Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Glob Antimicrob Resist ; 35: 67-75, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37633420

RESUMEN

OBJECTIVES: Artemisinin (ART) resistance in Plasmodium is threatening the artemisinin combination therapies-the first line of defence against malaria. ART resistance has been established to be mediated by the Plasmodium Kelch13 (PfK13) protein. For the crucial role of PfK13 in multiple pathways of the Plasmodium life cycle and ART resistance, it is imperative that we investigate its interacting partners. METHODS: We recombinantly expressed PfK13-p (Bric a brac/Poxvirus and zinc finger and propeller domains), generating anti-PfK13-p antibodies to perform co-immunoprecipitation assays and probed PfK13 interacting partners. Surface plasmon resonance and pull-down assays were performed to establish physical interactions of representative proteins with PfK13-p. RESULTS: The co-immunoprecipitation assays identified 17 proteins with distinct functions in the parasite life cycle- protein folding, cellular metabolism, and protein binding and invasion. In addition to the overlap with previously identified proteins, our study identified 10 unique proteins. Fructose-biphosphate aldolase and heat shock protein 70 demonstrated strong biophysical interaction with PfK13-p, with KD values of 6.6 µM and 7.6 µM, respectively. Additionally, Plasmodium merozoite surface protein 1 formed a complex with PfK13-p, which is evident from the pull-down assay. CONCLUSION: This study adds to our knowledge of the PfK13 protein in mediating ART resistance by identifying new PfK13 interacting partners. Three representative proteins-fructose-biphosphate aldolase, heat shock protein 70, and merozoite surface protein 1-demonstrated clear evidence of biophysical interactions with PfK13-p. However, elucidation of the functional relevance of these physical interactions are crucial in context of PfK13 role in ART resistance.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Parásitos , Animales , Plasmodium falciparum/genética , Antimaláricos/farmacología , Proteína 1 de Superficie de Merozoito/uso terapéutico , Resistencia a Medicamentos , Proteínas Protozoarias/genética , Mutación , Malaria Falciparum/tratamiento farmacológico , Artemisininas/farmacología , Proteínas HSP70 de Choque Térmico/uso terapéutico , Aldehído-Liasas/uso terapéutico , Fructosa/uso terapéutico
2.
Neurology ; 101(3): e238-e252, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37268435

RESUMEN

BACKGROUND AND OBJECTIVES: Primary mitochondrial myopathies (PMMs) encompass a group of genetic disorders that impair mitochondrial oxidative phosphorylation, adversely affecting physical function, exercise capacity, and quality of life (QoL). Current PMM standards of care address symptoms, with limited clinical impact, constituting a significant therapeutic unmet need. We present data from MMPOWER-3, a pivotal, phase-3, randomized, double-blind, placebo-controlled clinical trial that evaluated the efficacy and safety of elamipretide in participants with genetically confirmed PMM. METHODS: After screening, eligible participants were randomized 1:1 to receive either 24 weeks of elamipretide at a dose of 40 mg/d or placebo subcutaneously. Primary efficacy endpoints included change from baseline to week 24 on the distance walked on the 6-minute walk test (6MWT) and total fatigue on the Primary Mitochondrial Myopathy Symptom Assessment (PMMSA). Secondary endpoints included most bothersome symptom score on the PMMSA, NeuroQoL Fatigue Short-Form scores, and the patient global impression and clinician global impression of PMM symptoms. RESULTS: Participants (N = 218) were randomized (n = 109 elamipretide; n = 109 placebo). The m0ean age was 45.6 years (64% women; 94% White). Most of the participants (n = 162 [74%]) had mitochondrial DNA (mtDNA) alteration, with the remainder having nuclear DNA (nDNA) defects. At screening, the most frequent bothersome PMM symptom on the PMMSA was tiredness during activities (28.9%). At baseline, the mean distance walked on the 6MWT was 336.7 ± 81.2 meters, the mean score for total fatigue on the PMMSA was 10.6 ± 2.5, and the mean T score for the Neuro-QoL Fatigue Short-Form was 54.7 ± 7.5. The study did not meet its primary endpoints assessing changes in the 6MWT and PMMSA total fatigue score (TFS). Between the participants receiving elamipretide and those receiving placebo, the difference in the least squares mean (SE) from baseline to week 24 on distance walked on the 6MWT was -3.2 (95% CI -18.7 to 12.3; p = 0.69) meters, and on the PMMSA, the total fatigue score was -0.07 (95% CI -0.10 to 0.26; p = 0.37). Elamipretide treatment was well-tolerated with most adverse events being mild to moderate in severity. DISCUSSION: Subcutaneous elamipretide treatment did not improve outcomes in the 6MWT and PMMSA TFS in patients with PMM. However, this phase-3 study demonstrated that subcutaneous elamipretide is well-tolerated. TRIAL REGISTRATION INFORMATION: Trial registered with clinicaltrials.gov, Clinical Trials Identifier: NCT03323749; submitted on October 12, 2017; first patient enrolled October 9, 2017. CLINICALTRIALS: gov/ct2/show/NCT03323749?term = elamipretide&draw = 2&rank = 9. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that elamipretide does not improve the 6MWT or fatigue at 24 weeks compared with placebo in patients with primary mitochondrial myopathy.


Asunto(s)
Miopatías Mitocondriales , Calidad de Vida , Humanos , Femenino , Persona de Mediana Edad , Masculino , Proteína 1 de Superficie de Merozoito/uso terapéutico , Miopatías Mitocondriales/tratamiento farmacológico , Fatiga , Método Doble Ciego , Resultado del Tratamiento
3.
J Gene Med ; 13(12): 670-9, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22095915

RESUMEN

BACKGROUND: The merozoite surface protein (MSP)-1 of Plasmodium falciparum, the causative agent of malaria tropica, is considered to be a promising vaccine candidate. Although its stable cloning and expression has been difficult in the past, adenoviral vectors expressing the complex protein are described in the present study. METHODS: Codon-optimized msp-1 was used to construct a set of first generation (ΔE1Ad) and high-capacity adenovirus (HC-Ad) vectors, and cellular and humoral immune responses induced by the vectors were characterized in detail in mice. RESULTS: Generation of stable ΔE1Ad and HC-Ad vectors expressing full-length MSP-1 and their production to high vector titers was found to be feasible. Epitope identification and analysis of frequencies of specific CD8 T-cells revealed that MSP-1 expressing HC-Ad vectors induced higher frequencies of interferon-γ + CD8 T-cells than ΔE1 vectors. Irrespective of the vector format, higher titers of MSP-1 specific antibodies were generated by Ad vectors expressing MSP-1 from a chicken ß-actin (CAG) promoter comprising the cytomegalovirus early enhancer element and the chicken ß-actin promoter. CONCLUSIONS: The findings of the present study suggest that Ad vectors expressing full-length codon-optimized MSP-1 are promising candidate vaccines against P. falciparum infections. Use of the HC-Ad vector type for delivery, as well as the CAG promoter to control MSP-1 expression, may further increase the efficacy of this vaccine candidate.


Asunto(s)
Vacunas contra el Adenovirus , Malaria Falciparum/terapia , Proteína 1 de Superficie de Merozoito , Plasmodium falciparum , Vacunas contra el Adenovirus/genética , Vacunas contra el Adenovirus/inmunología , Vacunas contra el Adenovirus/uso terapéutico , Animales , Especificidad de Anticuerpos , Linfocitos T CD8-positivos/inmunología , Codón/genética , Femenino , Vectores Genéticos , Humanos , Interferón gamma/metabolismo , Malaria Falciparum/genética , Proteína 1 de Superficie de Merozoito/genética , Proteína 1 de Superficie de Merozoito/inmunología , Proteína 1 de Superficie de Merozoito/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Plasmodium falciparum/inmunología , Plasmodium falciparum/patogenicidad , Regiones Promotoras Genéticas
4.
PLoS One ; 4(3): e4708, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19262754

RESUMEN

OBJECTIVE: The antigen, falciparum malaria protein 1 (FMP1), represents the 42-kDa C-terminal fragment of merozoite surface protein-1 (MSP-1) of the 3D7 clone of P. falciparum. Formulated with AS02 (a proprietary Adjuvant System), it constitutes the FMP1/AS02 candidate malaria vaccine. We evaluated this vaccine's safety, immunogenicity, and efficacy in African children. METHODS: A randomised, double-blind, Phase IIb, comparator-controlled trial.The trial was conducted in 13 field stations of one mile radii within Kombewa Division, Nyanza Province, Western Kenya, an area of holoendemic transmission of P. falciparum. We enrolled 400 children aged 12-47 months in general good health.Children were randomised in a 1ratio1 fashion to receive either FMP1/AS02 (50 microg) or Rabipur(R) rabies vaccine. Vaccinations were administered on a 0, 1, and 2 month schedule. The primary study endpoint was time to first clinical episode of P. falciparum malaria (temperature >/=37.5 degrees C with asexual parasitaemia of >/=50,000 parasites/microL of blood) occurring between 14 days and six months after a third dose. Case detection was both active and passive. Safety and immunogenicity were evaluated for eight months after first immunisations; vaccine efficacy (VE) was measured over a six-month period following third vaccinations. RESULTS: 374 of 400 children received all three doses and completed six months of follow-up. FMP1/AS02 had a good safety profile and was well-tolerated but more reactogenic than the comparator. Geometric mean anti-MSP-1(42) antibody concentrations increased from1.3 microg/mL to 27.3 microg/mL in the FMP1/AS02 recipients, but were unchanged in controls. 97 children in the FMP1/AS02 group and 98 controls had a primary endpoint episode. Overall VE was 5.1% (95% CI: -26% to +28%; p-value = 0.7). CONCLUSIONS: FMP1/AS02 is not a promising candidate for further development as a monovalent malaria vaccine. Future MSP-1(42) vaccine development should focus on other formulations and antigen constructs. TRIAL REGISTRATION: Clinicaltrials.gov NCT00223990.


Asunto(s)
Complejo Antígeno-Anticuerpo/sangre , Vacunas contra la Malaria/administración & dosificación , Proteína 1 de Superficie de Merozoito/uso terapéutico , Animales , Niño , Preescolar , Método Doble Ciego , Humanos , Lactante , Kenia , Malaria Falciparum/prevención & control , Proteína 1 de Superficie de Merozoito/inmunología , Plasmodium falciparum/inmunología , Vacunas Antirrábicas , Insuficiencia del Tratamiento , Resultado del Tratamiento
5.
J Immunol ; 169(2): 944-51, 2002 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-12097400

RESUMEN

Merozoite surface protein 1 (MSP1) of malaria parasites undergoes proteolytic processing at least twice before invasion into a new RBC. The 42-kDa fragment, a product of primary processing, is cleaved by proteolytic enzymes giving rise to MSP1(33), which is shed from the merozoite surface, and MSP1(19), which is the only fragment carried into a new RBC. In this study, we have identified T cell epitopes on MSP1(33) of Plasmodium yoelii and have examined their function in immunity to blood stage malaria. Peptides 20 aa in length, spanning the length of MSP1(33) and overlapping each other by 10 aa, were analyzed for their ability to induce T cell proliferation in immunized BALB/c and C57BL/6 mice. Multiple epitopes were recognized by these two strains of mice. Effector functions of the dominant epitopes were then investigated. Peptides Cm15 and Cm21 were of particular interest as they were able to induce effector T cells capable of delaying growth of lethal P. yoelii YM following adoptive transfer into immunodeficient mice without inducing detectable Ab responses. Homologs of these epitopes could be candidates for inclusion in a subunit vaccine.


Asunto(s)
Anticuerpos Antiprotozoarios/fisiología , Epítopos de Linfocito T/análisis , Epítopos de Linfocito T/uso terapéutico , Malaria/inmunología , Malaria/prevención & control , Proteína 1 de Superficie de Merozoito/uso terapéutico , Plasmodium yoelii/crecimiento & desarrollo , Plasmodium yoelii/inmunología , Traslado Adoptivo , Secuencia de Aminoácidos , Animales , Línea Celular/trasplante , Epítopos de Linfocito T/administración & dosificación , Epítopos de Linfocito T/inmunología , Femenino , Inmunidad Innata , Epítopos Inmunodominantes/administración & dosificación , Epítopos Inmunodominantes/inmunología , Epítopos Inmunodominantes/uso terapéutico , Inyecciones Subcutáneas , Malaria/sangre , Malaria/parasitología , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/uso terapéutico , Proteína 1 de Superficie de Merozoito/administración & dosificación , Proteína 1 de Superficie de Merozoito/análisis , Proteína 1 de Superficie de Merozoito/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Ratones SCID , Datos de Secuencia Molecular , Peso Molecular , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/uso terapéutico , Subgrupos de Linfocitos T/trasplante
6.
Infect Immun ; 69(3): 1536-46, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11179324

RESUMEN

In an attempt to produce a more defined, clinical-grade version of a vaccine based on Plasmodium falciparum merozoite surface protein 1 (MSP1), we evaluated the efficacy of two recombinant forms of MSP1 in an Aotus nancymai challenge model system. One recombinant vaccine, bvMSP1(42), based on the 42-kDa C-terminal portion of MSP1, was expressed as a secreted protein in baculovirus-infected insect cells. A highly pure baculovirus product could be reproducibly expressed and purified at yields in excess of 8 mg of pure protein per liter of culture. This protein, when tested for efficacy in the Aotus challenge model, gave significant protection, with only one of seven monkeys requiring treatment for uncontrolled parasitemia after challenge with P. falciparum. The second recombinant protein, P30P2MSP1(19), has been used in previous studies and is based on the smaller, C-terminal 19-kDa portion of MSP1 expressed in Saccharomyces cerevisiae. Substantial changes were made in its production process to optimize expression. The optimum form of this vaccine antigen (as judged by in vitro and in vivo indicators) was then evaluated, along with bvMSP1(42), for efficacy in the A. nancymai system. The new formulation of P30P3MSP1(19) performed significantly worse than bvMSP1(42) and appeared to be less efficacious than we have found in the past, with four of seven monkeys in the vaccinated group requiring treatment for uncontrolled parasitemia. With both antigens, protection was seen only when high antibody levels were obtained by formulation of the vaccines in Freund's adjuvant. Vaccine formulation in an alternate adjuvant, MF59, resulted in significantly lower antibody titers and no protection.


Asunto(s)
Vacunas contra la Malaria/uso terapéutico , Malaria Falciparum/prevención & control , Proteína 1 de Superficie de Merozoito/uso terapéutico , Plasmodium falciparum/inmunología , Vacunación , Animales , Anticuerpos Antiprotozoarios/sangre , Aotidae , Baculoviridae/genética , Variación Genética , Proteína 1 de Superficie de Merozoito/genética , Parasitemia , Conejos , Proteínas Recombinantes de Fusión/uso terapéutico , Tecnología Farmacéutica/métodos , Toxina Tetánica/uso terapéutico , Vacunas Sintéticas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA