Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 996
Filtrar
1.
Nat Commun ; 15(1): 5964, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013853

RESUMEN

Meiotic rapid prophase chromosome movements (RPMs) require connections between the chromosomes and the cytoskeleton, involving SUN (Sad1/UNC-84)-domain-containing proteins at the inner nuclear envelope (NE). RPMs remain significantly understudied in plants, with respect to their importance in the regulation of meiosis. Here, we demonstrate that Arabidopsis thaliana meiotic centromeres undergo rapid (up to 500 nm/s) and uncoordinated movements during the zygotene and pachytene stages. These centromere movements are not affected by altered chromosome organization and recombination but are abolished in the double mutant sun1 sun2. We also document the changes in chromosome dynamics and nucleus organization during the transition from leptotene to zygotene, including telomere attachment to SUN-enriched NE domains, bouquet formation, and nucleolus displacement, all of which were defective in sun1 sun2. These results establish A. thaliana as a model species for studying the functional implications of meiotic RPMs and demonstrate the mechanistic conservation of telomere-led RPMs in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cromosomas de las Plantas , Meiosis , Membrana Nuclear , Telómero , Arabidopsis/genética , Arabidopsis/metabolismo , Membrana Nuclear/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cromosomas de las Plantas/genética , Telómero/metabolismo , Centrómero/metabolismo , Profase , Profase Meiótica I , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
2.
PLoS Biol ; 22(7): e3002705, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38950075

RESUMEN

We show here that in the fungus Sordaria macrospora, the meiosis-specific HORMA-domain protein Hop1 is not essential for the basic early events of chromosome axis development, recombination initiation, or recombination-mediated homolog coalignment/pairing. In striking contrast, Hop1 plays a critical role at the leptotene/zygotene transition which is defined by transition from pairing to synaptonemal complex (SC) formation. During this transition, Hop1 is required for maintenance of normal axis structure, formation of SC from telomere to telomere, and development of recombination foci. These hop1Δ mutant defects are DSB dependent and require Sme4/Zip1-mediated progression of the interhomolog interaction program, potentially via a pre-SC role. The same phenotype occurs not only in hop1Δ but also in absence of the cohesin Rec8 and in spo76-1, a non-null mutant of cohesin-associated Spo76/Pds5. Thus, Hop1 and cohesins collaborate at this crucial step of meiotic prophase. In addition, analysis of 4 non-null mutants that lack this transition defect reveals that Hop1 also plays important roles in modulation of axis length, homolog-axis juxtaposition, interlock resolution, and spreading of the crossover interference signal. Finally, unexpected variations in crossover density point to the existence of effects that both enhance and limit crossover formation. Links to previously described roles of the protein in other organisms are discussed.


Asunto(s)
Proteínas Fúngicas , Sordariales , Complejo Sinaptonémico , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Sordariales/genética , Sordariales/metabolismo , Complejo Sinaptonémico/metabolismo , Meiosis , Profase Meiótica I , Profase , Mutación
3.
Mol Aspects Med ; 97: 101282, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38797021

RESUMEN

Meiosis is a critical step for spermatogenesis and oogenesis. Meiosis commences with pre-meiotic S phase that is subsequently followed by meiotic prophase. The meiotic prophase is characterized by the meiosis-specific chromosomal events such as chromosome recombination and homolog synapsis. Meiosis initiator (MEIOSIN) and stimulated by retinoic acid gene 8 (STRA8) initiate meiosis by activating the meiotic genes by installing the meiotic prophase program at pre-meiotic S phase. This review highlights the mechanisms of meiotic initiation and meiotic prophase progression from the point of the gene expression program and its relevance to infertility. Furthermore, upstream pathways that regulate meiotic initiation will be discussed in the context of spermatogenic development, indicating the sexual differences in the mode of meiotic entry.


Asunto(s)
Meiosis , Espermatogénesis , Espermatogénesis/genética , Humanos , Meiosis/genética , Animales , Masculino , Profase Meiótica I , Profase
4.
PLoS Genet ; 20(3): e1011140, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38427688

RESUMEN

During meiosis, genetic recombination is initiated by the formation of many DNA double-strand breaks (DSBs) catalysed by the evolutionarily conserved topoisomerase-like enzyme, Spo11, in preferred genomic sites known as hotspots. DSB formation activates the Tel1/ATM DNA damage responsive (DDR) kinase, locally inhibiting Spo11 activity in adjacent hotspots via a process known as DSB interference. Intriguingly, in S. cerevisiae, over short genomic distances (<15 kb), Spo11 activity displays characteristics of concerted activity or clustering, wherein the frequency of DSB formation in adjacent hotspots is greater than expected by chance. We have proposed that clustering is caused by a limited number of sub-chromosomal domains becoming primed for DSB formation. Here, we provide evidence that DSB clustering is abolished when meiotic prophase timing is extended via deletion of the NDT80 transcription factor. We propose that extension of meiotic prophase enables most cells, and therefore most chromosomal domains within them, to reach an equilibrium state of similar Spo11-DSB potential, reducing the impact that priming has on estimates of coincident DSB formation. Consistent with this view, when Tel1 is absent but Ndt80 is present and thus cells are able to rapidly exit meiotic prophase, genome-wide maps of Spo11-DSB formation are skewed towards pericentromeric regions and regions that load pro-DSB factors early-revealing regions of preferential priming-but this effect is abolished when NDT80 is deleted. Our work highlights how the stochastic nature of Spo11-DSB formation in individual cells within the limited temporal window of meiotic prophase can cause localised DSB clustering-a phenomenon that is exacerbated in tel1Δ cells due to the dual roles that Tel1 has in DSB interference and meiotic prophase checkpoint control.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteínas de Saccharomyces cerevisiae , ADN , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Meiosis/genética , Profase/genética , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Methods Mol Biol ; 2770: 263-285, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38351458

RESUMEN

Immunocytochemical analysis of meiotic proteins on mouse chromosome spreads is one method of choice to study prophase I chromosome organization and homologous recombination. In recent decades, the development of microscopic approaches led to the production of a large number of images that monitor fluorescent proteins, defined as fluorescent objects, and a major challenge facing the community is the deep analysis of these fluorescent objects (measurement of object length, intensity, distance between objects, as well as foci identification, counting, and colocalization). We propose a set of tools designed from the macro language of the widely used image analysis software ImageJ (Schindelin et al., Nat Methods 9: 676-682, 2012), embedded in the "MeiQuant" macro, which are specifically designed for analyzing objects in the field of meiosis. Our aim is to propose a unified evolutive common tool for image analysis, with a specific focus on mouse prophase I meiotic events.


Asunto(s)
Meiosis , Profase Meiótica I , Animales , Ratones , Profase , Cromosomas
6.
Genetics ; 226(3)2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38213110

RESUMEN

The microtubule motor dynein is critical for the assembly and positioning of mitotic spindles. In Caenorhabditis elegans, these dynein functions have been extensively studied in the early embryo but remain poorly explored in other developmental contexts. Here, we use a hypomorphic dynein mutant to investigate the motor's contribution to asymmetric stem cell-like divisions in the larval epidermis. Live imaging of seam cell divisions that precede formation of the seam syncytium shows that mutant cells properly assemble but frequently misorient their spindle. Misoriented divisions misplace daughter cells from the seam cell row, generate anucleate compartments due to aberrant cytokinesis, and disrupt asymmetric cell fate inheritance. Consequently, the seam becomes disorganized and populated with extra cells that have lost seam identity, leading to fatal epidermal rupture. We show that dynein orients the spindle through the cortical GOA-1Gα-LIN-5NuMA pathway by directing the migration of prophase centrosomes along the anterior-posterior axis. Spindle misorientation in the dynein mutant can be partially rescued by elongating cells, implying that dynein-dependent force generation and cell shape jointly promote correct asymmetric division of epithelial stem cells.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Dineínas/genética , Dineínas/metabolismo , Mitosis , Centrosoma/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Huso Acromático/metabolismo , Profase , Epidermis/metabolismo
7.
Life Sci Alliance ; 7(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38228373

RESUMEN

Accurate centrosome separation and positioning during early mitosis relies on force-generating mechanisms regulated by a combination of extracellular, cytoplasmic, and nuclear cues. The identity of the nuclear cues involved in this process remains largely unknown. Here, we investigate how the prophase nucleus contributes to centrosome positioning during the initial stages of mitosis, using a combination of cell micropatterning, high-resolution live-cell imaging, and quantitative 3D cellular reconstruction. We show that in untransformed RPE-1 cells, centrosome positioning is regulated by a nuclear signal, independently of external cues. This nuclear mechanism relies on the linker of nucleoskeleton and cytoskeleton complex that controls the timely loading of dynein on the nuclear envelope (NE), providing spatial cues for robust centrosome positioning on the shortest nuclear axis, before nuclear envelope permeabilization. Our results demonstrate how nuclear-cytoskeletal coupling maintains a robust centrosome positioning mechanism to ensure efficient mitotic spindle assembly.


Asunto(s)
Centrosoma , Membrana Nuclear , Mitosis , Profase , Núcleo Celular
8.
Nat Plants ; 9(12): 2016-2030, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37973938

RESUMEN

The synaptonemal complex (SC) is a proteinaceous structure that forms between homologous chromosomes during meiosis prophase. The SC is widely conserved across species, but its structure and roles during meiotic recombination are still debated. While the SC central region is made up of transverse filaments and central element proteins in mammals and fungi, few central element proteins have been identified in other species. Here we report the identification of two coiled-coil proteins, SCEP1 and SCEP2, that form a complex and localize at the centre of the Arabidopsis thaliana SC. In scep1 and scep2 mutants, chromosomes are aligned but not synapsed (the ZYP1 transverse filament protein is not loaded), crossovers are increased compared with the wild type, interference is lost and heterochiasmy is strongly reduced. We thus report the identification of two plant SC central elements, and homologues of these are found in all major angiosperm clades.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo , Profase , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Meiosis , Mamíferos/genética
9.
Nature ; 623(7986): 347-355, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914934

RESUMEN

Reproductive isolation occurs when the genomes of two populations accumulate genetic incompatibilities that prevent interbreeding1,2. Understanding of hybrid incompatibility at the cell biology level is limited, particularly in the case of hybrid female sterility3. Here we find that species divergence in condensin regulation and centromere organization between two mouse species, Mus musculus domesticus and Mus spretus, drives chromosome decondensation and mis-segregation in their F1 hybrid oocytes, reducing female fertility. The decondensation in hybrid oocytes was especially prominent at pericentromeric major satellites, which are highly abundant at M. m. domesticus centromeres4-6, leading to species-specific chromosome mis-segregation and egg aneuploidy. Consistent with the condensation defects, a chromosome structure protein complex, condensin II7,8, was reduced on hybrid oocyte chromosomes. We find that the condensin II subunit NCAPG2 was specifically reduced in the nucleus in prophase and that overexpressing NCAPG2 rescued both the decondensation and egg aneuploidy phenotypes. In addition to the overall reduction in condensin II on chromosomes, major satellites further reduced condensin II levels locally, explaining why this region is particularly prone to decondensation. Together, this study provides cell biological insights into hybrid incompatibility in female meiosis and demonstrates that condensin misregulation and pericentromeric satellite expansion can establish a reproductive isolating barrier in mammals.


Asunto(s)
Adenosina Trifosfatasas , Centrómero , Proteínas de Unión al ADN , Complejos Multiproteicos , Animales , Femenino , Ratones/clasificación , Ratones/genética , Adenosina Trifosfatasas/metabolismo , Aneuploidia , Centrómero/genética , Centrómero/metabolismo , Segregación Cromosómica , Cromosomas de los Mamíferos/genética , Cromosomas de los Mamíferos/metabolismo , Proteínas de Unión al ADN/metabolismo , Hibridación Genética , Infertilidad Femenina/genética , Meiosis/genética , Complejos Multiproteicos/metabolismo , Oocitos/metabolismo , Profase/genética , Núcleo Celular/genética
10.
PLoS Genet ; 19(11): e1011066, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38019881

RESUMEN

The centromere is an epigenetic mark that is a loading site for the kinetochore during meiosis and mitosis. This mark is characterized by the H3 variant CENP-A, known as CID in Drosophila. In Drosophila, CENP-C is critical for maintaining CID at the centromeres and directly recruits outer kinetochore proteins after nuclear envelope break down. These two functions, however, happen at different times in the cell cycle. Furthermore, in Drosophila and many other metazoan oocytes, centromere maintenance and kinetochore assembly are separated by an extended prophase. We have investigated the dynamics of function of CENP-C during the extended meiotic prophase of Drosophila oocytes and found that maintaining high levels of CENP-C for metaphase I requires expression during prophase. In contrast, CID is relatively stable and does not need to be expressed during prophase to remain at high levels in metaphase I of meiosis. Expression of CID during prophase can even be deleterious, causing ectopic localization to non-centromeric chromatin, abnormal meiosis and sterility. CENP-C prophase loading is required for multiple meiotic functions. In early meiotic prophase, CENP-C loading is required for sister centromere cohesion and centromere clustering. In late meiotic prophase, CENP-C loading is required to recruit kinetochore proteins. CENP-C is one of the few proteins identified in which expression during prophase is required for meiotic chromosome segregation. An implication of these results is that the failure to maintain recruitment of CENP-C during the extended prophase in oocytes would result in chromosome segregation errors in oocytes.


Asunto(s)
Proteínas de Drosophila , Meiosis , Animales , Meiosis/genética , Segregación Cromosómica/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Profase/genética , Centrómero/genética , Centrómero/metabolismo , Drosophila/genética , Drosophila/metabolismo , Mitosis , Cinetocoros/metabolismo , Proteína A Centromérica/genética , Proteína A Centromérica/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo
11.
Dev Cell ; 58(24): 3009-3027.e6, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37963468

RESUMEN

During meiosis, the chromatin and transcriptome undergo prominent switches. Although recent studies have explored the genome reorganization during spermatogenesis, the chromatin remodeling in oogenesis and characteristics of homologous pairing remain largely elusive. We comprehensively compared chromatin structures and transcriptomes at successive substages of meiotic prophase in both female and male mice using low-input high-through chromosome conformation capture (Hi-C) and RNA sequencing (RNA-seq). Compartments and topologically associating domains (TADs) gradually disappeared and slowly recovered in both sexes. We found that homologs adopted different sex-conserved pairing strategies prior to and after the leptotene-to-zygotene transition, changing from long interspersed nuclear element (LINE)-enriched compartments B to short interspersed nuclear element (SINE)-enriched compartments A. We complemented marker genes and predicted the sex-specific meiotic sterile genes for each substage. This study provides valuable insights into the similarities and distinctions between sexes in chromosome architecture, homologous pairing, and transcriptome during meiotic prophase of both oogenesis and spermatogenesis.


Asunto(s)
Meiosis , Espermatogénesis , Masculino , Femenino , Ratones , Animales , Meiosis/genética , Espermatogénesis/genética , Profase , Profase Meiótica I/genética , Cromatina/genética , Oogénesis/genética , Emparejamiento Cromosómico/genética
12.
Development ; 150(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37882771

RESUMEN

During meiosis, germ cell and stage-specific components impose additional layers of regulation on the core cell cycle machinery to set up an extended G2 period termed meiotic prophase. In Drosophila males, meiotic prophase lasts 3.5 days, during which spermatocytes upregulate over 1800 genes and grow 25-fold. Previous work has shown that the cell cycle regulator Cyclin B (CycB) is subject to translational repression in immature spermatocytes, mediated by the RNA-binding protein Rbp4 and its partner Fest. Here, we show that the spermatocyte-specific protein Lut is required for translational repression of cycB in an 8-h window just before spermatocytes are fully mature. In males mutant for rbp4 or lut, spermatocytes enter and exit meiotic division 6-8 h earlier than in wild type. In addition, spermatocyte-specific isoforms of Syncrip (Syp) are required for expression of CycB protein in mature spermatocytes and normal entry into the meiotic divisions. Lut and Syp interact with Fest independent of RNA. Thus, a set of spermatocyte-specific regulators choreograph the timing of expression of CycB protein during male meiotic prophase.


Asunto(s)
Proteínas de Drosophila , Meiosis , Animales , Masculino , Meiosis/genética , Espermatogénesis/fisiología , Profase , Mitosis , Espermatocitos/metabolismo , Drosophila/genética , Ciclina B/genética , Ciclina B/metabolismo , Proteínas de Drosophila/metabolismo
13.
Front Endocrinol (Lausanne) ; 14: 1268009, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900135

RESUMEN

Introduction: The non-growing, meiotically-arrested oocytes housed within primordial follicles are exquisitely sensitive to genotoxic insults from endogenous and exogenous sources. Even a single DNA double-strand break (DSB) can trigger oocyte apoptosis, which can lead to accelerated depletion of the ovarian reserve, early loss of fertility and menopause. Therefore, repair of DNA damage is important for preserving the quality of oocytes to sustain fertility across the reproductive lifespan. This study aimed to evaluate the role of KU80 (encoded by the XRCC5 gene) - an essential component of the non-homologous end joining (NHEJ) pathway - in the repair of oocyte DNA DSBs during reproductive ageing, and following insult caused by the DNA-damaging chemotherapies cyclophosphamide and cisplatin. Methods: To investigate the importance of KU80 following endogenous and exogenous DNA damage, ovaries from conditional oocyte-specific Xrcc5 knockout (Xrcc5 cKO) and wildtype (WT) mice that were aged or exposed to DNA damage-inducing chemotherapy were compared. Ovarian follicles and oocytes were quantified, morphologically assessed and analysed via immunohistochemistry for markers of DNA damage and apoptosis. In addition, chemotherapy exposed mice were superovulated, and the numbers and quality of mature metaphase- II (MII) oocytes were assessed. Results: The number of healthy follicles, atretic (dying) follicles, and corpora lutea were similar in Xrcc5 cKO and WT mice at PN50, PN200 and PN300. Additionally, primordial follicle number and ovulation rates were similar in young adult Xrcc5 cKO and WT mice following treatment with cyclophosphamide (75mg/kg), cisplatin (4mg/kg), or vehicle control (saline). Furthermore, KU80 was not essential for the repair of exogenously induced DNA damage in primordial follicle oocytes. Discussion: These data indicate that KU80 is not required for maintenance of the ovarian reserve, follicle development, or ovulation during maternal ageing. Similarly, this study also indicates that KU80 is not required for the repair of exogenously induced DSBs in the prophase-arrested oocytes of primordial follicles.


Asunto(s)
Cisplatino , Autoantígeno Ku , Folículo Ovárico , Animales , Femenino , Ratones , Ciclofosfamida/farmacología , ADN , Oocitos/fisiología , Folículo Ovárico/fisiología , Profase , Autoantígeno Ku/genética
14.
Nucleic Acids Res ; 51(17): 9183-9202, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37548405

RESUMEN

RAD54 family DNA translocases partner with RAD51 recombinases to ensure stable genome inheritance, exhibiting biochemical activities both in promoting recombinase removal and in stabilizing recombinase association with DNA. Understanding how such disparate activities of RAD54 paralogs align with their biological roles is an ongoing challenge. Here we investigate the in vivo functions of Caenorhabditis elegans RAD54 paralogs RAD-54.L and RAD-54.B during meiotic prophase, revealing distinct contributions to the dynamics of RAD-51 association with DNA and to the progression of meiotic double-strand break repair (DSBR). While RAD-54.L is essential for RAD-51 removal from meiotic DSBR sites to enable recombination progression, RAD-54.B is largely dispensable for meiotic DSBR. However, RAD-54.B is required to prevent hyperaccumulation of RAD-51 on unbroken DNA during the meiotic sub-stage when DSBs and early recombination intermediates form. Moreover, DSB-independent hyperaccumulation of RAD-51 foci in the absence of RAD-54.B is RAD-54.L-dependent, revealing a hidden activity of RAD-54.L in promoting promiscuous RAD-51 association that is antagonized by RAD-54.B. We propose a model wherein a division of labor among RAD-54 paralogs allows germ cells to ramp up their capacity for efficient homologous recombination that is crucial to successful meiosis while counteracting potentially deleterious effects of unproductive RAD-51 association with unbroken DNA.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , ADN Helicasas , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/genética , ADN , Reparación del ADN , Células Germinativas/metabolismo , Meiosis , Profase , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , ADN Helicasas/metabolismo
15.
Commun Biol ; 6(1): 715, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438411

RESUMEN

The nucleus plays a central role in several key cellular processes, including chromosome organisation, DNA replication and gene transcription. Recent work suggests an association between nuclear mechanics and cell-cycle progression, but many aspects of this connection remain unexplored. Here, by monitoring nuclear shape fluctuations at different cell cycle stages, we uncover increasing inward fluctuations in late G2 and in early prophase, which are initially transient, but develop into instabilities when approaching the nuclear-envelope breakdown. We demonstrate that such deformations correlate with chromatin condensation by perturbing both the chromatin and the cytoskeletal structures. We propose that the contrasting forces between an extensile stress and centripetal pulling from chromatin condensation could mechanically link chromosome condensation with nuclear-envelope breakdown, two main nuclear processes occurring during mitosis.


Asunto(s)
Núcleo Celular , Cromatina , Humanos , Mitosis , Profase , Investigadores
16.
J Vis Exp ; (196)2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37427948

RESUMEN

Oocytes are amongst the biggest and most long-lived cells in the female body. They are formed in the ovaries during embryonic development and remain arrested at the prophase of meiosis I. The quiescent state may last for years until the oocytes receive a stimulus to grow and obtain the competency to resume meiosis. This protracted state of arrest makes them extremely susceptible to accumulating DNA-damaging insults, which affect the genetic integrity of the female gametes and, therefore, the genetic integrity of the future embryo. Consequently, the development of an accurate method to detect DNA damage, which is the first step for the establishment of DNA damage response mechanisms, is of vital importance. This paper describes a common protocol to test the presence and progress of DNA damage in prophase-arrested oocytes during a period of 20 h. Specifically, we dissect mouse ovaries, retrieve the cumulus-oocyte complexes (COCs), remove the cumulus cells from the COCs, and culture the oocytes in Μ2 medium containing 3-isobutyl-1-methylxanthine to maintain the state of arrest. Thereafter, the oocytes are treated with the cytotoxic, antineoplasmic drug, etoposide, to engender double-strand breaks (DSBs). By using immunofluorescence and confocal microscopy, we detect and quantify the levels of the core protein γH2AX, which is the phosphorylated form of the histone H2AX. H2AX becomes phosphorylated at the sites of DSBs after DNA damage. The inability to restore DNA integrity following DNA damage in oocytes can lead to infertility, birth defects, and increased rates of spontaneous abortions. Therefore, the understanding of DNA damage response mechanisms and, at the same time, the establishment of an intact method for studying these mechanisms are essential for reproductive biology research.


Asunto(s)
Roturas del ADN de Doble Cadena , Oocitos , Embarazo , Femenino , Animales , Ratones , Meiosis , Profase , ADN/metabolismo
17.
Plant J ; 115(3): 602-613, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37326283

RESUMEN

Mitosis and cytokinesis are fundamental processes through which somatic cells increase their numbers and allow plant growth and development. Here, we analyzed the organization and dynamics of mitotic chromosomes, nucleoli, and microtubules in living cells of barley root primary meristems using a series of newly developed stable fluorescent protein translational fusion lines and time-lapse confocal microscopy. The median duration of mitosis from prophase until the end of telophase was 65.2 and 78.2 min until the end of cytokinesis. We showed that barley chromosomes frequently start condensation before mitotic pre-prophase as defined by the organization of microtubules and maintain it even after entering into the new interphase. Furthermore, we found that the process of chromosome condensation does not finish at metaphase, but gradually continues until the end of mitosis. In summary, our study features resources for in vivo analysis of barley nuclei and chromosomes and their dynamics during mitotic cell cycle.


Asunto(s)
Hordeum , Hordeum/genética , Mitosis , Cromosomas , Microtúbulos , Núcleo Celular , Profase
18.
PLoS Genet ; 19(4): e1010708, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37058535

RESUMEN

During meiotic prophase, the essential events of homolog pairing, synapsis, and recombination are coordinated with meiotic progression to promote fidelity and prevent aneuploidy. The conserved AAA+ ATPase PCH-2 coordinates these events to guarantee crossover assurance and accurate chromosome segregation. How PCH-2 accomplishes this coordination is poorly understood. Here, we provide evidence that PCH-2 decelerates pairing, synapsis and recombination in C. elegans by remodeling meiotic HORMADs. We propose that PCH-2 converts the closed versions of these proteins, which drive these meiotic prophase events, to unbuckled conformations, destabilizing interhomolog interactions and delaying meiotic progression. Further, we find that PCH-2 distributes this regulation among three essential meiotic HORMADs in C. elegans: PCH-2 acts through HTP-3 to regulate pairing and synapsis, HIM-3 to promote crossover assurance, and HTP-1 to control meiotic progression. In addition to identifying a molecular mechanism for how PCH-2 regulates interhomolog interactions, our results provide a possible explanation for the expansion of the meiotic HORMAD family as a conserved evolutionary feature of meiosis. Taken together, our work demonstrates that PCH-2's remodeling of meiotic HORMADs has functional consequences for the rate and fidelity of homolog pairing, synapsis, recombination and meiotic progression, ensuring accurate meiotic chromosome segregation.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Meiosis/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Profase , Emparejamiento Cromosómico/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteínas de Ciclo Celular/genética
19.
Nat Commun ; 14(1): 1636, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964127

RESUMEN

N6-methyladenosine (m6A) and its reader proteins YTHDC1, YTHDC2, and YTHDF2 have been shown to exert essential functions during spermatogenesis. However, much remains unknown about m6A regulation mechanisms and the functions of specific readers during the meiotic cell cycle. Here, we show that the m6A reader Proline rich coiled-coil 2A (PRRC2A) is essential for male fertility. Germ cell-specific knockout of Prrc2a causes XY asynapsis and impaired meiotic sex chromosome inactivation in late-prophase spermatocytes. Moreover, PRRC2A-null spermatocytes exhibit delayed metaphase entry, chromosome misalignment, and spindle disorganization at metaphase I and are finally arrested at this stage. Sequencing data reveal that PRRC2A decreases the RNA abundance or improves the translation efficiency of targeting transcripts. Specifically, PRRC2A recognizes spermatogonia-specific transcripts and downregulates their RNA abundance to maintain the spermatocyte expression pattern during the meiosis prophase. For genes involved in meiotic cell division, PRRC2A improves the translation efficiency of their transcripts. Further, co-immunoprecipitation data show that PRRC2A interacts with several proteins regulating mRNA metabolism or translation (YBX1, YBX2, PABPC1, FXR1, and EIF4G3). Our study reveals post-transcriptional functions of PRRC2A and demonstrates its critical role in the completion of meiosis I in spermatogenesis.


Asunto(s)
Meiosis , Espermatogénesis , Masculino , Humanos , Espermatogénesis/genética , Meiosis/genética , Profase , Espermatocitos/metabolismo , Cromosomas Sexuales , ARN/metabolismo
20.
PLoS One ; 18(3): e0283590, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36952545

RESUMEN

Cyclin dependent-kinase 2 (CDK2) plays important functions during the mitotic cell cycle and also facilitates several key events during germ cell development. The majority of CDK2's known meiotic functions occur during prophase of the first meiotic division. Here, CDK2 is involved in the regulation of meiotic transcription, the pairing of homologous chromosomes, and the maturation of meiotic crossover sites. Despite that some of the CDK2 substrates are known, few of them display functions in meiosis. Here, we investigate potential meiotic CDK2 substrates using in silico and in vitro approaches. We find that CDK2 phosphorylates PMS2 at Thr337, PMS1 at Thr331, and MLH1 in vitro. Phosphorylation of PMS2 affects its interaction with MLH1 to some degree. In testis extracts from mice lacking Cdk2, there are changes in expression of PMS2, MSH2, and HEI10, which may be reflective of the loss of CDK2 phosphorylation. Our work has uncovered a few CDK2 substrates with meiotic functions, which will have to be verified in vivo. A better understanding of the CDK2 substrates will help us to gain deeper insight into the functions of this universal kinase.


Asunto(s)
Meiosis , Animales , Masculino , Ratones , Puntos de Control del Ciclo Celular , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/genética , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/metabolismo , Fosforilación , Profase
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA