Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 811
Filtrar
1.
Lipids Health Dis ; 23(1): 156, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796450

RESUMEN

The degradation of low-density lipoprotein receptor (LDLR) is induced by proprotein convertase subtilisin/kexin type 9 (PCSK9), resulting in elevated plasma concentrations of LDL cholesterol. Therefore, inhibiting the interactions between PCSK9 and LDLR is a desirable therapeutic goal for managing hypercholesterolemia. Aptamers, which are RNA or single-stranded DNA sequences, can recognize their targets based on their secondary structure. Aptamers exhibit high selectivity and affinity for binding to target molecules. The systematic evolution of ligands by exponential enrichment (SELEX), a combination of biological approaches, is used to screen most aptamers in vitro. Due to their unique advantages, aptamers have garnered significant interest since their discovery and have found extensive applications in various fields. Aptamers have been increasingly utilized in the development of biosensors for sensitive detection of pathogens, analytes, toxins, drug residues, and malignant cells. Furthermore, similar to monoclonal antibodies, aptamers can serve as therapeutic tools. Unlike certain protein therapeutics, aptamers do not elicit antibody responses, and their modified sugars at the 2'-positions generally prevent toll-like receptor-mediated innate immune responses. The focus of this review is on aptamer-based targeting of PCSK9 and the application of aptamers both as biosensors and therapeutic agents.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Metabolismo de los Lípidos , Proproteína Convertasa 9 , Proproteína Convertasa 9/metabolismo , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/sangre , Humanos , Técnicas Biosensibles/métodos , Receptores de LDL/metabolismo , Técnica SELEX de Producción de Aptámeros , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/diagnóstico , Hipercolesterolemia/sangre , Animales , Inhibidores de PCSK9
2.
Cells ; 13(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38786080

RESUMEN

PCSK9 is implicated in familial hypercholesterolemia via targeting the cell surface PCSK9-LDLR complex toward lysosomal degradation. The M2 repeat in the PCSK9's C-terminal domain is essential for its extracellular function, potentially through its interaction with an unidentified "protein X". The M2 repeat was recently shown to bind an R-x-E motif in MHC-class-I proteins (implicated in the immune system), like HLA-C, and causing their lysosomal degradation. These findings suggested a new role of PCSK9 in the immune system and that HLA-like proteins could be "protein X" candidates. However, the participation of each member of the MHC-I protein family in this process and their regulation of PCSK9's function have yet to be determined. Herein, we compared the implication of MHC-I-like proteins such as HFE (involved in iron homeostasis) and HLA-C on the extracellular function of PCSK9. Our data revealed that the M2 domain regulates the intracellular sorting of the PCSK9-LDLR complex to lysosomes, and that HFE is a new target of PCSK9 that inhibits its activity on the LDLR, whereas HLA-C enhances its function. This work suggests the potential modulation of PCSK9's functions through interactions of HFE and HLA-C.


Asunto(s)
Antígenos HLA-C , Proteína de la Hemocromatosis , Lisosomas , Proproteína Convertasa 9 , Transporte de Proteínas , Receptores de LDL , Humanos , Receptores de LDL/metabolismo , Proproteína Convertasa 9/metabolismo , Proproteína Convertasa 9/genética , Proteína de la Hemocromatosis/metabolismo , Proteína de la Hemocromatosis/genética , Antígenos HLA-C/metabolismo , Lisosomas/metabolismo , Células HEK293 , Unión Proteica
3.
Molecules ; 29(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731489

RESUMEN

Gallic acid (GA) is a type of polyphenolic compound that can be found in a range of fruits, vegetables, and tea. Although it has been confirmed it improves non-alcoholic fatty liver disease (NAFLD), it is still unknown whether GA can improve the occurrence of NAFLD by increasing the low-density lipoprotein receptor (LDLR) accumulation and alleviating cholesterol metabolism disorders. Therefore, the present study explored the effect of GA on LDLR and its mechanism of action. The findings indicated that the increase in LDLR accumulation in HepG2 cells induced by GA was associated with the stimulation of the epidermal growth factor receptor-extracellular regulated protein kinase (EGFR-ERK1/2) signaling pathway. When the pathway was inhibited by EGFR mab cetuximab, it was observed that the activation of the EGFR-ERK1/2 signaling pathway induced by GA was also blocked. At the same time, the accumulation of LDLR protein and the uptake of LDL were also suppressed. Additionally, GA can also promote the accumulation of forkhead box O3 (FOXO3) and suppress the accumulation of hepatocyte nuclear factor-1α (HNF1α), leading to the inhibition of proprotein convertase subtilisin/kexin 9 (PCSK9) mRNA expression and protein accumulation. This ultimately results in increased LDLR protein accumulation and enhanced uptake of LDL in cells. In summary, the present study revealed the potential mechanism of GA's role in ameliorating NAFLD, with a view of providing a theoretical basis for the dietary supplementation of GA.


Asunto(s)
Ácido Gálico , Lipoproteínas LDL , Receptores de LDL , Humanos , Ácido Gálico/farmacología , Receptores de LDL/metabolismo , Células Hep G2 , Lipoproteínas LDL/metabolismo , Receptores ErbB/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proproteína Convertasa 9/metabolismo , Proproteína Convertasa 9/genética
4.
Int J Mol Med ; 53(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38757360

RESUMEN

Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitors are widely recognised as being able to induce a potent reduction in low­density lipoprotein­cholesterol. An increasing number of studies have suggested that PCSK9 also influences the haemostatic system by altering platelet function and the coagulation cascade. These findings have significant implications for anti­PCSK9 therapy in patients with specific coagulation conditions, including expanded indications, dose adjustments and drug interactions. The present review summarises the changes in PCSK9 levels in individuals with liver diseases, chronic kidney diseases, diabetes mellitus, cancer and other disease states, and discusses their impact on thrombosis and haemostasis. Furthermore, the structure, effects and regulatory mechanisms of PCSK9 on platelets, coagulation factors, inflammatory cells and endothelial cells during coagulation and haemostasis are described.


Asunto(s)
Hemostasis , Proproteína Convertasa 9 , Trombosis , Humanos , Proproteína Convertasa 9/metabolismo , Hemostasis/efectos de los fármacos , Trombosis/metabolismo , Trombosis/tratamiento farmacológico , Animales , Plaquetas/metabolismo , Inhibidores de PCSK9 , Metabolismo de los Lípidos/efectos de los fármacos
5.
Respir Res ; 25(1): 213, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762465

RESUMEN

BACKGROUND: Obesity is associated with airway hyperresponsiveness and lung fibrosis, which may reduce the effectiveness of standard asthma treatment in individuals suffering from both conditions. Statins and proprotein convertase subtilisin/kexin-9 inhibitors not only reduce serum cholesterol, free fatty acids but also diminish renin-angiotensin system activity and exhibit anti-inflammatory effects. These mechanisms may play a role in mitigating lung pathologies associated with obesity. METHODS: Male C57BL/6 mice were induced to develop obesity through high-fat diet for 16 weeks. Conditional TGF-ß1 transgenic mice were fed a normal diet. These mice were given either atorvastatin or proprotein convertase subtilisin/kexin-9 inhibitor (alirocumab), and the impact on airway hyperresponsiveness and lung pathologies was assessed. RESULTS: High-fat diet-induced obesity enhanced airway hyperresponsiveness, lung fibrosis, macrophages in bronchoalveolar lavage fluid, and pro-inflammatory mediators in the lung. These lipid-lowering agents attenuated airway hyperresponsiveness, macrophages in BALF, lung fibrosis, serum leptin, free fatty acids, TGF-ß1, IL-1ß, IL-6, and IL-17a in the lung. Furthermore, the increased RAS, NLRP3 inflammasome, and cholecystokinin in lung tissue of obese mice were reduced with statin or alirocumab. These agents also suppressed the pro-inflammatory immune responses and lung fibrosis in TGF-ß1 over-expressed transgenic mice with normal diet. CONCLUSIONS: Lipid-lowering treatment has the potential to alleviate obesity-induced airway hyperresponsiveness and lung fibrosis by inhibiting the NLRP3 inflammasome, RAS and cholecystokinin activity.


Asunto(s)
Dieta Alta en Grasa , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad , Fibrosis Pulmonar , Animales , Masculino , Dieta Alta en Grasa/efectos adversos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Ratones , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Fibrosis Pulmonar/prevención & control , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Inhibidores de PCSK9 , Atorvastatina/farmacología , Atorvastatina/uso terapéutico , Ratones Obesos , Proproteína Convertasa 9/metabolismo , Proproteína Convertasa 9/genética , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Hiperreactividad Bronquial/prevención & control , Hiperreactividad Bronquial/tratamiento farmacológico , Hiperreactividad Bronquial/metabolismo , Hiperreactividad Bronquial/fisiopatología , Anticuerpos Monoclonales Humanizados
6.
Fitoterapia ; 175: 105951, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583637

RESUMEN

Four undescribed amide alkaloids hongkongensines A-C and 1-(1-oxo-6-hydroxy-2E,4E-dodecadienyl)-piperidine, five known amide alkaloids, and three known neolignans were isolated from the aerial part of Piper hongkongense. The planar structures of these compounds were determined by detailed analyses of HR-ESI-MS and NMR data. The absolute configurations of hongkongensines A-C were elucidated by single-crystal X-ray diffraction analysis and ECD calculations. Moreover, the inhibitory activities of PCSK9 expression in vitro for all compounds were assessed by PCSK9 AlphaLISA screening. Kadsurenone (10) displayed a significant inhibitory activity at 5 µM with an inhibition rate of 51.98%, compared with 55.55% of berberine (BBR 5 µM).


Asunto(s)
Alcaloides , Lignanos , Inhibidores de PCSK9 , Fitoquímicos , Piper , Componentes Aéreos de las Plantas , Piper/química , Estructura Molecular , Alcaloides/farmacología , Alcaloides/aislamiento & purificación , Alcaloides/química , Lignanos/farmacología , Lignanos/aislamiento & purificación , Humanos , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Componentes Aéreos de las Plantas/química , Amidas/farmacología , Amidas/aislamiento & purificación , Amidas/química , Proproteína Convertasa 9/metabolismo , China
7.
BMC Cancer ; 24(1): 445, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600469

RESUMEN

BACKGROUND: Proprotein convertase subtilisin/kexin type 9 (PCSK9), the last member of the proprotein convertase family, functions as a classic regulator of low-density lipoprotein (LDL) by interacting with low-density lipoprotein receptor (LDLR). Recent studies have shown that PCSK9 can affect the occurrence and development of tumors and can be used as a novel therapeutic target. However, a comprehensive pan-cancer analysis of PCSK9 has yet to be conducted. METHODS: The potential oncogenic effects of PCSK9 in 33 types of tumors were explored based on the datasets of The Cancer Genome Atlas (TCGA) dataset. In addition, the immune regulatory role of PCSK9 inhibition was evaluated via in vitro cell coculture and the tumor-bearing mouse model. Finally, the antitumor efficacy of targeted PCSK9 combined with OVA-II vaccines was verified. RESULTS: Our results indicated that PCSK9 was highly expressed in most tumor types and was significantly correlated with late disease stage and poor prognosis. Additionally, PCSK9 may regulate the tumor immune matrix score, immune cell infiltration, immune checkpoint expression, and major histocompatibility complex expression. Notably, we first found that dendritic cell (DC) infiltration and major histocompatibility complex-II (MHC-II) expression could be upregulated by PCSK9 inhibition and improve CD8+ T cell activation in the tumor immune microenvironment, thereby achieving potent tumor control. Combining PCSK9 inhibitors could enhance the efficacies of OVA-II tumor vaccine monotherapy. CONCLUSIONS: Conclusively, our pan-cancer analysis provided a more comprehensive understanding of the oncogenic and immunoregulatory roles of PCSK9 and demonstrated that targeting PCSK9 could increase the efficacy of long peptide vaccines by upregulating DC infiltration and MHC-II expression on the surface of tumor cells. This study reveals the critical oncogenic and immunoregulatory roles of PCSK9 in various tumors and shows the promise of PCSK9 as a potent immunotherapy target.


Asunto(s)
Genes MHC Clase II , Inmunoterapia , Neoplasias , Proproteína Convertasa 9 , Proproteína Convertasas , Animales , Ratones , Antígenos de Histocompatibilidad , Lipoproteínas LDL , Neoplasias/genética , Neoplasias/terapia , Proproteína Convertasa 9/metabolismo , Proproteína Convertasas/antagonistas & inhibidores , Receptores de LDL/genética , Microambiente Tumoral
8.
Biomaterials ; 308: 122559, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38583366

RESUMEN

Lipid nanoparticles (LNPs) have recently emerged as successful gene delivery platforms for a diverse array of disease treatments. Efforts to optimize their design for common administration methods such as intravenous injection, intramuscular injection, or inhalation, revolve primarily around the addition of targeting ligands or the choice of ionizable lipid. Here, we employed a multi-step screening method to optimize the type of helper lipid and component ratios in a plasmid DNA (pDNA) LNP library to efficiently deliver pDNA through intraduodenal delivery as an indicative route for oral administration. By addressing different physiological barriers in a stepwise manner, we down-selected effective LNP candidates from a library of over 1000 formulations. Beyond reporter protein expression, we assessed the efficiency in non-viral gene editing in mouse liver mediated by LNPs to knockdown PCSK9 and ANGPTL3 expression, thereby lowering low-density lipoprotein (LDL) cholesterol levels. Utilizing an all-in-one pDNA construct with Strep. pyogenes Cas9 and gRNAs, our results showcased that intraduodenal administration of selected LNPs facilitated targeted gene knockdown in the liver, resulting in a 27% reduction in the serum LDL cholesterol level. This LNP-based all-in-one pDNA-mediated gene editing strategy highlights its potential as an oral therapeutic approach for hypercholesterolemia, opening up new possibilities for DNA-based gene medicine applications.


Asunto(s)
Edición Génica , Lípidos , Hígado , Nanopartículas , Animales , Edición Génica/métodos , Hígado/metabolismo , Nanopartículas/química , Lípidos/química , Ratones , Plásmidos/genética , Plásmidos/administración & dosificación , Técnicas de Transferencia de Gen , Ratones Endogámicos C57BL , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Humanos , ADN/administración & dosificación , ADN/genética , Duodeno/metabolismo
9.
Atherosclerosis ; 392: 117529, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583289

RESUMEN

BACKGROUND: Mechanistic studies suggest that proprotein convertase subtilisin/kexin type 9 inhibitors can modulate inflammation. METHODS: Double-blind, placebo-controlled trial randomized 41 ASCVD subjects with type 2 diabetes with microalbuminuria and LDL-C level >70 mg/dL on maximum tolerated statin therapy received subcutaneous evolocumab 420 mg every 4 weeks or matching placebo. The primary outcomes were change in circulating immune cell transcriptional response, lipoproteins and blood viscosity at 2 weeks and 12 weeks. Safety was assessed in all subjects who received at least one dose of assigned treatment and analyses were conducted in the intention-to-treat population. RESULTS: All 41 randomized subjects completed the 2-week visit. Six subjects did not receive study medication consistently after the 2-week visit due to COVID-19 pandemic suspension of research activities. The groups were well-matched with respect to age, comorbidities, baseline LDL-C, white blood cell counts, and markers of systemic inflammation. Evolocumab reduced LDL-C by -68.8% (p < 0.0001) and -52.8% (p < 0.0001) at 2 and 12 weeks, respectively. There were no differences in blood viscosity at baseline nor at 2 and 12 weeks. RNA-seq was performed on peripheral blood mononuclear cells with and without TLR4 stimulation ("Stress" transcriptomics). "Stress" transcriptomics unmasked immune cell phenotypic differences between evolocumab and placebo groups at 2 and 12 weeks. CONCLUSIONS: This trial is the first to demonstrate that PCSK9 mAB with evolocumab can modulate circulating immune cell properties and highlights the importance of "stress" profiling of circulating immune cells that more clearly define immune contributions to ASCVD.


Asunto(s)
Anticuerpos Monoclonales Humanizados , LDL-Colesterol , Monocitos , Inhibidores de PCSK9 , Proproteína Convertasa 9 , Humanos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Masculino , Femenino , Persona de Mediana Edad , Método Doble Ciego , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Monocitos/inmunología , Anciano , LDL-Colesterol/sangre , Proproteína Convertasa 9/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/inmunología , Anticolesterolemiantes/uso terapéutico , Lipoproteínas/sangre , Resultado del Tratamiento , COVID-19/sangre , COVID-19/inmunología , Viscosidad Sanguínea/efectos de los fármacos
10.
J Transl Med ; 22(1): 404, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689297

RESUMEN

BACKGROUND: Ischemic heart disease is one of the leading causes of mortality worldwide, and thus calls for development of more effective therapeutic strategies. This study aimed to identify potential therapeutic targets for coronary heart disease (CHD) and myocardial infarction (MI) by investigating the causal relationship between plasma proteins and these conditions. METHODS: A two-sample Mendelian randomization (MR) study was performed to evaluate more than 1600 plasma proteins for their causal associations with CHD and MI. The MR findings were further confirmed through Bayesian colocalization, Summary-data-based Mendelian Randomization (SMR), and Transcriptome-Wide Association Studies (TWAS) analyses. Further analyses, including enrichment analysis, single-cell analysis, MR analysis of cardiovascular risk factors, phenome-wide Mendelian Randomization (Phe-MR), and protein-protein interaction (PPI) network construction were conducted to verify the roles of selected causal proteins. RESULTS: Thirteen proteins were causally associated with CHD, seven of which were also causal for MI. Among them, FES and PCSK9 were causal proteins for both diseases as determined by several analytical methods. PCSK9 was a risk factor of CHD (OR = 1.25, 95% CI: 1.13-1.38, P = 7.47E-06) and MI (OR = 1.36, 95% CI: 1.21-1.54, P = 2.30E-07), whereas FES was protective against CHD (OR = 0.68, 95% CI: 0.59-0.79, P = 6.40E-07) and MI (OR = 0.65, 95% CI: 0.54-0.77, P = 5.38E-07). Further validation through enrichment and single-cell analysis confirmed the causal effects of these proteins. Moreover, MR analysis of cardiovascular risk factors, Phe-MR, and PPI network provided insights into the potential drug development based on the proteins. CONCLUSIONS: This study investigated the causal pathways associated with CHD and MI, highlighting the protective and risk roles of FES and PCSK9, respectively. FES. Specifically, the results showed that these proteins are promising therapeutic targets for future drug development.


Asunto(s)
Proteínas Sanguíneas , Enfermedad Coronaria , Análisis de la Aleatorización Mendeliana , Infarto del Miocardio , Proteómica , Humanos , Infarto del Miocardio/sangre , Infarto del Miocardio/genética , Proteómica/métodos , Enfermedad Coronaria/sangre , Enfermedad Coronaria/genética , Proteínas Sanguíneas/metabolismo , Mapas de Interacción de Proteínas/genética , Teorema de Bayes , Terapia Molecular Dirigida , Factores de Riesgo , Estudio de Asociación del Genoma Completo , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/sangre , Proproteína Convertasa 9/metabolismo
11.
J Chem Inf Model ; 64(9): 3923-3932, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615325

RESUMEN

The protein PCSK9 (proprotein convertase subtilisin/Kexin type 9) negatively regulates the recycling of LDLR (low-density lipoprotein receptor), leading to an elevated plasma level of LDL. Inhibition of PCSK9-LDLR interaction has emerged as a promising therapeutic strategy to manage hypercholesterolemia. However, the large interaction surface area between PCSK9 and LDLR makes it challenging to identify a small molecule competitive inhibitor. An alternative strategy would be to identify distal cryptic sites as targets for allosteric inhibitors that can remotely modulate PCSK9-LDLR interaction. Using several microseconds long molecular dynamics (MD) simulations, we demonstrate that on binding with LDLR, there is a significant conformational change (population shift) in a distal loop (residues 211-222) region of PCSK9. Consistent with the bidirectional nature of allostery, we establish a clear correlation between the loop conformation and the binding affinity with LDLR. Using a thermodynamic argument, we establish that the loop conformations predominantly present in the apo state of PCSK9 would have lower LDLR binding affinity, and they would be potential targets for designing allosteric inhibitors. We elucidate the molecular origin of the allosteric coupling between this loop and the LDLR binding interface in terms of the population shift in a set of salt bridges and hydrogen bonds. Overall, our work provides a general strategy toward identifying allosteric hotspots: compare the conformational ensemble of the receptor between the apo and bound states of the protein and identify distal conformational changes, if any. The inhibitors should be designed to bind and stabilize the apo-specific conformations.


Asunto(s)
Simulación de Dinámica Molecular , Proproteína Convertasa 9 , Unión Proteica , Receptores de LDL , Receptores de LDL/metabolismo , Receptores de LDL/química , Proproteína Convertasa 9/metabolismo , Proproteína Convertasa 9/química , Regulación Alostérica , Humanos , Conformación Proteica , Termodinámica , Inhibidores de PCSK9
12.
Proc Natl Acad Sci U S A ; 121(18): e2400752121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648484

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a rare disease caused by the expression of progerin, a mutant protein that accelerates aging and precipitates death. Given that atherosclerosis complications are the main cause of death in progeria, here, we investigated whether progerin-induced atherosclerosis is prevented in HGPSrev-Cdh5-CreERT2 and HGPSrev-SM22α-Cre mice with progerin suppression in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), respectively. HGPSrev-Cdh5-CreERT2 mice were undistinguishable from HGPSrev mice with ubiquitous progerin expression, in contrast with the ameliorated progeroid phenotype of HGPSrev-SM22α-Cre mice. To study atherosclerosis, we generated atheroprone mouse models by overexpressing a PCSK9 gain-of-function mutant. While HGPSrev-Cdh5-CreERT2 and HGPSrev mice developed a similar level of excessive atherosclerosis, plaque development in HGPSrev-SM22α-Cre mice was reduced to wild-type levels. Our studies demonstrate that progerin suppression in VSMCs, but not in ECs, prevents exacerbated atherosclerosis in progeroid mice.


Asunto(s)
Aterosclerosis , Células Endoteliales , Lamina Tipo A , Músculo Liso Vascular , Progeria , Animales , Ratones , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Ratones Transgénicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Progeria/metabolismo , Progeria/genética , Progeria/patología , Proproteína Convertasa 9/metabolismo , Proproteína Convertasa 9/genética
13.
Phytochemistry ; 222: 114107, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663823

RESUMEN

The isolation of previously undescribed 12 compounds from the MeOH extract of Jacobaea vulgaris whole plants is disclosed, comprising 11 dihydrostilbenes (1-11) and one flavanone (12), and eight known compounds (six flavonoids, one dihydrostilbene, and one caffeoylquinic acid). Structural elucidation employed spectroscopic methods, including 1D and 2D NMR spectroscopy, HRESIMS, and ECD calculations. Evaluation of the compounds' effects on PCSK9 and LDLR mRNA expression revealed that compounds 1 and 3 downregulated PCSK9 mRNA while increasing LDLR mRNA expression, suggesting potential cholesterol-lowering properties.


Asunto(s)
Flavonoides , Estilbenos , Flavonoides/química , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Estilbenos/química , Estilbenos/aislamiento & purificación , Estilbenos/farmacología , Estructura Molecular , Proproteína Convertasa 9/metabolismo , Proproteína Convertasa 9/genética , Humanos , Receptores de LDL/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética
15.
Acta Pharmacol Sin ; 45(6): 1316-1320, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38459255

RESUMEN

Within the context of residual cardiovascular risk in post-statin era, emerging evidence from epidemiologic and human genetic studies have demonstrated that triglyceride (TG)-rich lipoproteins and their remnants are causally related to cardiovascular risk. While, carriers of loss-of-function mutations of ApoC3 have low TG levels and are protected from cardiovascular disease (CVD). Of translational significance, siRNAs/antisense oligonucleotide (ASO) targeting ApoC3 is beneficial for patients with atherosclerotic CVD. Therefore, animal models of atherosclerosis with both hypercholesterolemia and hypertriglyceridemia are important for the discovery of novel therapeutic strategies targeting TG-lowering on top of traditional cholesterol-lowering. In this study, we constructed a novel mouse model of familial combined hyperlipidemia through inserting a human ApoC3 transgene (hApoC3-Tg) into C57BL/6 J mice and injecting a gain-of-function variant of adeno-associated virus-proprotein convertase subtilisin/kexin type 9 (AAV-PCSK9)-D377Y concurrently with high cholesterol diet (HCD) feeding for 16 weeks. In the last 10 weeks, hApoC3-Tg mice were orally treated with a combination of atorvastatin (10 mg·kg-1·d-1) and fenofibrate (100 mg·kg-1·d-1). HCD-treated hApoC3-Tg mice demonstrated elevated levels of serum TG, total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C). Oral administration of atorvastatin and fenofibrate significantly decreased the plaque sizes of en face aorta, aortic sinus and innominate artery accompanied by improved lipid profile and distribution. In summary, this novel mouse model is of considerable clinical relevance for evaluation of anti-atherosclerotic drugs by targeting both hypercholesterolemia and hypertriglyceridemia.


Asunto(s)
Aterosclerosis , Modelos Animales de Enfermedad , Hiperlipidemia Familiar Combinada , Ratones Endogámicos C57BL , Ratones Transgénicos , Animales , Aterosclerosis/tratamiento farmacológico , Humanos , Ratones , Hiperlipidemia Familiar Combinada/tratamiento farmacológico , Hiperlipidemia Familiar Combinada/genética , Apolipoproteína C-III/genética , Masculino , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Hipolipemiantes/uso terapéutico , Hipolipemiantes/farmacología , Triglicéridos/sangre , Dieta Alta en Grasa , Atorvastatina/uso terapéutico , Atorvastatina/farmacología
16.
Phytomedicine ; 128: 155505, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38547616

RESUMEN

BACKGROUND: Fatty liver disease (FLD) poses a significant global health concern worldwide, with its classification into nonalcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) contingent upon the presence or absence of chronic and excessive alcohol consumption. The absence of specific therapeutic interventions tailored to FLD at various stages of the disease renders its treatment exceptionally arduous. Despite the fact that FLD and hyperlipidemia are intimately associated, there is still debate over how lipid-lowering medications affect FLD. Proprotein Convertase Subtilisin/ Kexin type 9 (PCSK9) is a serine protease predominantly synthesized in the liver, which has a crucial impact on cholesterol homeostasis. Research has confirmed that PCSK9 inhibitors have prominent lipid-lowering properties and substantial clinical effectiveness, thereby justifying the need for additional exploration of their potential role in FLD. PURPOSE: Through a comprehensive literature search, this review is to identify the relationship and related mechanisms between PCSK9, lipid metabolism and FLD. Additionally, it will assess the pharmacological mechanism and applicability of PCSK9 inhibitors (including naturally occurring PCSK9 inhibitors, such as conventional herbal medicines) for the treatment of FLD and serve as a guide for updating the treatment protocol for such conditions. METHODS: A comprehensive literature search was conducted using several electronic databases, including Pubmed, Medline, Embase, CNKI, Wanfang database and ClinicalTrials.gov, from the inception of the database to 30 Jan 2024. Key words used in the literature search were "fatty liver", "hepatic steatosis", "PCSK9", "traditional Chinese medicine", "herb medicine", "botanical medicine", "clinical trial", "vivo", "vitro", linked with AND/OR. Most of the included studies were within five years. RESULTS: PCSK9 participates in the regulation of circulating lipids via both LDLR dependent and independent pathways, and there is a potential association with de novo lipogenesis. Major clinical studies have demonstrated a positive correlation between circulating PCSK9 levels and the severity of NAFLD, with elevated levels of circulating PCSK9 observed in individuals exposed to chronic alcohol. Numerous studies have demonstrated the potential of PCSK9 inhibitors to ameliorate non-alcoholic steatohepatitis (NASH), potentially completely alleviate liver steatosis, and diminish liver impairment. In animal experiments, PCSK9 inhibitors have exhibited efficacy in alleviating alcoholic induced liver lipid accumulation and hepatitis. Traditional Chinese medicine such as berberine, curcumin, resveratrol, piceatannol, sauchinone, lupin, quercetin, salidroside, ginkgolide, tanshinone, lunasin, Capsella bursa-pastoris, gypenosides, and Morus alba leaves are the main natural PCS9 inhibitors. Excitingly, by inhibiting transcription, reducing secretion, direct targeting and other pathways, traditional Chinese medicine exert inhibitory effects on PCSK9, thereby exerting potential FLD therapeutic effects. CONCLUSION: PCSK9 plays an important role in the development of FLD, and PCSK9 inhibitors have demonstrated beneficial effects on lipid regulation and FLD in both preclinical and clinical studies. In addition, some traditional Chinese medicines have improved the disease progression of FLD by inhibiting PCSK9 and anti-inflammatory and antioxidant effects. Consequently, the inhibition of PCSK9 appears to be a promising therapeutic strategy for FLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Inhibidores de PCSK9 , Animales , Humanos , Hígado Graso/tratamiento farmacológico , Hígado Graso Alcohólico/tratamiento farmacológico , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Inhibidores de PCSK9/uso terapéutico , Proproteína Convertasa 9/metabolismo
17.
Atherosclerosis ; 392: 117506, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518516

RESUMEN

BACKGROUND AND AIMS: Long noncoding RNAs are involved in the pathogenesis of atherosclerosis. As long noncoding RNAs maternally expressed gene 3 (Meg3) prevents cellular senescence of hepatic vascular endothelium and obesity-induced insulin resistance, we decided to examine its role in cellular senescence and atherosclerosis. METHODS AND RESULTS: By analyzing our data and human and mouse data from the Gene Expression Omnibus database, we found that Meg3 expression was reduced in humans and mice with cardiovascular disease, indicating its potential role in atherosclerosis. In Ldlr-/- mice fed a Western diet for 12 weeks, Meg3 silencing by chemically modified antisense oligonucleotides attenuated the formation of atherosclerotic lesions by 34.9% and 20.1% in male and female mice, respectively, revealed by en-face Oil Red O staining, which did not correlate with changes in plasma lipid profiles. Real-time quantitative PCR analysis of cellular senescence markers p21 and p16 revealed that Meg3 deficiency aggravates hepatic cellular senescence but not cellular senescence at aortic roots. Human Meg3 transgenic mice were generated to examine the role of Meg3 gain-of-function in the development of atherosclerosis induced by PCSK9 overexpression. Meg3 overexpression promotes atherosclerotic lesion formation by 29.2% in Meg3 knock-in mice independent of its effects on lipid profiles. Meg3 overexpression inhibits hepatic cellular senescence, while it promotes aortic cellular senescence likely by impairing mitochondrial function and delaying cell cycle progression. CONCLUSIONS: Our data demonstrate that Meg3 promotes the formation of atherosclerotic lesions independent of its effects on plasma lipid profiles. In addition, Meg3 regulates cellular senescence in a tissue-specific manner during atherosclerosis. Thus, we demonstrated that Meg3 has multifaceted roles in cellular senescence and atherosclerosis.


Asunto(s)
Aterosclerosis , Senescencia Celular , Ratones Noqueados , Proproteína Convertasa 9 , ARN Largo no Codificante , Receptores de LDL , Animales , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Humanos , Masculino , Femenino , Receptores de LDL/genética , Receptores de LDL/metabolismo , Proproteína Convertasa 9/metabolismo , Proproteína Convertasa 9/genética , Modelos Animales de Enfermedad , Hígado/metabolismo , Hígado/patología , Ratones , Placa Aterosclerótica , Ratones Endogámicos C57BL , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Mitocondrias/metabolismo , Transducción de Señal , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética
18.
Expert Opin Pharmacother ; 25(4): 349-358, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38549399

RESUMEN

INTRODUCTION: The burden of atherosclerotic cardiovascular disease (ASCVD) persists globally, demanding innovative therapeutic strategies. This manuscript provides an expert opinion on the significance of managing low-density lipoprotein cholesterol in ASCVD prevention and introduces inclisiran, a novel small interfering RNA targeting proprotein convertase subtilisin/kexin type 9 (PCSK9). AREAS COVERED: This work delves into the intricate mechanism of inclisiran, highlighting its unique approach of hepatic intracellular PCSK9 inhibition, its precision and low off-target effects risk. Pharmacodynamic and pharmacokinetic distinctions from PCSK9 monoclonal antibodies are explored, underlining inclisiran's efficiency, extended duration, and clearance. Clinical trials, including pivotal phase-III placebo-controlled studies (ORION-9, -10, -11), the open-label ORION-3 and pooled safety analysis of these trails including the open-label phase of ORION-8, as well as real-word data are discussed to provide a comprehensive evaluation of inclisiran's efficacy and safety. EXPERT OPINION: Inclisiran stands as a first-in-class breakthrough in lipid-lowering therapies, showing potential in alleviating the global burden of ASCVD and is supported by multiple global regulatory approvals. To optimize inclisiran's utilization and comprehend its long-term effects, future directions include pediatric studies, cardiovascular outcome trials, and extended-duration investigations. Overall, inclisiran emerges as a precise and effective therapeutic option, offering significant promise for preserving cardiovascular health.


Asunto(s)
LDL-Colesterol , Inhibidores de PCSK9 , ARN Interferente Pequeño , Humanos , LDL-Colesterol/sangre , ARN Interferente Pequeño/uso terapéutico , Aterosclerosis/tratamiento farmacológico , Animales , Proproteína Convertasa 9/metabolismo , Anticolesterolemiantes/uso terapéutico , Anticolesterolemiantes/efectos adversos , Anticolesterolemiantes/farmacología , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/tratamiento farmacológico , Hipercolesterolemia/tratamiento farmacológico
19.
Sci Rep ; 14(1): 7195, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532033

RESUMEN

Patients with type 1 diabetes (T1D) have a greater risk of cardiovascular disease. Proconvertase subtilisin-kexin 9 (PCSK9) is involved in the atherosclerosis process. This study aimed to determine the relationship between PCSK9 levels and epicardial adipose tissue (EAT) volume and cardiometabolic variables in patients with T1D. This was an observational cross-sectional study including 73 patients with T1D. Clinical, biochemical and imaging data were collected. We divided the patients into two groups according to their glycemic control and the EAT index (iEAT) percentile. We performed a correlation analysis between the collected variables and PCSK9 levels; subsequently, we performed a multiple regression analysis with the significant parameters. The mean age was 47.6 ± 8.5 years, 58.9% were men, and the BMI was 26.9 ± 4.6 kg/m2. A total of 31.5%, 49.3% and 34.2% of patients had hypertension, dyslipidemia and smoking habit, respectively. The PCSK9 concentration was 0.37 ± 0.12 mg/L, which was greater in patients with worse glycemic control (HbA1c > 7.5%), dyslipidemia and high EAT volume (iEAT > 75th percentile). The PCSK9 concentration was positively correlated with age (r = 0.259; p = 0.027), HbA1c (r = 0.300; p = 0.011), insulin dose (r = 0.275; p = 0.020), VLDL-C level (r = 0.331; p = 0.004), TG level (r = 0.328; p = 0.005), and iEAT (r = 0.438; p < 0.001). Multiple regression analysis revealed that 25% of the PCSK9 variability was explained by iEAT and HbA1c (p < 0.05). The PCSK9 concentration is associated with metabolic syndrome parameters, poor glycemic control and increased EAT volume in patients with T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Dislipidemias , Masculino , Humanos , Adulto , Persona de Mediana Edad , Femenino , Diabetes Mellitus Tipo 1/metabolismo , Proproteína Convertasa 9/metabolismo , Tejido Adiposo Epicárdico , Hemoglobina Glucada , Subtilisina , Estudios Transversales , Tejido Adiposo/metabolismo
20.
Biol Sex Differ ; 15(1): 26, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532495

RESUMEN

BACKGROUND: Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key player of lipid metabolism with higher plasma levels in women throughout their life. Statin treatment affects PCSK9 levels also showing evidence of sex-differential effects. It remains unclear whether these differences can be explained by genetics. METHODS: We performed genome-wide association meta-analyses (GWAS) of PCSK9 levels stratified for sex and statin treatment in six independent studies of Europeans (8936 women/11,080 men respectively 14,825 statin-free/5191 statin-treated individuals). Loci associated in one of the strata were tested for statin- and sex-interactions considering all independent signals per locus. Independent variants at the PCSK9 gene locus were then used in a stratified Mendelian Randomization analysis (cis-MR) of PCSK9 effects on low-density lipoprotein cholesterol (LDL-C) levels to detect differences of causal effects between the subgroups. RESULTS: We identified 11 loci associated with PCSK9 in at least one stratified subgroup (p < 1.0 × 10-6), including the PCSK9 gene locus and five other lipid loci: APOB, TM6SF2, FADS1/FADS2, JMJD1C, and HP/HPR. The interaction analysis revealed eight loci with sex- and/or statin-interactions. At the PCSK9 gene locus, there were four independent signals, one with a significant sex-interaction showing stronger effects in men (rs693668). Regarding statin treatment, there were two significant interactions in PCSK9 missense mutations: rs11591147 had stronger effects in statin-free individuals, and rs11583680 had stronger effects in statin-treated individuals. Besides replicating known loci, we detected two novel genome-wide significant associations: one for statin-treated individuals at 6q11.1 (within KHDRBS2) and one for males at 12q24.22 (near KSR2/NOS1), both with significant interactions. In the MR of PCSK9 on LDL-C, we observed significant causal estimates within all subgroups, but significantly stronger causal effects in statin-free subjects compared to statin-treated individuals. CONCLUSIONS: We performed the first double-stratified GWAS of PCSK9 levels and identified multiple biologically plausible loci with genetic interaction effects. Our results indicate that the observed sexual dimorphism of PCSK9 and its statin-related interactions have a genetic basis. Significant differences in the causal relationship between PCSK9 and LDL-C suggest sex-specific dosages of PCSK9 inhibitors.


The protein "proprotein convertase subtilisin/kexin type 9" (PCSK9) regulates the levels of low-density lipoprotein cholesterol (LDL-C) in blood, and thus, contributes to the risk of cardio-vascular diseases. Women tend to have higher PCSK9 plasma levels throughout their life, although the difference is smaller in patients under LDL-C lowering medication (e.g., statins). We investigated the interplay of genetics, statin-treatment and sex, using combined data from six European studies. We detected 11 genetic regions associated with PCSK9 levels, of which one was specific for women (at SLCO1B3, a statin-transporter gene), and three were specific for men (e.g., ALOX5, encoding a protein linked to chronic inflammatory diseases such as atherosclerosis). We also tested if statin use changed the genetic effect and found five genes only associated with PCSK9 levels in untreated participants. Variants in the gene encoding PCSK9 were most strongly associated and had heterogeneous effects in dependence on statin treatment and sex: On one hand, there were genetic variants with stronger effects in men than women. Those variants are also linked to sex-differential gene expression of PCSK9. On the other hand, there were also variants with treatment-depending effects, linked to protein structure and functionality of PCSK9. This indicates that the observed sexual and treatment-related effects on PCSK9 levels have a genetic basis. In addition, we compared the causal effects of PCSK9 on LDL-C levels between men and women and found a different response to statin treatment. This highlights the need for sex-sensitive dosages of lipid-lowering medication.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Masculino , Humanos , Femenino , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Estudio de Asociación del Genoma Completo , LDL-Colesterol/genética , Oxidorreductasas N-Desmetilantes , Histona Demetilasas con Dominio de Jumonji
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA