrato , Microscopía por Crioelectrón , Unión Proteica
4.
ACS Appl Mater Interfaces ; 16(20): 25665-25675, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38735053

RESUMEN

Tumor-associated macrophages (TAMs) usually adopt a tumor-promoting M2-like phenotype, which largely impedes the immune response and therapeutic efficacy of solid tumors. Repolarizing TAMs from M2 to the antitumor M1 phenotype is crucial for reshaping the tumor immunosuppressive microenvironment (TIME). Herein, we developed self-assembled nanoparticles from the polymeric prodrug of resiquimod (R848) to reprogram the TIME for robust cancer immunotherapy. The polymeric prodrug was constructed by conjugating the R848 derivative to terminal amino groups of the linear dendritic polymer composed of linear poly(ethylene glycol) and lysine dendrimer. The amphiphilic prodrug self-assembled into nanoparticles (PLRS) of around 35 nm with a spherical morphology. PLRS nanoparticles could be internalized by antigen-presenting cells (APCs) in vitro and thus efficiently repolarized macrophages from M2 to M1 and facilitated the maturation of APCs. In addition, PLRS significantly inhibited tumor growth in the 4T1 orthotopic breast cancer model with much lower systemic side effects. Mechanistic studies suggested that PLRS significantly stimulated the TIME by repolarizing TAMs into the M1 phenotype and increased the infiltration of cytotoxic T cells into the tumor. This study provides an effective polymeric prodrug-based strategy to improve the therapeutic efficacy of R848 in cancer immunotherapy.


Asunto(s)
Imidazoles , Inmunoterapia , Nanopartículas , Profármacos , Profármacos/química , Profármacos/farmacología , Profármacos/uso terapéutico , Animales , Ratones , Imidazoles/química , Imidazoles/farmacología , Nanopartículas/química , Femenino , Ratones Endogámicos BALB C , Línea Celular Tumoral , Humanos , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunología , Antineoplásicos/química , Antineoplásicos/farmacología , Células RAW 264.7 , Polietilenglicoles/química , Microambiente Tumoral/efectos de los fármacos , Dendrímeros/química , Dendrímeros/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo
5.
J Med Chem ; 67(10): 8296-8308, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38739678

RESUMEN

Platinum-drug-based chemotherapy in clinics has achieved great success in clinical malignancy therapy. However, unpredictable off-target toxicity and the resulting severe side effects in the treatment are still unsolved problems. Although metabolic glycan labeling-mediated tumor-targeted therapy has been widely reported, less selective metabolic labeling in vivo limited its wide application. Herein, a novel probe of B-Ac3ManNAz that is regulated by reactive oxygen species in tumor cells is introduced to enhance the recognition and cytotoxicity of DBCO-modified oxaliplatin(IV) via bioorthogonal chemistry. B-Ac3ManNAz was synthesized from Ac4ManNAz by incorporation with 4-(hydroxymethyl) benzeneboronic acid pinacol ester (HBAPE) at the anomeric position, which is confirmed to be regulated by ROS and could robustly label glycans on the cell surface. Moreover, N3-treated tumor cells could enhance the tumor accumulation of DBCO-modified oxaliplatin(IV) via click chemistry meanwhile reduce the off-target distribution in normal tissue. Our strategy provides an effective metabolic precursor for tumor-specific labeling and targeted cancer therapies.


Asunto(s)
Antineoplásicos , Oxaliplatino , Polisacáridos , Profármacos , Especies Reactivas de Oxígeno , Profármacos/química , Profármacos/farmacología , Profármacos/síntesis química , Oxaliplatino/farmacología , Oxaliplatino/química , Humanos , Especies Reactivas de Oxígeno/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Ratones , Línea Celular Tumoral , Ratones Endogámicos BALB C , Ratones Desnudos
6.
Nat Commun ; 15(1): 4343, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773197

RESUMEN

Prodrugs have been explored as an alternative to conventional chemotherapy; however, their target specificity remains limited. The tumor microenvironment harbors a range of microorganisms that potentially serve as tumor-targeting vectors for delivering prodrugs. In this study, we harness bacteria-cancer interactions native to the tumor microbiome to achieve high target specificity for prodrug delivery. We identify an oral commensal strain of Lactobacillus plantarum with an intrinsic cancer-binding mechanism and engineer the strain to enable the surface loading of anticancer prodrugs, with nasopharyngeal carcinoma (NPC) as a model cancer. The engineered commensals show specific binding to NPC via OppA-mediated recognition of surface heparan sulfate, and the loaded prodrugs are activated by tumor-associated biosignals to release SN-38, a chemotherapy compound, near NPC. In vitro experiments demonstrate that the prodrug-loaded microbes significantly increase the potency of SN-38 against NPC cell lines, up to 10-fold. In a mouse xenograft model, intravenous injection of the engineered L. plantarum leads to bacterial colonization in NPC tumors and a 67% inhibition in tumor growth, enhancing the efficacy of SN-38 by 54%.


Asunto(s)
Lactobacillus plantarum , Profármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Profármacos/farmacología , Profármacos/uso terapéutico , Animales , Humanos , Ratones , Línea Celular Tumoral , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/terapia , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/microbiología , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/patología , Microambiente Tumoral/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ratones Desnudos , Femenino , Ratones Endogámicos BALB C
7.
Proc Natl Acad Sci U S A ; 121(20): e2318119121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38709930

RESUMEN

Brain metastasis of advanced breast cancer often results in deleterious consequences. Metastases to the brain lead to significant challenges in treatment options, as the blood-brain barrier (BBB) prevents conventional therapy. Thus, we hypothesized that creation of a nanoparticle (NP) that distributes to both primary tumor site and across the BBB for secondary brain tumor can be extremely beneficial. Here, we report a simple targeting strategy to attack both the primary breast and secondary brain tumors utilizing a single NP platform. The nature of these mitochondrion-targeted, BBB-penetrating NPs allow for simultaneous targeting and drug delivery to the hyperpolarized mitochondrial membrane of the extracranial primary tumor site in addition to tumors at the brain. By utilizing a combination of such dual anatomical distributing NPs loaded with therapeutics, we demonstrate a proof-of-concept idea to combat the increased metabolic plasticity of brain metastases by lowering two major energy sources, oxidative phosphorylation (OXPHOS) and glycolysis. By utilizing complementary studies and genomic analyses, we demonstrate the utility of a chemotherapeutic prodrug to decrease OXPHOS and glycolysis by pairing with a NP loaded with pyruvate dehydrogenase kinase 1 inhibitor. Decreasing glycolysis aims to combat the metabolic flexibility of both primary and secondary tumors for therapeutic outcome. We also address the in vivo safety parameters by addressing peripheral neuropathy and neurobehavior outcomes. Our results also demonstrate that this combination therapeutic approach utilizes mitochondrial genome targeting strategy to overcome DNA repair-based chemoresistance mechanisms.


Asunto(s)
Barrera Hematoencefálica , Neoplasias Encefálicas , Neoplasias de la Mama , Nanopartículas , Fosforilación Oxidativa , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/patología , Animales , Humanos , Femenino , Nanopartículas/química , Ratones , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Fosforilación Oxidativa/efectos de los fármacos , Línea Celular Tumoral , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Glucólisis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Profármacos/farmacología , Profármacos/uso terapéutico
8.
Biophys Chem ; 310: 107256, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38728807

RESUMEN

Understanding the mechanisms by which drugs interact with cell membranes is crucial for unraveling the underlying biochemical and biophysical processes that occur on the surface of these membranes. Our research focused on studying the interaction between an ester-type derivative of tristearoyl uridine and model cell membranes composed of lipid monolayers at the air-water interface. For that, we selected a specific lipid to simulate nontumorigenic cell membranes, namely 1,2-dihexadecanoyl-sn-glycero-3-phospho-l-serine. We noted significant changes in the surface pressure-area isotherms, with a noticeable shift towards larger areas, which was lower than expected for ideal mixtures, indicating monolayer condensation. Furthermore, the viscoelastic properties of the interfacial film demonstrated an increase in both the elastic and viscous parameters for the mixed film. We also observed structural alterations using vibrational spectroscopy, which revealed an increase in the all-trans to gauche conformers ratio. This confirmed the stiffening effect of the prodrug on the lipid monolayer. In summary, this study indicates that this lipophilic prodrug significantly impacts the lipid monolayer's thermodynamic, rheological, electrical, and molecular characteristics. This information is crucial for understanding how the drug interacts with specific sites on the cellular membrane. It also has implications for drug delivery, as the drug's passage into the cytosol may involve traversing the lipid bilayer.


Asunto(s)
Membrana Celular , Profármacos , Uridina , Profármacos/química , Profármacos/farmacología , Profármacos/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Uridina/química , Uridina/farmacología , Fosfatidilserinas/química , Termodinámica , Propiedades de Superficie , Viscosidad , Elasticidad
9.
Bioorg Med Chem ; 106: 117754, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728869

RESUMEN

To improve the biodistribution of the drug in the tumor, a supramolecular prodrug of SN38 was fabricated in situ between endogenous albumin and SN38 prodrug modified with semaglutide side chain. Firstly, SN38 was conjugated with semaglutide side chain and octadecanedioic acid via glycine linkers to obtain SI-Gly-SN38 and OA-Gly-SN38 prodrugs, respectively. Both SI-Gly-SN38 and OA-Gly-SN38 exhibited excellent stability in PBS for over 24 h. Due to the strong binding affinity of the semaglutide side chain with albumin, the plasma half-life of SI-Gly-SN38 was 2.7 times higher than that of OA-Gly-SN38. Furthermore, with addition of HSA, the fluorescence intensity of SI-Gly-SN38 was 4 times higher than that of OA-Gly-SN38, confirming its strong binding capability with HSA. MTT assay showed that the cytotoxicity of SI-Gly-SN38 and OA-Gly-SN38 was higher than that of Irinotecan. Even incubated with HSA, the SI-Gly-SN38 and OA-Gly-SN38 still maintained high cytotoxicity, indicating minimal influence of HSA on their cytotoxicity. In vivo pharmacokinetic studies demonstrated that the circulation half-life of SI-Gly-SN38 was twice that of OA-Gly-SN38. SI-Gly-SN38 exhibited significantly reduced accumulation in the lungs, being only 0.23 times that of OA-Gly-SN38. The release of free SN38 in the lungs from SI-Gly-SN38 was only 0.4 times that from OA-Gly-SN38 and Irinotecan. The SI-Gly-SN38 showed the highest accumulation in tumors. The tumor inhibition rate of SI-Gly-SN38 was 6.42% higher than that of OA-Gly-SN38, and 8.67% higher than that of Irinotecan, respectively. These results indicate that the supramolecular prodrug delivery system can be constructed between SI-Gly-SN38 and endogenous albumin, which improves drug biodistribution in vivo, enhances tumor accumulation, and plays a crucial role in tumor growth inhibition.


Asunto(s)
Irinotecán , Profármacos , Irinotecán/química , Irinotecán/farmacología , Profármacos/química , Profármacos/farmacología , Profármacos/síntesis química , Animales , Humanos , Ratones , Distribución Tisular , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/farmacocinética , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Ratones Endogámicos BALB C , Ratones Desnudos , Albúminas/química , Masculino , Relación Estructura-Actividad , Albúmina Sérica Humana/química , Péptidos Similares al Glucagón
10.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(2): 296-304, 2024 Feb 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38755726

RESUMEN

Traditional antibody drug conjugates (ADC) combine monoclonal antibodies with cytotoxic drugs to accurately strike cancer cells, but there are still many shortcomings in stability, targeting, efficacy, and safety. Novel ADC, such as bi-specific, site-specific, dual-payload, and pro-drug type ADC, can be optimized by simultaneously binding 2 different antigens or epitopes, selecting more stable linkers, coupling with specific amino acid sites of antibodies, carrying different drug payloads, and adopting prodrug strategies, while retaining the characteristics of traditional ADC. Significantly improving the stability, targeting, efficacy and safety of drugs can better meet the needs of clinical treatment. Novel ADC will play a more important role in cancer treatment in the future. Discussing the progress of novel ADC in cancer treatment and analyzing their advantages and challenges can provide theoretical support for the development of anti-cancer strategies and provide directions for drug research and development.


Asunto(s)
Inmunoconjugados , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Inmunoconjugados/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Profármacos/uso terapéutico
11.
ACS Appl Bio Mater ; 7(5): 3431-3440, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38697834

RESUMEN

Light-induced release of cisplatin from Pt(IV) prodrugs represents a promising approach for precise control over the antiproliferative activity of Pt-based chemotherapeutic drugs. This method has the potential to overcome crucial drawbacks of conventional cisplatin therapy, such as high general toxicity toward healthy organs and tissues. Herein, we report two Pt(IV) prodrugs with BODIPY-based photoactive ligands Pt-1 and Pt-2, which were designed using carbamate and triazole linkers, respectively. Both prodrugs demonstrated the ability to release cisplatin under blue light irradiation without the requirement of an external reducing agent. Dicarboxylated Pt-2 prodrug turned out to be more stable in the dark and more sensitive to light than its monocarbamate Pt-1 counterpart; these observations were explained using DFT calculations. The investigation of the photoreduction mechanism of Pt-1 and Pt-2 prodrugs using DFT modeling and ΔG0 PET estimation suggests that the photoinduced electron transfer from the singlet excited state of the BODIPY axial ligand to the Pt(IV) center is the key step in the light-induced release of cisplatin from the complexes. Cytotoxicity studies demonstrated that both prodrugs were nontoxic in the dark and toxic to MCF-7 cells under low-dose irradiation with blue light, and the observed effect was solely due to the cisplatin release from the Pt(IV) prodrugs. Our research presents an elegant synthetic approach to light-activated Pt(IV) prodrugs and presents findings that may contribute to the future rational design of photoactivatable Pt(IV) prodrugs.


Asunto(s)
Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Luz , Profármacos , Profármacos/química , Profármacos/farmacología , Profármacos/síntesis química , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Estructura Molecular , Ensayo de Materiales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/síntesis química , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Cisplatino/química , Tamaño de la Partícula , Compuestos de Boro/química , Compuestos de Boro/farmacología , Compuestos de Boro/síntesis química , Procesos Fotoquímicos , Teoría Funcional de la Densidad
12.
Langmuir ; 40(21): 11098-11105, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38739904

RESUMEN

Disulfide bonding has attracted intense interest in the tumor intracellular microenvironment-activated drug delivery systems (DDSs) in the last decades. Although various molecular structures of redox-responsive disulfide-containing DDSs have been developed, no investigation was reported on the effect of aggregation structures. Here, the effect of aggregation structures on pH/GSH dual-triggered drug release was investigated with the simplest pH/GSH dual-triggered doxorubicin-based drug self-delivery system (DSDS), the disulfide/α-amide-bridged doxorubicin dimeric prodrug (DDOX), as a model. By fast precipitation or slow self-assembly, DDOX nanoparticles were obtained. With similar diameters, they exhibited different pH/GSH dual-triggered drug releases, demonstrating the effect of aggregation structures. The π-π stacking in different degrees was revealed by the UV-vis, fluorescence, and BET analysis of the DDOX nanoparticles. The effect of the π-π stacking between the dimeric prodrug and its activated products on drug release was also explored with the molecular simulation approach. The finding opens new ideas in the design of high-performance DDSs for future precise tumor treatment.


Asunto(s)
Disulfuros , Doxorrubicina , Liberación de Fármacos , Glutatión , Profármacos , Profármacos/química , Profármacos/farmacología , Doxorrubicina/química , Doxorrubicina/farmacología , Concentración de Iones de Hidrógeno , Disulfuros/química , Glutatión/química , Amidas/química , Nanopartículas/química , Dimerización , Portadores de Fármacos/química
13.
ACS Nano ; 18(21): 13683-13695, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38749906

RESUMEN

Tumor metastases and reoccurrence are considered the leading causes of cancer-associated deaths. As an emerging therapeutic method, increasing research efforts have been devoted to immunogenic cell death (ICD)-inducing compounds to solve the challenge. The clinically approved chemotherapeutic Pt complexes are not or are only poorly able to trigger ICD. Herein, the axial functionalization of the Pt(II) complex cisplatin with perfluorocarbon chains into ICD-inducing Pt(IV) prodrugs is reported. Strikingly, while the Pt(II) complex as well as the perfluorocarbon ligands did not induce ICD, the Pt(IV) prodrug demonstrated unexpectantly the induction of ICD through accumulation in the endoplasmic reticulum and generation of reactive oxygen species in this organelle. To enhance the pharmacological properties, the compound was encapsulated with human serum albumin into nanoparticles. While selectively accumulating in the tumorous tissue, the nanoparticles demonstrated a strong tumor growth inhibitory effect against osteosarcoma inside a mouse model. In vivo tumor vaccine analysis also demonstrated the ability of Pt(IV) to be an ideal ICD inducer. Overall, this study reports on axially perfluorocarbon chain-modified Pt(IV) complexes for ICD induction and chemoimmunotherapy in osteosarcoma.


Asunto(s)
Antineoplásicos , Fluorocarburos , Inmunoterapia , Albúmina Sérica Humana , Fluorocarburos/química , Fluorocarburos/farmacología , Humanos , Animales , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Albúmina Sérica Humana/química , Cisplatino/farmacología , Cisplatino/química , Línea Celular Tumoral , Nanopartículas/química , Profármacos/química , Profármacos/farmacología , Proliferación Celular/efectos de los fármacos , Platino (Metal)/química , Platino (Metal)/farmacología , Ratones Endogámicos BALB C , Muerte Celular Inmunogénica/efectos de los fármacos
14.
Eur J Med Chem ; 272: 116457, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704941

RESUMEN

It is well-known that pharmacotherapy plays a pivotal role in the treatment and prevention of cerebral ischemia. Nevertheless, existing drugs, including numerous natural products, encounter various challenges when applied in cerebral ischemia treatment. These challenges comprise poor brain absorption due to low blood-brain barrier (BBB) permeability, limited water solubility, inadequate bioavailability, poor stability, and rapid metabolism. To address these issues, researchers have turned to prodrug strategies, aiming to mitigate or eliminate the adverse properties of parent drug molecules. In vivo metabolism or enzymatic reactions convert prodrugs into active parent drugs, thereby augmenting BBB permeability, improving bioavailability and stability, and reducing toxicity to normal tissues, ultimately aiming to enhance treatment efficacy and safety. This comprehensive review delves into multiple effective prodrug strategies, providing a detailed description of representative prodrugs developed over the past two decades. It underscores the potential of prodrug approaches to improve the therapeutic outcomes of currently available drugs for cerebral ischemia. The publication of this review serves to enrich current research progress on prodrug strategies for the treatment and prevention of cerebral ischemia. Furthermore, it seeks to offer valuable insights for pharmaceutical chemists in this field, offer guidance for the development of drugs for cerebral ischemia, and provide patients with safer and more effective drug treatment options.


Asunto(s)
Isquemia Encefálica , Profármacos , Profármacos/química , Profármacos/farmacología , Humanos , Isquemia Encefálica/tratamiento farmacológico , Animales , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Estructura Molecular
15.
Expert Opin Drug Metab Toxicol ; 20(5): 377-397, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38706437

RESUMEN

INTRODUCTION: Carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2) are among the most abundant hydrolases in humans, catalyzing the metabolism of numerous clinically important medications, such as methylphenidate and clopidogrel. The large interindividual variability in the expression and activity of CES1 and CES2 affects the pharmacokinetics (PK) and pharmacodynamics (PD) of substrate drugs. AREAS COVERED: This review provides an up-to-date overview of CES expression and activity regulations and examines their impact on the PK and PD of CES substrate drugs. The literature search was conducted on PubMed from inception to January 2024. EXPERT OPINION: Current research revealed modest associations of CES genetic polymorphisms with drug exposure and response. Beyond genomic polymorphisms, transcriptional and posttranslational regulations can also significantly affect CES expression and activity and consequently alter PK and PD. Recent advances in plasma biomarkers of drug-metabolizing enzymes encourage the research of plasma protein and metabolite biomarkers for CES1 and CES2, which could lead to the establishment of precision pharmacotherapy regimens for drugs metabolized by CESs. Moreover, our understanding of tissue-specific expression and substrate selectivity of CES1 and CES2 has shed light on improving the design of CES1- and CES2-activated prodrugs.


Asunto(s)
Hidrolasas de Éster Carboxílico , Humanos , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Animales , Polimorfismo Genético , Preparaciones Farmacéuticas/metabolismo , Profármacos/farmacocinética , Biomarcadores/metabolismo , Carboxilesterasa
16.
Neoplasma ; 71(2): 117-122, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38766855

RESUMEN

The incidence of distant metastases is associated with most cancer-related mortalities. Extracellular vesicles (EVs), secreted from tumors and cancer-associated fibroblasts, are involved in the metastatic process mediating their organotropism through their involvement in the pre-metastatic niche formation. We have been developing suicide gene therapy mediated by EVs secreted from mesenchymal stem/ stromal cells, tumor cells, and cancer-associated fibroblasts. Suicide gene EVs conjugated with prodrug are tumor tropic, penetrate tumor cells, and kill them by intracellular conversion of nontoxic prodrug to an efficient anti-cancer drug. Here, we discuss findings regarding the possibility of using suicide gene EVs as a novel therapeutic approach for metastases, via pre-metastatic niche modification. The suicide gene EVs provide a future perspective for metastasis prevention.


Asunto(s)
Vesículas Extracelulares , Genes Transgénicos Suicidas , Metástasis de la Neoplasia , Humanos , Terapia Genética , Neoplasias/patología , Neoplasias/genética , Neoplasias/prevención & control , Profármacos/uso terapéutico , Animales , Células Madre Mesenquimatosas
17.
Cells ; 13(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38727266

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with high mortality due to early metastatic dissemination and high chemoresistance. All these factors are favored by its extracellular matrix (ECM)-rich microenvironment, which is also highly hypoxic and acidic. Gemcitabine (GEM) is still the first-line therapy in PDAC. However, it is quickly deaminated to its inactive metabolite. Several GEM prodrugs have emerged to improve its cytotoxicity. Here, we analyzed how the acidic/hypoxic tumor microenvironment (TME) affects the response of PDAC cell death and invadopodia-mediated ECM proteolysis to both GEM and its C18 prodrug. METHODS: For this, two PDAC cell lines, PANC-1 and Mia PaCa-2 were adapted to pHe 6.6 or not for 1 month, grown as 3D organotypic cultures and exposed to either GEM or C18 in the presence and absence of acidosis and the hypoxia inducer, deferoxamine. RESULTS: We found that C18 has higher cytotoxic and anti-invadopodia activity than GEM in all culture conditions and especially in acid and hypoxic environments. CONCLUSIONS: We propose C18 as a more effective approach to conventional GEM in developing new therapeutic strategies overcoming PDAC chemoresistance.


Asunto(s)
Desoxicitidina , Gemcitabina , Neoplasias Pancreáticas , Microambiente Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Humanos , Microambiente Tumoral/efectos de los fármacos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Línea Celular Tumoral , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Podosomas/metabolismo , Podosomas/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Profármacos/farmacología
18.
Sci Transl Med ; 16(746): eadk8198, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38718132

RESUMEN

The phosphate modification of drugs is a common chemical strategy to increase solubility and allow for parenteral administration. Unfortunately, phosphate modifications often elicit treatment- or dose-limiting pruritus through an unknown mechanism. Using unbiased high-throughput drug screens, we identified the Mas-related G protein-coupled receptor X4 (MRGPRX4), a primate-specific, sensory neuron receptor previously implicated in itch, as a potential target for phosphate-modified compounds. Using both Gq-mediated calcium mobilization and G protein-independent GPCR assays, we found that phosphate-modified compounds potently activate MRGPRX4. Furthermore, a humanized mouse model expressing MRGPRX4 in sensory neurons exhibited robust phosphomonoester prodrug-evoked itch. To characterize and confirm this interaction, we further determined the structure of MRGPRX4 in complex with a phosphate-modified drug through single-particle cryo-electron microscopy (cryo-EM) and identified critical amino acid residues responsible for the binding of the phosphate group. Together, these findings explain how phosphorylated drugs can elicit treatment-limiting itch and identify MRGPRX4 as a potential therapeutic target to suppress itch and to guide future drug design.


Asunto(s)
Modelos Animales de Enfermedad , Prurito , Receptores Acoplados a Proteínas G , Animales , Prurito/metabolismo , Prurito/inducido químicamente , Prurito/patología , Prurito/tratamiento farmacológico , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Ratones , Células HEK293 , Fosforilación/efectos de los fármacos , Fosfatos/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Profármacos/farmacología , Microscopía por Crioelectrón
19.
J Med Chem ; 67(9): 7470-7486, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38690769

RESUMEN

We assessed factors that determine the tissue-specific bioactivation of ProTide prodrugs by comparing the disposition and activation of remdesivir (RDV), its methylpropyl and isopropyl ester analogues (MeRDV and IsoRDV, respectively), the oral prodrug GS-621763, and the parent nucleotide GS-441524 (Nuc). RDV and MeRDV yielded more active metabolite remdesivir-triphosphate (RDV-TP) than IsoRDV, GS-621763, and Nuc in human lung cell models due to superior cell permeability and higher susceptivity to cathepsin A. Intravenous administration to mice showed that RDV and MeRDV delivered significantly more RDV-TP to the lung than other compounds. Nevertheless, all four ester prodrugs exhibited very low oral bioavailability (<2%), with Nuc being the predominant metabolite in blood. In conclusion, ProTides prodrugs, such as RDV and MeRDV, are more efficient in delivering active metabolites to the lung than Nuc, driven by high cell permeability and susceptivity to cathepsin A. Optimizing ProTides' ester structures is an effective strategy for enhancing prodrug activation in the lung.


Asunto(s)
Adenosina/análogos & derivados , Antivirales , Catepsina A , Pulmón , Profármacos , Profármacos/química , Profármacos/metabolismo , Profármacos/farmacocinética , Profármacos/farmacología , Animales , Ratones , Antivirales/farmacocinética , Antivirales/farmacología , Antivirales/química , Antivirales/metabolismo , Humanos , Catepsina A/metabolismo , Pulmón/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacocinética , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/química , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/química , Alanina/farmacocinética , Alanina/metabolismo , Alanina/farmacología , Permeabilidad , ProTides
20.
Bioorg Med Chem Lett ; 104: 129729, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583786

RESUMEN

Aptamers have shown significant potential in treating diverse diseases. However, challenges such as stability and drug delivery limited their clinical application. In this paper, the development of AS1411 prodrug-type aptamers for tumor treatment was introduced. A Short oligonucleotide was introduced at the end of the AS1411 sequence with a disulfide bond as responsive switch. The results indicated that the aptamer prodrugs not only enhanced the stability of the aptamer against nuclease activity but also facilitated binding to serum albumin. Furthermore, in the reducing microenvironment of tumor cells, disulfide bonds triggered drug release, resulting in superior therapeutic effects in vitro and in vivo compared to original drugs. This paper proposes a novel approach for optimizing the structure of nucleic acid drugs, that promises to protect other oligonucleotides or secondary structures, thus opening up new possibilities for nucleic acid drug design.


Asunto(s)
Antineoplásicos , Aptámeros de Nucleótidos , Profármacos , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/farmacología , Línea Celular Tumoral , Disulfuros/química , Sistemas de Liberación de Medicamentos , Ácidos Nucleicos/química , Profármacos/química , Profármacos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Estabilidad de Medicamentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA