Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 497
Filtrar
1.
Methods Mol Biol ; 2818: 133-145, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39126471

RESUMEN

Oogenesis is the central process required to produce viable oocytes in female mammals. It is initiated during embryonic development, and it involves the specification of primordial germ cells (PGCs) and progresses through the activation of the meiotic program, reaching a crucial phase in prophase I before pausing at diplotene around the time of birth. The significance of meiosis, particularly the prophase I stage, cannot be overstated, as it plays a pivotal role in ensuring the formation of healthy gametes, a prerequisite for successful reproduction. While research has explored meiosis across various organisms, understanding how environmental factors, including radiation, drugs, endocrine disruptors, reproductive age, or diet, influence this complex developmental process remains incomplete. In this chapter, we describe an ex vivo culture method to investigate meiotic prophase I and beyond and the disruption of oogenesis by external factors. Using this methodology, it is possible to evaluate the effects of individual xenobiotics by administering chemicals at specific points during oogenesis. This culture technique was optimized to study the effects of two selected endocrine disruptors (vinclozolin and MEHP), demonstrating that vinclozolin exposure delayed meiotic differentiation and MEHP exposure reduced follicle size. This approach also opens avenues for future applications, involving the exploration of established or novel pharmaceutical substances and their influence on essential events during prophase I, such as homologous recombination and chromosome segregation. These processes collectively dictate the ultimate fitness of oocytes, with potential implications for factors relevant to the reproductive age and fertility.


Asunto(s)
Meiosis , Ovario , Animales , Femenino , Ratones , Ovario/citología , Meiosis/efectos de los fármacos , Oogénesis/efectos de los fármacos , Oocitos/citología , Oocitos/efectos de los fármacos , Profase Meiótica I/efectos de los fármacos , Disruptores Endocrinos/farmacología , Oxazoles/farmacología , Embrión de Mamíferos/citología , Embrión de Mamíferos/efectos de los fármacos
2.
Methods Mol Biol ; 2818: 249-270, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39126480

RESUMEN

Prophase I is a remarkable stage of meiotic division during which homologous chromosomes pair together and exchange DNA by meiotic recombination. Fluorescence microscopy of meiotic chromosome spreads is a central tool in the study of this process, with chromosome axis proteins being visualized as extended filaments upon which recombination proteins localize in focal patterns.Chromosome pairing and recombination are dynamic processes, and hundreds of recombination foci can be present in some meiotic nuclei. As meiotic nuclei can exhibit significant variations in staining patterns within and between nuclei, particularly in mutants, manual analysis of images presents challenges for consistency, documentation, and reproducibility. Here we share a combination of complementary computational tools that can be used to partially automate the quantitative analysis of meiotic images. (1) The segmentation of axial and focal staining patterns to automatically measure chromosome axis length and count axis-associated (and non-axis associated) recombination foci; (2) Quantification of focus position along chromosome axes to investigate spatial regulation; (3) Simulation of random distributions of foci within the nucleus or along the chromosome axes to statistically investigate observed foci-axis associations and foci-foci associations; (4) Quantification of chromosome axis proximity to investigate relationships with chromosome synapsis/asynapsis; (5) Quantification of and orientation of focus-axis distances. Together, these tools provide a framework to perform routine documentation and analysis of meiotic images, as well as opening up routes to build on this initial output and perform more detailed analyses.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Profase Meiótica I , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Programas Informáticos , Biología Computacional/métodos , Emparejamiento Cromosómico , Meiosis , Núcleo Celular/metabolismo , Recombinación Genética
3.
Methods Mol Biol ; 2818: 179-194, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39126475

RESUMEN

Recently, we reported that, in the naked mole-rat (Heterocephalus glaber) ovary, there is mitotic expansion of the primordial germ cells (PGCs), and the initiation of the meiotic program occurs postnatally. This is opposite to almost all other mammals, including humans and mice, whose reproductive cycle begins very early in development. In both mouse and human, the ovaries become populated with PGCs in utero; these PGCs will later generate the oogonia. After mitotic proliferation, these cells will trigger the meiotic program and initiate meiotic prophase I. Given that all these processes happen in utero, their analysis has been very challenging; so the ability to study them postnatally and to manipulate them with inhibitors or other substances, in the naked mole-rat, opens new possibilities in the field. In this chapter, we present a comprehensive collection of protocols that permit the culture of whole naked mole-rat ovaries, followed by analysis of germ cells, from PGCs to oocytes, in meiotic prophase I, as well the obtention of single-cell suspension or single-nuclei suspension for RNASeq.


Asunto(s)
Profase Meiótica I , Ratas Topo , Ovario , Análisis de la Célula Individual , Femenino , Animales , Ovario/citología , Análisis de la Célula Individual/métodos , Oocitos/citología , Oocitos/metabolismo , Células Germinativas/citología , Células Germinativas/metabolismo , Meiosis , Análisis de Secuencia de ARN/métodos , Análisis de Expresión Génica de una Sola Célula
4.
Methods Mol Biol ; 2818: 239-248, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39126479

RESUMEN

During meiosis, homologous chromosomes reciprocally exchange segments of DNA via the formation of crossovers. However, the frequency and position of crossover events along chromosomes are not random. Each chromosome must receive at least one crossover, and the formation of a crossover at one location inhibits the formation of additional crossovers nearby. These crossover patterning phenomena are referred to as "crossover assurance" and "crossover interference," respectively. One key method for quantifying meiotic crossover patterning is to immunocytologically measure the position and intensity of crossover-associated protein foci along the length of meiotic prophase I chromosomes. This approach was recently used to map the position of a conserved E3 ligase, HEI10, along Arabidopsis pachytene chromosomes, providing experimental support for a novel mechanistic "coarsening model" for crossover patterning. Here we describe a user-friendly method for automatically measuring the position and intensity of recombination-associated foci along meiotic prophase I chromosomes that is broadly applicable to studies in different eukaryotic species.


Asunto(s)
Intercambio Genético , Meiosis , Meiosis/genética , Arabidopsis/genética , Cromosomas de las Plantas/genética , Profase Meiótica I , Recombinación Genética
5.
Nat Commun ; 15(1): 5964, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013853

RESUMEN

Meiotic rapid prophase chromosome movements (RPMs) require connections between the chromosomes and the cytoskeleton, involving SUN (Sad1/UNC-84)-domain-containing proteins at the inner nuclear envelope (NE). RPMs remain significantly understudied in plants, with respect to their importance in the regulation of meiosis. Here, we demonstrate that Arabidopsis thaliana meiotic centromeres undergo rapid (up to 500 nm/s) and uncoordinated movements during the zygotene and pachytene stages. These centromere movements are not affected by altered chromosome organization and recombination but are abolished in the double mutant sun1 sun2. We also document the changes in chromosome dynamics and nucleus organization during the transition from leptotene to zygotene, including telomere attachment to SUN-enriched NE domains, bouquet formation, and nucleolus displacement, all of which were defective in sun1 sun2. These results establish A. thaliana as a model species for studying the functional implications of meiotic RPMs and demonstrate the mechanistic conservation of telomere-led RPMs in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cromosomas de las Plantas , Meiosis , Membrana Nuclear , Telómero , Arabidopsis/genética , Arabidopsis/metabolismo , Membrana Nuclear/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cromosomas de las Plantas/genética , Telómero/metabolismo , Centrómero/metabolismo , Profase , Profase Meiótica I , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
6.
PLoS Genet ; 20(7): e1011197, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39012914

RESUMEN

We report here the successful labelling of meiotic prophase I DNA synthesis in the flowering plant, Arabidopsis thaliana. Incorporation of the thymidine analogue, EdU, enables visualisation of the footprints of recombinational repair of programmed meiotic DNA double-strand breaks (DSB), with ~400 discrete, SPO11-dependent, EdU-labelled chromosomal foci clearly visible at pachytene and later stages of meiosis. This number equates well with previous estimations of 200-300 DNA double-strand breaks per meiosis in Arabidopsis, confirming the power of this approach to detect the repair of most or all SPO11-dependent meiotic DSB repair events. The chromosomal distribution of these DNA-synthesis foci accords with that of early recombination markers and MLH1, which marks Class I crossover sites. Approximately 10 inter-homologue cross-overs (CO) have been shown to occur in each Arabidopsis male meiosis and, athough very probably under-estimated, an equivalent number of inter-homologue gene conversions (GC) have been described. Thus, at least 90% of meiotic recombination events, and very probably more, have not previously been accessible for analysis. Visual examination of the patterns of the foci on the synapsed pachytene chromosomes corresponds well with expectations from the different mechanisms of meiotic recombination and notably, no evidence for long Break-Induced Replication DNA synthesis tracts was found. Labelling of meiotic prophase I, SPO11-dependent DNA synthesis holds great promise for further understanding of the molecular mechanisms of meiotic recombination, at the heart of reproduction and evolution of eukaryotes.


Asunto(s)
Arabidopsis , Roturas del ADN de Doble Cadena , Meiosis , Arabidopsis/genética , Meiosis/genética , Reparación del ADN/genética , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromosomas de las Plantas/genética , Profase Meiótica I/genética , Intercambio Genético , Replicación del ADN/genética
7.
PLoS Biol ; 22(7): e3002705, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38950075

RESUMEN

We show here that in the fungus Sordaria macrospora, the meiosis-specific HORMA-domain protein Hop1 is not essential for the basic early events of chromosome axis development, recombination initiation, or recombination-mediated homolog coalignment/pairing. In striking contrast, Hop1 plays a critical role at the leptotene/zygotene transition which is defined by transition from pairing to synaptonemal complex (SC) formation. During this transition, Hop1 is required for maintenance of normal axis structure, formation of SC from telomere to telomere, and development of recombination foci. These hop1Δ mutant defects are DSB dependent and require Sme4/Zip1-mediated progression of the interhomolog interaction program, potentially via a pre-SC role. The same phenotype occurs not only in hop1Δ but also in absence of the cohesin Rec8 and in spo76-1, a non-null mutant of cohesin-associated Spo76/Pds5. Thus, Hop1 and cohesins collaborate at this crucial step of meiotic prophase. In addition, analysis of 4 non-null mutants that lack this transition defect reveals that Hop1 also plays important roles in modulation of axis length, homolog-axis juxtaposition, interlock resolution, and spreading of the crossover interference signal. Finally, unexpected variations in crossover density point to the existence of effects that both enhance and limit crossover formation. Links to previously described roles of the protein in other organisms are discussed.


Asunto(s)
Proteínas Fúngicas , Sordariales , Complejo Sinaptonémico , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Sordariales/genética , Sordariales/metabolismo , Complejo Sinaptonémico/metabolismo , Meiosis , Profase Meiótica I , Profase , Mutación
8.
Exp Cell Res ; 440(1): 114133, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38897409

RESUMEN

Mouse HORMAD1 is a phospho-protein involved in multiple functions during meiotic prophase I. To obtain insight into the significance of its phosphorylation, we generated phospho-specific antibodies against two serine residues, Ser307 and Ser378, representing each of two serine clusters in mouse HORMAD1. The Ser307 phosphorylation is detectable from early leptotene substage in both wild-type and Spo11-/- spermatocytes, indicating that Ser307 is a primary and SPO11-independent phosphorylation site. In contrast, the Ser378 phosphorylation is negligible at earlier substages in wild-type and Spo11-/- spermatocytes. After mid-zygotene substage, the Ser378 phosphorylation is abundant on unsynapsed chromosome axes in wild-type spermatocytes and is detected only in a part of unsynapsed chromosome axes in Spo11-/- spermatocytes. We also generated a non-phosphorylated Ser307-specific antibody and found that Ser307 is phosphorylated on sex chromosome axes but is almost entirely unphosphorylated on desynapsed chromosome axes in diplotene spermatocytes. These results demonstrated a substage-specific phosphorylation status of mouse HORMAD1, which might be associated with multiple substage-specific functions.


Asunto(s)
Profase Meiótica I , Serina , Espermatocitos , Animales , Fosforilación , Masculino , Ratones , Serina/metabolismo , Espermatocitos/metabolismo , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/genética , Ratones Endogámicos C57BL , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Ratones Noqueados , Cromosomas Sexuales/genética , Cromosomas Sexuales/metabolismo
9.
Biol Res ; 57(1): 36, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822414

RESUMEN

BACKGROUND: Helicase for meiosis 1 (HFM1), a putative DNA helicase expressed in germ-line cells, has been reported to be closely associated with premature ovarian insufficiency (POI). However, the underlying molecular mechanism has not been clearly elucidated. The aim of this study was to investigate the function of HFM1 in the first meiotic prophase of mouse oocytes. RESULTS: The results suggested that the deficiency of HFM1 resulting in increased apoptosis and depletion of oocytes in mice, while the oocytes were arrested in the pachytene stage of the first meiotic prophase. In addition, impaired DNA double-strand break repair and disrupted synapsis were observed in the absence of HFM1. Further investigation revealed that knockout of HFM1 promoted ubiquitination and degradation of FUS protein mediated by FBXW11. Additionally, the depletion of HFM1 altered the intranuclear localization of FUS and regulated meiotic- and oocyte development-related genes in oocytes by modulating the expression of BRCA1. CONCLUSIONS: These findings elaborated that the critical role of HFM1 in orchestrating the regulation of DNA double-strand break repair and synapsis to ensure meiosis procession and primordial follicle formation. This study provided insights into the pathogenesis of POI and highlighted the importance of HFM1 in maintaining proper meiotic function in mouse oocytes.


Asunto(s)
Profase Meiótica I , Oocitos , Ubiquitinación , Animales , Femenino , Ratones , Apoptosis/fisiología , Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Meiosis/fisiología , Profase Meiótica I/fisiología , Ratones Noqueados , Oocitos/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Proteína FUS de Unión a ARN/genética
10.
Mol Aspects Med ; 97: 101282, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38797021

RESUMEN

Meiosis is a critical step for spermatogenesis and oogenesis. Meiosis commences with pre-meiotic S phase that is subsequently followed by meiotic prophase. The meiotic prophase is characterized by the meiosis-specific chromosomal events such as chromosome recombination and homolog synapsis. Meiosis initiator (MEIOSIN) and stimulated by retinoic acid gene 8 (STRA8) initiate meiosis by activating the meiotic genes by installing the meiotic prophase program at pre-meiotic S phase. This review highlights the mechanisms of meiotic initiation and meiotic prophase progression from the point of the gene expression program and its relevance to infertility. Furthermore, upstream pathways that regulate meiotic initiation will be discussed in the context of spermatogenic development, indicating the sexual differences in the mode of meiotic entry.


Asunto(s)
Meiosis , Espermatogénesis , Espermatogénesis/genética , Humanos , Meiosis/genética , Animales , Masculino , Profase Meiótica I , Profase
11.
Nat Commun ; 15(1): 3330, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684656

RESUMEN

Meiotic prophase progression is differently regulated in males and females. In males, pachytene transition during meiotic prophase is accompanied by robust alteration in gene expression. However, how gene expression is regulated differently to ensure meiotic prophase completion in males remains elusive. Herein, we identify HSF5 as a male germ cell-specific heat shock transcription factor (HSF) for meiotic prophase progression. Genetic analyzes and single-cell RNA-sequencing demonstrate that HSF5 is essential for progression beyond the pachytene stage under non-stress conditions rather than heat stress. Chromatin binding analysis in vivo and DNA-binding assays in vitro suggest that HSF5 binds to promoters in a subset of genes associated with chromatin organization. HSF5 recognizes a DNA motif different from typical heat shock elements recognized by other canonical HSFs. This study suggests that HSF5 is an atypical HSF that is required for the gene expression program for pachytene transition during meiotic prophase in males.


Asunto(s)
Factores de Transcripción del Choque Térmico , Profase Meiótica I , Espermatogénesis , Femenino , Masculino , Ratones , Factores de Transcripción del Choque Térmico/metabolismo , Respuesta al Choque Térmico , Ratones Endogámicos C57BL , Ratones Noqueados , Testículo/metabolismo , Animales
12.
Plant Physiol ; 195(4): 2617-2634, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38478471

RESUMEN

During meiotic prophase I, chromosomes undergo large-scale dynamics to allow homologous chromosome pairing, prior to which chromosome ends attach to the inner nuclear envelope and form a chromosomal bouquet. Chromosome pairing is crucial for homologous recombination and accurate chromosome segregation during meiosis. However, the specific mechanism by which homologous chromosomes recognize each other is poorly understood. Here, we investigated the process of homologous chromosome pairing during early prophase I of meiosis in rice (Oryza sativa) using pooled oligo probes specific to an entire chromosome or chromosome arm. We revealed that chromosome pairing begins from both ends and extends toward the center from early zygotene through late zygotene. Genetic analysis of both trisomy and autotetraploidy also showed that pairing initiation is induced by both ends of a chromosome. However, healed ends that lack the original terminal regions on telocentric and acrocentric chromosomes cannot initiate homologous chromosome pairing, even though they may still enter the telomere clustering region at the bouquet stage. Furthermore, a chromosome that lacks the distal parts on both sides loses the ability to pair with other intact chromosomes. Thus, the native ends of chromosomes play a crucial role in initiating homologous chromosome pairing during meiosis and likely have a substantial impact on genome differentiation.


Asunto(s)
Emparejamiento Cromosómico , Cromosomas de las Plantas , Meiosis , Oryza , Oryza/genética , Emparejamiento Cromosómico/genética , Cromosomas de las Plantas/genética , Meiosis/genética , Telómero/genética , Hibridación Fluorescente in Situ , Profase Meiótica I/genética
13.
Reproduction ; 167(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401263

RESUMEN

In brief: The dissociation of HORMA domain protein 2 (HORMAD2) from the synaptonemal complex is tightly regulated. This study reveals that the N-terminal region of HORMAD2 is critical for its dissociation from synapsed meiotic chromosomes. Abstract: During meiosis, homologous chromosomes undergo synapsis and recombination. HORMA domain proteins regulate key processes in meiosis. Mammalian HORMAD1 and HORMAD2 localize to unsynapsed chromosome axes but are removed upon synapsis by the TRIP13 AAA+ ATPase. TRIP13 engages the N-terminal region of HORMA domain proteins to induce an open conformation, resulting in the disassembly of protein complexes. Here, we report introduction of a 3×FLAG-HA tag to the N-terminus of HORMAD2 in mice. Coimmunoprecipitation coupled with mass spectrometry identified HORMAD1 and SYCP2 as HORMAD2-associated proteins in the testis. Unexpectedly, the N-terminal tagging of HORMAD2 resulted in its abnormal persistence along synapsed regions in pachynema and ectopic localization to telomeres in diplonema. Super-resolution microscopy revealed that 3×FLAG-HA-HORMAD2 was distributed along the central region of the synaptonemal complex, whereas wild-type HORMAD1 persisted along the lateral elements in 3×FLAG-HA-HORMAD2 meiocytes. Although homozygous mice completed meiosis and were fertile, homozygous males exhibited a significant reduction in sperm count. Collectively, these results suggest that the N-terminus of HORMAD2 is important for its timely removal from meiotic chromosome axes.


Asunto(s)
Proteínas de Ciclo Celular , Semen , Animales , Masculino , Ratones , Proteínas de Ciclo Celular/metabolismo , Emparejamiento Cromosómico , Mamíferos/genética , Meiosis , Profase Meiótica I , Semen/metabolismo , Complejo Sinaptonémico/metabolismo
14.
PLoS Genet ; 20(2): e1011175, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38377115

RESUMEN

Meiotic recombination between homologous chromosomes is initiated by the formation of hundreds of programmed double-strand breaks (DSBs). Approximately 10% of these DSBs result in crossovers (COs), sites of physical DNA exchange between homologs that are critical to correct chromosome segregation. Virtually all COs are formed by coordinated efforts of the MSH4/MSH5 and MLH1/MLH3 heterodimers, the latter representing the defining marks of CO sites. The regulation of CO number and position is poorly understood, but undoubtedly requires the coordinated action of multiple repair pathways. In a previous report, we found gene-trap disruption of the DNA helicase, FANCJ (BRIP1/BACH1), elicited elevated numbers of MLH1 foci and chiasmata. In somatic cells, FANCJ interacts with numerous DNA repair proteins including MLH1, and we hypothesized that FANCJ functions with MLH1 to regulate the major CO pathway. To further elucidate the meiotic function of FANCJ, we produced three new Fancj mutant mouse lines via CRISPR/Cas9 gene editing: a full-gene deletion, truncation of the N-terminal Helicase domain, and a C-terminal dual-tagged allele. We also generated an antibody against the C-terminus of the mouse FANCJ protein. Surprisingly, none of our Fancj mutants show any change in either MLH1 focus counts during pachynema or total CO number at diakinesis of prophase I. We find evidence that FANCJ and MLH1 do not interact in meiosis; further, FANCJ does not co-localize with MSH4, MLH1, or MLH3 in meiosis. Instead, FANCJ co-localizes with BRCA1 and TOPBP1, forming discrete foci along the chromosome cores beginning in early meiotic prophase I and densely localized to unsynapsed chromosome axes in late zygonema and to the XY chromosomes in early pachynema. Fancj mutants also exhibit a subtle persistence of DSBs in pachynema. Collectively, these data indicate a role for FANCJ in early DSB repair, but they rule out a role for FANCJ in MLH1-mediated CO events.


Asunto(s)
Meiosis , Profase Meiótica I , Animales , Masculino , Ratones , Alelos , ADN Helicasas/genética , Reparación del ADN/genética , Meiosis/genética , Profase Meiótica I/genética
15.
Methods Mol Biol ; 2770: 263-285, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38351458

RESUMEN

Immunocytochemical analysis of meiotic proteins on mouse chromosome spreads is one method of choice to study prophase I chromosome organization and homologous recombination. In recent decades, the development of microscopic approaches led to the production of a large number of images that monitor fluorescent proteins, defined as fluorescent objects, and a major challenge facing the community is the deep analysis of these fluorescent objects (measurement of object length, intensity, distance between objects, as well as foci identification, counting, and colocalization). We propose a set of tools designed from the macro language of the widely used image analysis software ImageJ (Schindelin et al., Nat Methods 9: 676-682, 2012), embedded in the "MeiQuant" macro, which are specifically designed for analyzing objects in the field of meiosis. Our aim is to propose a unified evolutive common tool for image analysis, with a specific focus on mouse prophase I meiotic events.


Asunto(s)
Meiosis , Profase Meiótica I , Animales , Ratones , Profase , Cromosomas
16.
J Cell Physiol ; 239(4): e31201, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38284481

RESUMEN

Dynamic nuclear architecture and chromatin organizations are the key features of the mid-prophase I in mammalian meiosis. The chromatin undergoes major changes, including meiosis-specific spatiotemporal arrangements and remodeling, the establishment of chromatin loop-axis structure, pairing, and crossing over between homologous chromosomes, any deficiencies in these events may induce genome instability, subsequently leading to failure to produce gametes and infertility. Despite the significance of chromatin structure, little is known about the location of chromatin marks and the necessity of their balance during meiosis prophase I. Here, we show a thorough cytological study of the surface-spread meiotic chromosomes of mouse spermatocytes for H3K9,14,18,23,27,36, H4K12,16 acetylation, and H3K4,9,27,36 methylation. Active acetylation and methylation marks on H3 and H4, such as H3K9ac, H3K14ac, H3K18ac, H3K36ac, H3K56ac, H4K12ac, H4K16ac, and H3K36me3 exhibited pan-nuclear localization away from heterochromatin. In comparison, repressive marks like H3K9me3 and H3K27me3 are localized to heterochromatin. Further, taking advantage of the delivery of small-molecule chemical inhibitors methotrexate (heterochromatin enhancer), heterochromatin inhibitor, anacardic acid (histone acetyltransferase inhibitor), trichostatin A (histone deacetylase inhibitor), IOX1 (JmjC demethylases inhibitor), and AZ505 (methyltransferase inhibitor) in seminiferous tubules through the rete testis route, revealed that alteration in histone modifications enhanced the centromere mislocalization, chromosome breakage, altered meiotic recombination and reduced sperm count. Specifically, IOX1 and AZ505 treatment shows severe meiotic phenotypes, including altering chromosome axis length and chromatin loop size via transcriptional regulation of meiosis-specific genes. Our findings highlight the importance of balanced chromatin modifications in meiotic prophase I chromosome organization and instability.


Asunto(s)
Histonas , Profase Meiótica I , Procesamiento Proteico-Postraduccional , Espermatocitos , Animales , Masculino , Ratones , Cromatina/genética , Heterocromatina , Histonas/metabolismo , Meiosis , Espermatocitos/citología , Espermatocitos/metabolismo
17.
Cell Rep ; 43(1): 113651, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38175751

RESUMEN

Dynamic chromosome remodeling and nuclear compartmentalization take place during mammalian meiotic prophase I. We report here that the crucial roles of male pachynema-specific protein (MAPS) in pachynema progression might be mediated by its liquid-liquid phase separation in vitro and in cellulo. MAPS forms distinguishable liquid phases, and deletion or mutations of its N-terminal amino acids (aa) 2-9 disrupt its secondary structure and charge properties, impeding phase separation. Maps-/- pachytene spermatocytes exhibit defects in nucleus compartmentalization, including defects in forming sex bodies, altered nucleosome composition, and disordered chromatin accessibility. MapsΔ2-9/Δ2-9 male mice expressing MAPS protein lacking aa 2-9 phenocopy Maps-/- mice. Moreover, a frameshift mutation in C3orf62, the human counterpart of Maps, is correlated with nonobstructive azoospermia in a patient exhibiting pachynema arrest in spermatocyte development. Hence, the phase separation property of MAPS seems essential for pachynema progression in mouse and human spermatocytes.


Asunto(s)
Cromatina , Meiosis , Humanos , Masculino , Ratones , Animales , Cromatina/metabolismo , Fase Paquiteno , Separación de Fases , Profase Meiótica I , Espermatocitos/metabolismo , Mamíferos/genética
18.
FASEB J ; 38(1): e23361, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38085152

RESUMEN

Oocyte meiotic prophase I (MI) is an important event in female reproduction. Breast cancer amplified sequence 2 (BCAS2) is a component of the spliceosome. Previous reports have shown that BCAS2 is critical in male germ cell meiosis, oocyte development, and early embryo genome integrity. However, the role of BCAS2 in oocyte meiosis has not been reported. We used Stra8-GFPCre mice to knock out Bcas2 in oocytes during the pachytene phase. The results of fertility tests showed that Bcas2 conditional knockout (cKO) in oocytes results in infertility in female mice. Morphological analysis showed that the number of primordial follicles in the ovaries of 2-month-old (M) mice was significantly reduced and that follicle development was blocked. Further analysis showed that the number of primordial follicles decreased and that follicle development was slowed in 7-day postpartum (dpp) ovaries. Moreover, primordial follicles undergo apoptosis, and DNA damage cannot be repaired in primary follicle oocytes. Meiosis was abnormal; some oocytes could not reach the diplotene stage, and more oocytes could not develop to the dictyotene stage. Alternative splicing (AS) analysis revealed abnormal AS of deleted in azoospermia like (Dazl) and diaphanous related formin 2 (Diaph2) oogenesis-related genes in cKO mouse ovaries, and the process of AS was involved by CDC5L and PRP19.


Asunto(s)
Meiosis , Profase Meiótica I , Masculino , Femenino , Ratones , Animales , Meiosis/genética , Empalme Alternativo , ARN Mensajero/metabolismo , Oocitos/metabolismo , Proteínas de Neoplasias/metabolismo
19.
Dev Cell ; 58(24): 3009-3027.e6, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37963468

RESUMEN

During meiosis, the chromatin and transcriptome undergo prominent switches. Although recent studies have explored the genome reorganization during spermatogenesis, the chromatin remodeling in oogenesis and characteristics of homologous pairing remain largely elusive. We comprehensively compared chromatin structures and transcriptomes at successive substages of meiotic prophase in both female and male mice using low-input high-through chromosome conformation capture (Hi-C) and RNA sequencing (RNA-seq). Compartments and topologically associating domains (TADs) gradually disappeared and slowly recovered in both sexes. We found that homologs adopted different sex-conserved pairing strategies prior to and after the leptotene-to-zygotene transition, changing from long interspersed nuclear element (LINE)-enriched compartments B to short interspersed nuclear element (SINE)-enriched compartments A. We complemented marker genes and predicted the sex-specific meiotic sterile genes for each substage. This study provides valuable insights into the similarities and distinctions between sexes in chromosome architecture, homologous pairing, and transcriptome during meiotic prophase of both oogenesis and spermatogenesis.


Asunto(s)
Meiosis , Espermatogénesis , Masculino , Femenino , Ratones , Animales , Meiosis/genética , Espermatogénesis/genética , Profase , Profase Meiótica I/genética , Cromatina/genética , Oogénesis/genética , Emparejamiento Cromosómico/genética
20.
Reprod Biol Endocrinol ; 21(1): 90, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37784186

RESUMEN

In human female primordial germ cells, the transition from mitosis to meiosis begins from the fetal stage. In germ cells, meiosis is arrested at the diplotene stage of prophase in meiosis I (MI) after synapsis and recombination of homologous chromosomes, which cannot be segregated. Within the follicle, the maintenance of oocyte meiotic arrest is primarily attributed to high cytoplasmic concentrations of cyclic adenosine monophosphate (cAMP). Depending on the specific species, oocytes can remain arrested for extended periods of time, ranging from months to even years. During estrus phase in animals or the menstrual cycle in humans, the resumption of meiosis occurs in certain oocytes due to a surge of luteinizing hormone (LH) levels. Any factor interfering with this process may lead to impaired oocyte maturation, which in turn affects female reproductive function. Nevertheless, the precise molecular mechanisms underlying this phenomenon has not been systematically summarized yet. To provide a comprehensive understanding of the recently uncovered regulatory network involved in oocyte development and maturation, the progress of the cellular and molecular mechanisms of oocyte nuclear maturation including meiosis arrest and meiosis resumption is summarized. Additionally, the advancements in understanding the molecular cytoplasmic events occurring in oocytes, such as maternal mRNA degradation, posttranslational regulation, and organelle distribution associated with the quality of oocyte maturation, are reviewed. Therefore, understanding the pathways regulating oocyte meiotic arrest and resumption will provide detailed insight into female reproductive system and provide a theoretical basis for further research and potential approaches for novel disease treatments.


Asunto(s)
Oocitos , Oogénesis , Animales , Femenino , Humanos , Oogénesis/genética , Oocitos/metabolismo , Meiosis , Profase Meiótica I , Folículo Ovárico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA