Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Mar Drugs ; 22(8)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39195459

RESUMEN

Acne is one of the most common dermatological conditions, peaking during adolescence and early adulthood, affecting about 85% of individuals aged 12-24. Although often associated with teenage years, acne can occur at any age, impacting over 25% of women and 12% of men in their forties. Treatment strategies vary depending on the severity, including the use of topical gels or creams containing benzoyl peroxide and retinoids, antibiotics, and systemic or topical isotretinoin. However, these treatments can cause irritation, allergies, and other toxic side effects. Currently, there is no natural-based alternative for antibacterial photodynamic therapy targeting acne using marine drugs or extracts. Through a bioguided screening approach, we identified the ethanol extract of Skeletonema marinoi as highly phototoxic against three bacterial species associated with acne-Cutibacterium acnes, Staphylococcus aureus, and Staphylococcus epidermidis. This extract exhibited phototoxicity in planktonic bacteria under white and red light, disrupted bacterial biofilms, reduced sebum production but also showed phototoxicity in keratinocytes, highlighting the importance of the specific targeting of treatment areas. Further investigations, including fractionation and high-resolution structural analysis, linked the observed phototoxicity to a high concentration of pheophorbide a in the extract. Given its notable in vitro efficacy, this extract holds promising potential for clinical evaluation to manage mild acne. This discovery paves the way for further exploration of Skeletonema pigment extracts, extending their potential applications beyond acne phototherapy to include dermocosmetics, veterinary medicine, and other phototherapy uses.


Asunto(s)
Acné Vulgar , Staphylococcus epidermidis , Acné Vulgar/tratamiento farmacológico , Acné Vulgar/microbiología , Humanos , Staphylococcus epidermidis/efectos de los fármacos , Antibacterianos/farmacología , Staphylococcus aureus/efectos de los fármacos , Biopelículas/efectos de los fármacos , Etanol/química , Propionibacteriaceae/efectos de los fármacos , Fotoquimioterapia/métodos , Phaeophyceae/química , Queratinocitos/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Femenino
2.
BMC Microbiol ; 24(1): 270, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033146

RESUMEN

BACKGROUND: The bacterial persistence, responsible for therapeutic failures, can arise from the biofilm formation, which possesses a high tolerance to antibiotics. This threat often occurs when a bone and joint infection is diagnosed after a prosthesis implantation. Understanding the biofilm mechanism is pivotal to enhance prosthesis joint infection (PJI) treatment and prevention. However, little is known on the characteristics of Cutibacterium acnes biofilm formation, whereas this species is frequently involved in prosthesis infections. METHODS: In this study, we compared the biofilm formation of C. acnes PJI-related strains and non-PJI-related strains on plastic support and textured titanium alloy by (i) counting adherent and viable bacteria, (ii) confocal scanning electronic microscopy observations after biofilm matrix labeling and (iii) RT-qPCR experiments. RESULTS: We highlighted material- and strain-dependent modifications of C. acnes biofilm. Non-PJI-related strains formed aggregates on both types of support but with different matrix compositions. While the proportion of polysaccharides signal was higher on plastic, the proportions of polysaccharides and proteins signals were more similar on titanium. The changes in biofilm composition for PJI-related strains was less noticeable. For all tested strains, biofilm formation-related genes were more expressed in biofilm formed on plastic that one formed on titanium. Moreover, the impact of C. acnes internalization in osteoblasts prior to biofilm development was also investigated. After internalization, one of the non-PJI-related strains biofilm characteristics were affected: (i) a lower quantity of adhered bacteria (80.3-fold decrease), (ii) an increase of polysaccharides signal in biofilm and (iii) an activation of biofilm gene expressions on textured titanium disk. CONCLUSION: Taken together, these results evidenced the versatility of C. acnes biofilm, depending on the support used, the bone environment and the strain.


Asunto(s)
Biopelículas , Infecciones Relacionadas con Prótesis , Titanio , Biopelículas/crecimiento & desarrollo , Infecciones Relacionadas con Prótesis/microbiología , Humanos , Adhesión Bacteriana , Propionibacteriaceae/fisiología , Propionibacteriaceae/genética , Propionibacteriaceae/efectos de los fármacos , Prótesis e Implantes/microbiología , Huesos/microbiología , Plásticos , Aleaciones , Propiedades de Superficie
3.
Molecules ; 29(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38999117

RESUMEN

Oleum cinnamomi (OCM) is a volatile component of the Cinnamomum cassia Presl in the Lauraceae family, which displays broad-spectrum antibacterial properties. It has been found that OCM has a significant inhibitory effect against Cutibacterium acnes (C. acnes), but the precise target and molecular mechanism are still not fully understood. In this study, the antibacterial activity of OCM against C. acnes and its potential effect on cell membranes were elucidated. Metabolomics methods were used to reveal metabolic pathways, and proteomics was used to explore the targets of OCM inhibiting C. acnes. The yield of the OCM was 3.3% (w/w). A total of 19 compounds were identified, representing 96.213% of the total OCM composition, with the major constituents being phenylpropanoids (36.84%), sesquiterpenoids (26.32%), and monoterpenoids (15.79%). The main component identified was trans-cinnamaldehyde (85.308%). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of OCM on C. acnes were 60 µg/mL and 180 µg/mL, respectively. The modified proteomics results indicate that cinnamaldehyde was the main bioactive ingredient within OCM, which covalently modifies the ABC transporter adenosine triphosphate (ATP)-binding protein and nicotinamide adenine dinucleotide (NADH)-quinone oxidoreductase, hindering the amino acid transport process, and disrupting the balance between NADH and nicotinamide adenine dinucleoside phosphorus (NAD+), thereby hindering energy metabolism. We have reported for the first time that OCM exerts an antibacterial effect by covalent binding of cinnamaldehyde to target proteins, providing potential and interesting targets to explore new control strategies for gram-positive anaerobic bacteria.


Asunto(s)
Antibacterianos , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Propionibacteriaceae/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Proteómica/métodos , Acroleína/análogos & derivados , Acroleína/farmacología , Acroleína/química , Metabolómica/métodos
4.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39000551

RESUMEN

Cutibacterium acnes is abundant and commonly exists as a superficial bacteria on human skin. Recently, the resistance of C. acnes to antimicrobial agents has become a serious concern, necessitating the development of alternative pharmaceutical products with antimicrobial activity against C. acnes. To address this need, we evaluated the antimicrobial activity of CKR-13-a mutant oligopeptide of FK-13 with increased net charge and theoretical α-helical content-against C. acnes in modified Gifu Anaerobic Medium broth by determining the minimum inhibitory concentration (MIC). CKR-13 exerted greater antimicrobial activity against C. acnes than FK-13 in the broth at pH 7.0. The antimicrobial activity of CKR-13 with RXM against C. albicans was pH-dependent. The ionization of CKR-13 and pH-dependent growth delay of C. albicans was suggested to be associated with the increase in CKR-13 antimicrobial activity.


Asunto(s)
Candida albicans , Pruebas de Sensibilidad Microbiana , Oligopéptidos , Oligopéptidos/química , Oligopéptidos/farmacología , Candida albicans/efectos de los fármacos , Conformación Proteica en Hélice alfa , Propionibacteriaceae/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antibacterianos/farmacología , Antibacterianos/química
5.
J Microorg Control ; 29(2): 63-73, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38880618

RESUMEN

Cutibacterium acnes is an opportunistic pathogen recognized as a contributing factor to acne vulgaris. The accumulation of keratin and sebum plugs in hair follicles facilitates C. acnes proliferation, leading to inflammatory acne. Although numerous antimicrobial cosmetic products for acne-prone skin are available, their efficacy is commonly evaluated against planktonic cells of C. acnes. Limited research has assessed the antimicrobial effects on microorganisms within keratin and sebum plugs. This study investigates whether an antibacterial toner can penetrate keratin and sebum plugs, exhibiting bactericidal effects against C. acnes. Scanning electron microscopy and next-generation sequencing analysis of the keratin and sebum plug suggest that C. acnes proliferate within the plug, predominantly in a biofilm-like morphology. To clarify the potential bactericidal effect of the antibacterial toner against C. acnes inside keratin and sebum plugs, we immersed the plugs in the toner, stained them with LIVE/DEAD BacLight Bacterial Viability Kit to visualize microorganism viability, and observed them using confocal laser scanning microscopy. Results indicate that most microorganisms in the plugs were killed by the antibacterial toner. To quantitatively evaluate the bactericidal efficacy of the toner against C. acnes within keratin and sebum, we immersed an artificial plug with inoculated C. acnes type strain and an isolate collected from acne-prone skin into the toner and obtained viable cell counts. The number of the type strain and the isolate inside the artificial plug decreased by over 2.2 log and 1.2 log, respectively, showing that the antibacterial toner exhibits bactericidal effects against C. acnes via keratin and sebum plug penetration.


Asunto(s)
Acné Vulgar , Antibacterianos , Queratinas , Sebo , Sebo/metabolismo , Antibacterianos/farmacología , Humanos , Queratinas/metabolismo , Acné Vulgar/microbiología , Acné Vulgar/tratamiento farmacológico , Biopelículas/efectos de los fármacos , Viabilidad Microbiana/efectos de los fármacos , Propionibacteriaceae/efectos de los fármacos , Propionibacteriaceae/metabolismo , Propionibacteriaceae/genética , Propionibacterium acnes/efectos de los fármacos , Propionibacterium acnes/metabolismo , Folículo Piloso/microbiología , Folículo Piloso/metabolismo , Microscopía Electrónica de Rastreo
6.
J Shoulder Elbow Surg ; 33(9): 1905-1908, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38815731

RESUMEN

BACKGROUND: Shoulder periprosthetic joint infection is most commonly caused by Cutibacterium. Effective removal of these bacteria from the skin is difficult because Cutibacterium live protected in the dermal sebaceous glands beneath the skin surface to which surgical preparation solutions, such as chlorhexidine gluconate (CHG), are applied. There is conflicting evidence on the additional benefit of using hydrogen peroxide (H2O2) as an adjunct to CHG in eliminating Cutibacterium from the skin. A previous study demonstrated that after CHG skin preparation, repopulation of Cutibacterium from sebaceous glands onto the skin surface occurs in 90% of shoulders by 60 minutes after application. The objective of this randomized controlled study was to determine the effectiveness of adding H2O2 to CHG in reducing skin Cutibacterium. METHODS: Eighteen male volunteers (36 shoulders) were recruited for this study. The 2 shoulders of each volunteer were randomized to receive the control preparation ("CHG-only" - 2% CHG in 70% isopropyl alcohol alone) or the study preparation ("H2O2+CHG" - 3% H2O2 followed by 2% CHG in 70% isopropyl alcohol). Skin swabs were taken from each shoulder prior to skin preparation and again at 60 minutes after preparation. Swabs were cultured for Cutibacterium and observed for 14 days. Cutibacterium skin load was reported using a semiquantitative system based on the number of quadrants growing on the culture plate. RESULTS: Prior to skin preparation, 100% of the CHG-only shoulders and 100% of the H2O2+CHG shoulders had positive skin surface cultures for Cutibacterium. Repopulation of Cutibacterium on the skin at 60 minutes occurred in 78% of CHG-only and 78% of H2O2+CHG shoulders (P = 1.00). Reduction of Cutibacterium skin levels occurred in 56% of CHG-only and 61% of H2O2+CHG shoulders (P = .735). Cutibacterium levels were significantly decreased from before skin preparation to 60 minutes after preparation in both the CHG-only (2.1 ± 0.8 to 1.3 ± 0.9, P = .003) and the H2O2+CHG groups (2.2 ± 0.7 to 1.4 ± 0.9, P < .001). Substantial skin surface levels of Cutibacterium were present at 60 minutes after both preparations. CONCLUSIONS: In this randomized controlled study, there was no additional benefit of using hydrogen peroxide as an adjunct to chlorhexidine gluconate skin preparation in the reduction of cutaneous Cutibacterium levels. Neither preparation was able to eliminate repopulation of Cutibacterium on the skin surface from the dermal sebaceous glands.


Asunto(s)
Antiinfecciosos Locales , Clorhexidina , Peróxido de Hidrógeno , Piel , Humanos , Clorhexidina/análogos & derivados , Clorhexidina/administración & dosificación , Clorhexidina/farmacología , Masculino , Peróxido de Hidrógeno/administración & dosificación , Antiinfecciosos Locales/administración & dosificación , Adulto , Piel/microbiología , Infecciones Relacionadas con Prótesis/prevención & control , Infecciones Relacionadas con Prótesis/microbiología , Cuidados Preoperatorios/métodos , Propionibacteriaceae/efectos de los fármacos
7.
Microbiol Spectr ; 10(1): e0161221, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35171021

RESUMEN

Tranexamic acid (TXA) is extensively used in orthopedic surgery and traumatology as an antifibrinolytic agent to control intra- and postoperative bleeding and, therefore, indirectly, to reduce postsurgery infection rates. The hypothesis of an additional antibiotic effect against microorganisms associated with periprosthetic joint infection needs to be further evaluated. We aimed to assess whether TXA could reduce bacterial growth using an in vitro model. ATCC and clinical strains of staphylococci and Cutibacterium acnes were tested against TXA in both planktonic and sessile forms. We recorded the percent reduction in the following variables: log CFU/mL by microbiological culture, percentage of live cells by confocal laser scanning microscopy, and, additionally in sessile cells, metabolic activity by the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt (XTT) assay. Variables were compared between groups using the Kruskal-Wallis test, and the results were reported as median (interquartile range [IQR]). Statistical significance was set at a P value of <0.05. Clinical significance was defined as a reduction of ≥25%. TXA at 50 mg/mL led to a slight reduction in CFU counts (4.5%). However, it was at 10 mg/mL that the reduction reached 27.2% and 33.0% for log CFU/mL counts and percentage of live cells, respectively. TXA was not efficacious for reducing preformed 24-h mature staphylococci and 48-h mature C. acnes biofilms, regardless of its concentration. TXA did not exert an antimicrobial effect against bacterial biofilms. However, when bacteria were in the planktonic form, it led to a clinically and statistically significant reduction in bacterial growth at 10 mg/mL. IMPORTANCE The possible use of TXA as an antibiotic agent in addition to its antifibrinolytic effect may play an important role in the prevention of prosthetic joint infection.


Asunto(s)
Antibacterianos/farmacología , Infecciones por Bacterias Grampositivas/microbiología , Propionibacteriaceae/efectos de los fármacos , Prótesis e Implantes/microbiología , Infecciones Relacionadas con Prótesis/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus/efectos de los fármacos , Ácido Tranexámico/farmacología , Biopelículas/efectos de los fármacos , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Humanos , Pruebas de Sensibilidad Microbiana , Propionibacteriaceae/crecimiento & desarrollo , Infecciones Relacionadas con Prótesis/tratamiento farmacológico , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus/crecimiento & desarrollo
8.
Microbiol Spectr ; 10(1): e0205621, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35107361

RESUMEN

The Gram-positive anaerobic bacterium Cutibacterium acnes is a major inhabitant of human skin and has been implicated in acne vulgaris formation and in the formation of multispecies biofilms with other skin-inhabiting organisms like Staphylococcus aureus and Candida albicans. Indoles are widespread in nature (even in human skin) and function as important signaling molecules in diverse prokaryotes and eukaryotes. In the present study, we investigated the antibacterial and antibiofilm activities of 20 indoles against C. acnes. Of the indoles tested, indole-3-carbinol at 0.1 mM significantly inhibited biofilm formation by C. acnes without affecting planktonic cell growth, and the anticancer drug 3,3'-diindolylmethane (DIM) at 0.1 mM (32 µg/mL) also significantly inhibited planktonic cell growth and biofilm formation by C. acnes, whereas the other indoles and indole itself were less effective. Also, DIM at 0.1 mM successfully inhibited multispecies biofilm formation by C. acnes, S. aureus, and C. albicans. Transcriptional analyses showed that DIM inhibited the expressions of several biofilm-related genes in C. acnes, and at 0.05 mM, DIM inhibited hyphal formation and cell aggregation by C. albicans. These results suggest that DIM and other indoles inhibit biofilm formation by C. acnes and have potential use for treating C. acnes associated diseases. IMPORTANCE Since indoles are widespread in nature (even in human skin), we hypothesized that indole and its derivatives might control biofilm formation of acne-causing bacteria (Cutibacterium acnes and Staphylococcus aureus) and fungal Candida albicans. The present study reports for the first time the antibiofilm and antimicrobial activities of several indoles on C. acnes. Of the indoles tested, two anticancer agents, indole-3-carbinol and 3,3'-diindolylmethane found in cruciferous vegetables, significantly inhibited biofilm formation by C. acnes. Furthermore, the most active 3,3'-diindolylmethane successfully inhibited multispecies biofilm formation by C. acnes, S. aureus, and C. albicans. Transcriptional analyses showed that 3,3'-diindolylmethane inhibited the expressions of several biofilm-related genes including lipase, hyaluronate lyase, and virulence-related genes in C. acnes, and 3,3'-diindolylmethane inhibited hyphal formation and cell aggregation by C. albicans. Our findings show that 3,3'-diindolylmethane offers a potential means of controlling acne vulgaris and multispecies biofilm-associated infections due to its antibiofilm and antibiotic properties.


Asunto(s)
Acné Vulgar/microbiología , Antineoplásicos/farmacología , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Candida albicans/efectos de los fármacos , Indoles/farmacología , Antibacterianos/farmacología , Bacterias/crecimiento & desarrollo , Candida albicans/crecimiento & desarrollo , Humanos , Pruebas de Sensibilidad Microbiana , Filogenia , Propionibacteriaceae/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Virulencia
9.
Microbiol Res ; 254: 126912, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34742105

RESUMEN

Sapindus saponins extracted from Sapindus mukorossi Gaertn. have been reported to exert antibacterial activity against Cutibacterium acnes (C. acnes). However, there are no reports about their potentials against its biofilm, which is a major contributor to the antibiotic resistance of C. acnes. This study aimed to investigate the synergistic antibiofilm activity and action of the combination of Sapindoside A and B (SAB) against C. acnes. SAB with sub-MICs significantly inhibited the early-formed and mature biofilm of C. acnes and decreased the adhesion and cell surface hydrophobicity (p < 0.05). Also, SAB greatly reduced the production of exopolysaccharide and lipase (p < 0.05), and the binding mode of SAB and lipase was predicted by molecular docking, via hydrogen bonds and hydrophobic interactions. Biofilm observed with electron microscopies further confirmed the high antibiofilm activity of SAB against C. acnes. Furthermore, a significant down-regulation of biofilm biosynthesis-associated genes was observed. The combination index explained the synergistic effects of SAB leading to the above results, and the contribution of SA was greater than that of SB. The current results showed that SAB had synergistic antibiofilm activity against C. acnes, and the Sapindoside A played a major role, indicating that SAB could be a natural antiacne additive against C. acnes biofilm-associated infections.


Asunto(s)
Biopelículas , Ácido Oleanólico/análogos & derivados , Propionibacteriaceae , Saponinas , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Sinergismo Farmacológico , Simulación del Acoplamiento Molecular , Ácido Oleanólico/farmacología , Propionibacteriaceae/efectos de los fármacos , Saponinas/farmacología
10.
Int J Nanomedicine ; 16: 8121-8138, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938074

RESUMEN

BACKGROUND: The biofilm produced by Cutibacterium acnes is a major infection threat for skin and implanted catheters. Nanoparticles provide a new approach to eradicate biofilms. The present study evaluated the capability of cationic liposomes loaded with DNase I (DNS) and proteinase K (PK) to remove preformed C. acnes biofilms. METHODS: DNS and PK were able to target and disassemble the biofilm by degrading extracellular polymer substances (EPS). Soyaethyl morpholinium ethosulfate (SME) was used to render a positive charge and enhance the antibacterial activity of the liposomes. RESULTS: The cationic liposomes containing enzymes yielded monodisperse nanovesicles ranging between 95 and 150 nm. The entrapment efficiency of the enzymes in the liposomes achieved a value of 67-83%. All liposomal formulations suppressed planktonic C. acnes growth at a minimum inhibitory concentration (MIC) equal to the free SME in the solution. The enzyme in the liposomal form inhibited biofilm growth much better than that in the free form, with the dual enzyme-loaded liposomes demonstrating the greatest inhibition of 54% based on a crystal violet assay. The biofilm-related virulence genes PA380 and PA1035 were downregulated by the combined enzymes in the liposomes but not the individual DNS or PK. Scanning electron microscopy (SEM) and confocal microscopy displayed reduced C. acnes aggregates and biofilm thickness by the liposomal system. The liposomes could penetrate through about 85% of the biofilm thickness. The in vitro pig skin permeation also showed a facile delivery of liposomes into the epidermis, deeper skin strata, and hair follicles. The liposomes exhibited potent activity to eliminate C. acnes colonization in mouse skin and catheters in vivo. The colony-forming units (CFUs) in the catheter treated with the liposomes were reduced by 2 logs compared to the untreated control. CONCLUSION: The data suggested a safe application of the enzyme-loaded cationic liposomes as antibacterial and antibiofilm agents.


Asunto(s)
Antibacterianos/farmacología , Biopelículas , Infecciones Relacionadas con Catéteres/tratamiento farmacológico , Propionibacteriaceae/efectos de los fármacos , Enfermedades Cutáneas Bacterianas/tratamiento farmacológico , Animales , Biopelículas/efectos de los fármacos , Catéteres , Desoxirribonucleasa I , Portadores de Fármacos , Endopeptidasa K , Liposomas , Ratones , Porcinos
11.
J Nanobiotechnology ; 19(1): 359, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34749747

RESUMEN

BACKGROUND: Acne is a common skin disorder that involves an infection inside the hair follicle, which is usually treated with antibiotics, resulting in unbalanced skin microbiota and microbial resistance. For this reason, we developed polymeric nanoparticles encapsulating thymol, a natural active compound with antimicrobial and antioxidant properties. In this work, optimization physicochemical characterization, biopharmaceutical behavior and therapeutic efficacy of this novel nanostructured system were assessed. RESULTS: Thymol NPs (TH-NP) resulted on suitable average particle size below 200 nm with a surface charge around - 28 mV and high encapsulation efficiency (80%). TH-NP released TH in a sustained manner and provide a slow-rate penetration into the hair follicle, being highly retained inside the skin. TH-NP possess a potent antimicrobial activity against Cutibacterium acnes and minor effect towards Staphylococcus epidermis, the major resident of the healthy skin microbiota. Additionally, the stability and sterility of developed NPs were maintained along storage. CONCLUSION: TH-NP showed a promising and efficient alternative for the treatment of skin acne infection, avoiding antibiotic administration, reducing side effects, and preventing microbial drug resistance, without altering the healthy skin microbiota. Additionally, TH-NP enhanced TH antioxidant activity, constituting a natural, preservative-free, approach for acne treatment.


Asunto(s)
Acné Vulgar/microbiología , Antibacterianos , Propionibacteriaceae/efectos de los fármacos , Timol , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/farmacología , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/farmacología , Línea Celular , Humanos , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Piel/efectos de los fármacos , Piel/metabolismo , Piel/microbiología , Timol/química , Timol/farmacocinética , Timol/farmacología
12.
Future Microbiol ; 16: 1181-1193, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34615379

RESUMEN

Aim: The present study investigated the essential oil of Cymbopogan martinii (palmarosa oil; PRO) as a potential topical therapy in acne vulgaris. Materials & methods: GC-MS profiling and biocompatibility studies of PRO were undertaken. The antimicrobial potential was assessed against Cutibacterium acnes. anti-inflammatory, antityrosinase activity and lipid peroxidation were also evaluated. Results: Geraniol was identified as the major phytoconstituent, and the oil was found to be safe for topical application. The minimum inhibitory concentration and minimum bactericidal concentration values were noted as 16 µl/ml. PRO reduced the cytokine levels of TNF-α, IL-12 and IL-8 and inhibited tyrosinase. A low concentration of the oil (up to 0.5 µl/ml) produced malondialdehyde levels equivalent to that of untreated cells. Conclusion: PRO may prove useful as a natural topical agent in the management of acne.


Lay abstract Acne vulgaris is a highly prevalent skin condition among adolescents, associated with much psychological distress in the affected individuals. The disease primarily affects the hair follicles and sebaceous glands of the face, neck, chest and back. Hormonal imbalance leads to increased production of sebum. Abnormal cellular processes cause swelling of the follicles and create an environment that is conducive to the growth of Cutibacterum acnes. The bacteria are known to initiate an immune response, rupturing the wall of hair follicles and dispersing the contents into the surrounding skin tissues. Inflammation occurs, further laying the ground for skin blemishes. Although a number of drugs are reported for the topical management of this condition, they do not address all the factors contributing to the development of acne lesions and are also reported to have several adverse effects. Therefore, the existing drugs do not offer a satisfactory solution to the problem. The growing bacterial resistance to antimicrobial drugs is another cause of concern. An agent that effectively counters the various causative factors of acne, is safe for application on human skin and is devoid of the risk of bacterial resistance, would be an ideal anti-acne agent. In this study, the essential oil derived from the plant Cymbopogan martinii (palmarosa oil) was evaluated for its potential to inhibit the growth of C. acnes, and control inflammation and blemishes associated with acne. It was also checked for its compatibility with human skin. The results were promising, advocating the essential oil as a natural and holistic solution for treating acne.


Asunto(s)
Acné Vulgar , Antibacterianos , Cymbopogon/química , Aceites Volátiles , Aceites de Plantas/farmacología , Acné Vulgar/tratamiento farmacológico , Antibacterianos/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/farmacología , Propionibacteriaceae/efectos de los fármacos
13.
Orthop Surg ; 13(7): 2153-2162, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34605610

RESUMEN

OBJECTIVES: To specify the concentration of the liquid antibiotics to be added to polymethylmethacrylate (PMMA) and its impact on the quality of the spacer is the purpose of this study with liquid clindamycin added to different cements. METHODS: In the present study, eight different cement mixtures were prepared and investigated. In the following, number 1 indicates the references, 2 all cements after liquid clindamycin was added to the liquid cement compound, 3 all cements after liquid clindamycin was added to the cement powder, and 4 all cements after liquid clindamycin was added to the cement dough. After curing, cements were filled into metal moulds and a pressure of 3 bar was maintained for 30 min. Mechanical investigations were carried out according to ISO 5833 (2002) and DIN 53435 (2007). For microbiological tests, standardized cylindrical mouldings (diameter: 25 mm, height: 10 mm) were produced and incubated in 10 ml buffer solution at room temperature for 24 h. All eluates were generated by spreading previously established suspensions of Staphylococcus aureus, Staphylococcus epidermidis, Cutibacterium acnes and methicillin-resistant Staphylococcus aureus (MRSA) with a 0.5 McFarland turbidity standard. RESULTS: Apparently, we found that in all investigated cases, the admixture of liquid antibiotic negatively affected the mechanical characteristics of the cement mould. Among the various test groups, the influence on the ISO compression strength and ISO flexural modulus of the investigated test groups was only minimal when liquid clindamycin was added to cement liquid. Compared to admixing of liquid clindamycin into cement powder or dough ISO compression strength and ISO flexural modulus and flexural strength showed the maximum reduction. The efficacy against chosen germs was reduced as well when liquid antibiotic was admixed instead of powder. This admixture of liquid anti-infective agents resulted in a 234% enhanced elution after 10 days 29 a negative effect on the inhibition zones were detected during the previous period. CONCLUSION: The admixture of powdery antibiotic is preferable to liquid antibiotics. If no powdery antibiotic is available, we can recommend the admixture of liquid antibiotic to liquid cement prior to dough production in case powdery antibiotics cannot be used. However, we discourage the admixture of liquid antibiotic to cement powder or cement dough during early low viscose phase.


Asunto(s)
Antibacterianos/administración & dosificación , Cementos para Huesos/química , Clindamicina/administración & dosificación , Polimetil Metacrilato/química , Fenómenos Biomecánicos , Humanos , Ensayo de Materiales , Polvos , Propionibacteriaceae/efectos de los fármacos , Staphylococcus/efectos de los fármacos
14.
Molecules ; 26(16)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34443349

RESUMEN

Ulva sp. is known to be a source of bioactive compounds such as ulvans, but to date, their biological activity on skin commensal and/or opportunistic pathogen bacteria has not been reported. In this study, the effects of poly- and oligosaccharide fractions produced by enzyme-assisted extraction and depolymerization were investigated, for the first time in vitro, on cutaneous bacteria: Staphylococcus aureus, Staphylococcus epidermidis, and Cutibacterium acnes. At 1000 µg/mL, poly- and oligosaccharide fractions did not affect the growth of the bacteria regarding their generation time. Polysaccharide Ulva sp. fractions at 1000 µg/mL did not alter the bacterial biofilm formation, while oligosaccharide fractions modified S. epidermidis and C. acnes biofilm structures. None of the fractions at 1000 µg/mL significantly modified the cytotoxic potential of S. epidermidis and S. aureus towards keratinocytes. However, poly- and oligosaccharide fractions at 1000 µg/mL induced a decrease in the inflammatory potential of both acneic and non-acneic C. acnes strains on keratinocytes of up to 39.8%; the strongest and most significant effect occurred when the bacteria were grown in the presence of polysaccharide fractions. Our research shows that poly- and oligosaccharide Ulva sp. fractions present notable biological activities on cutaneous bacteria, especially towards C. acnes acneic and non-acneic strains, which supports their potential use for dermo-cosmetic applications.


Asunto(s)
Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Microbiota/efectos de los fármacos , Extractos Vegetales/farmacología , Piel/microbiología , Ulva/química , Bacterias/patogenicidad , Relación Dosis-Respuesta a Droga , Propionibacteriaceae/efectos de los fármacos , Propionibacteriaceae/crecimiento & desarrollo , Propionibacteriaceae/patogenicidad , Propionibacteriaceae/fisiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/fisiología , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/crecimiento & desarrollo , Staphylococcus epidermidis/patogenicidad , Staphylococcus epidermidis/fisiología , Virulencia/efectos de los fármacos
15.
Biochim Biophys Acta Biomembr ; 1863(11): 183699, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34297983

RESUMEN

Sapindus saponins are obtained from the outer bark of Sapindus mukorossi Gaertn. (S. mukorossi), and they have become an interesting subject in the search for new anti-acne agents without resistance. This study aimed to screen the synergistic antibacterial combination from Sapindus saponins and investigated the synergistic antibacterial action via targeting the cell membrane of Cutibacterium acnes (C. acnes) to reduce the effective dose. The combination of Sapindoside A and B (SAB) was obtained with synergistic activity against C. acnes. SAB led to the leakage of ions and disturbed the membrane morphology of C. acnes. The spectral features of cell membrane composition showed obvious changes based on Raman spectroscopy, and changes in membrane protein microenvironment were also observed by fluorescence spectroscopy. Among the above results, the contribution of Sapindoside A was greater than that of Sapindoside B to the synergistic combination of SAB. Furthermore, molecular docking demonstrated that Sapindoside A interacted with penicillin-binding protein 2, playing an important role in peptidoglycan synthesis for the cross wall, and showed a higher binding score than Sapindoside B, further indicating that the greater contribution in the synergistic action of SAB on membrane proteins. Collectively, these results showed that the synergistic antibacterial action of SAB against C. acnes could be achieved by attacking cell membrane, and Sapindoside A played a major role, suggesting that SAB has the potential to be the natural anti-acne agent additive in the cosmetic industry.


Asunto(s)
Antibacterianos/farmacología , Pared Celular/efectos de los fármacos , Ácido Oleanólico/análogos & derivados , Propionibacteriaceae/efectos de los fármacos , Saponinas/farmacología , Sinergismo Farmacológico , Técnicas In Vitro , Proteínas de la Membrana/química , Pruebas de Sensibilidad Microbiana , Ácido Oleanólico/farmacología , Espectrometría Raman/métodos
16.
Bone Joint J ; 103-B(5): 908-915, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33934664

RESUMEN

AIMS: Periprosthetic joint infections (PJIs) are among the most devastating complications after joint arthroplasty. There is limited evidence on the efficacy of different antiseptic solutions on reducing biofilm burden. The purpose of the present study was to test the efficacy of different antiseptic solutions against clinically relevant microorganisms in biofilm. METHODS: We conducted an in vitro study examining the efficacy of several antiseptic solutions against clinically relevant microorganisms. We tested antiseptic irrigants against nascent (four-hour) and mature (three-day) single-species biofilm created in vitro using a drip-flow reactor model. RESULTS: With regard to irrigant efficacy against biofilms, Povidone-iodine treatment resulted in greater reductions in nascent MRSA biofilms (logarithmic reduction (LR) = 3.12; p < 0.001) compared to other solutions. Bactisure treatment had the greatest reduction of mature Pseudomonas aeruginosa biofilms (LR = 1.94; p = 0.032) and a larger reduction than Vashe or Irrisept for mature Staphylococcus epidermidis biofilms (LR = 2.12; p = 0.025). Pooled data for all biofilms tested resulted in Bactisure and Povidone-iodine with significantly greater reductions compared to Vashe, Prontosan, and Irrisept solutions (p < 0.001). CONCLUSION: Treatment failure in PJI is often due to failure to clear the biofilm; antiseptics are often used as an adjunct to biofilm clearance. We tested irrigants against clinically relevant microorganisms in biofilm in vitro and showed significant differences in efficacy among the different solutions. Further clinical outcome data is necessary to determine whether these solutions can impact PJI outcome in vivo. Cite this article: Bone Joint J 2021;103-B(5):908-915.


Asunto(s)
Antibacterianos/farmacología , Antiinfecciosos Locales/farmacología , Artroplastia de Reemplazo , Biopelículas/efectos de los fármacos , Infecciones Relacionadas con Prótesis/microbiología , Infecciones Relacionadas con Prótesis/prevención & control , Ácido Acético/farmacología , Compuestos de Benzalconio/farmacología , Betaína/farmacología , Biguanidas/farmacología , Clorhexidina/análogos & derivados , Clorhexidina/farmacología , Peróxido de Hidrógeno/farmacología , Técnicas In Vitro , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Povidona Yodada/farmacología , Propionibacteriaceae/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Hipoclorito de Sodio/farmacología , Staphylococcus epidermidis/efectos de los fármacos
17.
Anaerobe ; 70: 102365, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33887458

RESUMEN

Bacterial pericarditis and empyema due to Cutibacterium acnes has rarely been reported. C.acnes, a normal component of human skin flora, is often considered a contaminant when isolated from body fluids and thus cases may be underreported. We report the first case of concurrent purulent pericarditis and empyema caused by C. acnes in a patient with newly diagnosed metastatic lung cancer. Our patient underwent pericardial window creation and placement of pericardial and bilateral chest tubes and was successfully treated with culture directed antibiotic therapy.


Asunto(s)
Empiema/microbiología , Neoplasias Pulmonares/complicaciones , Pericarditis/microbiología , Adulto , Antibacterianos/administración & dosificación , Empiema/tratamiento farmacológico , Empiema/etiología , Femenino , Humanos , Pericarditis/etiología , Propionibacteriaceae/efectos de los fármacos , Propionibacteriaceae/genética , Propionibacteriaceae/aislamiento & purificación , Propionibacteriaceae/fisiología
18.
Antimicrob Resist Infect Control ; 10(1): 27, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33522957

RESUMEN

BACKGROUND: The skin commensal Cutibacterium avidum has been recognized as an emerging pathogen for periprosthetic joint infections (PJI). One currently assumes that the early occurring PJIs are a consequence of skin commensals contaminating the peri-implant tissue during surgery. We addressed whether standard skin antisepsis with povidone-iodine/alcohol before total hip arthroplasty (THA) is effective to eliminate colonizing bacteria with focus on C. avidum. METHODS: In a single-center, prospective study, we screened all patients for skin colonizing C. avidum in the groin before THA. Only in the patients positive for C. avidum, we preoperatively repeated skin swabs after the first and third skin antisepsis and antibiotic prophylaxis. We also obtained dermis biopsies for microbiology and fluorescence in situ hybridization (FISH). RESULTS: Fifty-one out of 60 patients (85%) were colonized on the skin with various bacteria, in particular with C. avidum in 12 out of 60. Skin antisepsis eliminated C. avidum in eight of ten (20%) colonized patients undergoing THA. Deeper skin (dermis) biopsies were all culture negative, but FISH detected single positive ribosome-rich C. avidum in one case near sweat glands. CONCLUSION: Standard skin antisepsis was not effective to completely eliminate colonizing C. avidum on the skin in the groin of patients undergoing THA. Colonizing with C. avidum might pose an increased risk for PJI when considering a THA. Novel more effective antisepsis strategies are needed. Trial registration No clinical trial.


Asunto(s)
Antisepsia , Propionibacteriaceae/efectos de los fármacos , Infecciones Relacionadas con Prótesis/prevención & control , Piel/microbiología , Adulto , Anciano , Anciano de 80 o más Años , Profilaxis Antibiótica , Artroplastia de Reemplazo de Cadera , Femenino , Ingle , Hospitales Universitarios , Humanos , Hibridación Fluorescente in Situ , Masculino , Persona de Mediana Edad , Cuidados Preoperatorios , Estudios Prospectivos , Control de Calidad , Factores de Riesgo , Suiza
19.
Int J Mol Sci ; 22(4)2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33561977

RESUMEN

Zinc compounds have a number of beneficial properties for the skin, including antimicrobial, sebostatic and demulcent activities. The aim of the study was to develop new anti-acne preparations containing zinc-amino acid complexes as active ingredients. Firstly, the cytotoxicity of the zinc complexes was evaluated against human skin fibroblasts (1BR.3.N cell line) and human epidermal keratinocyte cell lines, and their antimicrobial activity was determined against Cutibacterium acnes. Then, zinc complexes of glycine and histidine were selected to create original gel formulations. The stability (by measuring pH, density and viscosity), microbiological purity (referring to PN-EN ISO standards) and efficacy of the preservative system (according to Ph. Eur. 10 methodology) for the preparations were evaluated. Skin tolerance was determined in a group of 25 healthy volunteers by the patch test. The preparations containing zinc(II) complexes with glycine and histidine as active substances can be topically used in the treatment of acne skin due to their high antibacterial activity against C. acnes and low cytotoxicity for the skin cells. Dermatological recipes have been appropriately composed; no irritation or allergy was observed, and the preparations showed high microbiological purity and physicochemical stability.


Asunto(s)
Acné Vulgar/tratamiento farmacológico , Antibacterianos/farmacología , Glicina/farmacología , Histidina/farmacología , Propionibacteriaceae/efectos de los fármacos , Compuestos de Zinc/farmacología , Acné Vulgar/microbiología , Línea Celular , Glicina/química , Histidina/química , Humanos , Queratinocitos/efectos de los fármacos , Propionibacteriaceae/crecimiento & desarrollo , Piel/efectos de los fármacos , Piel/microbiología , Piel/patología , Crema para la Piel , Zinc/química , Compuestos de Zinc/química
20.
Microbiome ; 9(1): 47, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33597039

RESUMEN

BACKGROUND: The human skin microbiota is considered to be essential for skin homeostasis and barrier function. Comprehensive analyses of its function would substantially benefit from a catalog of reference genes derived from metagenomic sequencing. The existing catalog for the human skin microbiome is based on samples from limited individuals from a single cohort on reference genomes, which limits the coverage of global skin microbiome diversity. RESULTS: In the present study, we have used shotgun metagenomics to newly sequence 822 skin samples from Han Chinese, which were subsequently combined with 538 previously sequenced North American samples to construct an integrated Human Skin Microbial Gene Catalog (iHSMGC). The iHSMGC comprised 10,930,638 genes with the detection of 4,879,024 new genes. Characterization of the human skin resistome based on iHSMGC confirmed that skin commensals, such as Staphylococcus spp, are an important reservoir of antibiotic resistance genes (ARGs). Further analyses of skin microbial ARGs detected microbe-specific and skin site-specific ARG signatures. Of note, the abundance of ARGs was significantly higher in Chinese than Americans, while multidrug-resistant bacteria ("superbugs") existed on the skin of both Americans and Chinese. A detailed analysis of microbial signatures identified Moraxella osloensis as a species specific for Chinese skin. Importantly, Moraxella osloensis proved to be a signature species for one of two robust patterns of microbial networks present on Chinese skin, with Cutibacterium acnes indicating the second one. Each of such "cutotypes" was associated with distinct patterns of data-driven marker genes, functional modules, and host skin properties. The two cutotypes markedly differed in functional modules related to their metabolic characteristics, indicating that host-dependent trophic chains might underlie their development. CONCLUSIONS: The development of the iHSMGC will facilitate further studies on the human skin microbiome. In the present study, it was used to further characterize the human skin resistome. It also allowed to discover the existence of two cutotypes on the human skin. The latter finding will contribute to a better understanding of the interpersonal complexity of the skin microbiome. Video abstract.


Asunto(s)
Microbiota , Moraxella/genética , Moraxella/aislamiento & purificación , Propionibacteriaceae/genética , Propionibacteriaceae/aislamiento & purificación , Piel/microbiología , Adulto , Anciano , Antibacterianos/farmacología , China/etnología , Farmacorresistencia Microbiana/efectos de los fármacos , Farmacorresistencia Microbiana/genética , Etnicidad , Femenino , Genes Bacterianos/efectos de los fármacos , Humanos , Masculino , Metagenómica , Microbiota/efectos de los fármacos , Microbiota/genética , Persona de Mediana Edad , Moraxella/efectos de los fármacos , América del Norte/etnología , Propionibacteriaceae/efectos de los fármacos , Staphylococcus/efectos de los fármacos , Staphylococcus/genética , Staphylococcus/aislamiento & purificación , Simbiosis , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA