Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.139
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 188, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965605

RESUMEN

BACKGROUND: The vast majority of lncRNAs have low expression abundance, which greatly limits their functional range and impact. As a high expression abundance lncRNA, FGD5-AS1's non-ceRNA biological function in cancer is unclear. METHODS: RNA-seq studies and chromatin immunoprecipitation (Chip) assays were performed to identify ZEB1-regulated lncRNAs. RNA sequencing, RNA pulldown, RNA Immunoprecipitation assays, and rescue assays were conducted to explore the molecular mechanisms of FGD5-AS1 in GC. RESULTS: As one of the most abundant lncRNAs in cells, FGD5-AS1 has been shown to be transcriptionally activated by ZEB1, thus closely related to epithelial-mesenchymal transition (EMT) signaling. Clinical analysis showed that FGD5-AS1 overexpression was clinically associated with lymph node metastasis, and predicted poor survival in GC. Loss-of-function studies confirmed that FGD5-AS1 knockdown inhibited GC proliferation and induced cisplatin chemosensibility, cell senescence, and DNA damage in GC cells. Mechanismically, FGD5-AS1 is a YBX1-binding lncRNA due to its mRNA contains three adjacent structural motifs (UAAUCCCA, ACCAGCCU, and CAGUGAGC) that can be recognized and bound by YBX1. And this RNA-protein interaction prolonged the half-life of the YBX1 protein in GC. Additionally, a rescue assay showed that FGD5-AS1 promotes GC by repressing cell senescence and ROS production via YBX1. CONCLUSION: FGD5-AS1 is a cellular high-abundant lncRNA that is transcriptionally regulated by ZEB1. FGD5-AS1 overexpression promoted GC progression by inhibiting cell senescence and ROS production through binding and stabilizing the YBX1 protein.


Asunto(s)
Proliferación Celular , Senescencia Celular , ARN Largo no Codificante , Especies Reactivas de Oxígeno , Neoplasias Gástricas , Proteína 1 de Unión a la Caja Y , Humanos , Proteína 1 de Unión a la Caja Y/metabolismo , Proteína 1 de Unión a la Caja Y/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Animales , Línea Celular Tumoral , Femenino , Masculino , Regulación Neoplásica de la Expresión Génica , Transición Epitelial-Mesenquimal , Factores de Intercambio de Guanina Nucleótido
2.
Theranostics ; 14(9): 3509-3525, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948065

RESUMEN

Rationale: Current treatments for ocular angiogenesis primarily focus on blocking the activity of vascular endothelial growth factor (VEGF), but unfavorable side effects and unsatisfactory efficacy remain issues. The identification of novel targets for anti-angiogenic treatment is still needed. Methods: We investigated the role of tsRNA-1599 in ocular angiogenesis using endothelial cells, a streptozotocin (STZ)-induced diabetic model, a laser-induced choroidal neovascularization model, and an oxygen-induced retinopathy model. CCK-8 assays, EdU assays, transwell assays, and matrigel assays were performed to assess the role of tsRNA-1599 in endothelial cells. Retinal digestion assays, Isolectin B4 (IB4) staining, and choroidal sprouting assays were conducted to evaluate the role of tsRNA-1599 in ocular angiogenesis. Transcriptomic analysis, metabolic analysis, RNA pull-down assays, and mass spectrometry were utilized to elucidate the mechanism underlying angiogenic effects mediated by tsRNA-1599. Results: tsRNA-1599 expression was up-regulated in experimental ocular angiogenesis models and endothelial cells in response to angiogenic stress. Silencing of tsRNA-1599 suppressed angiogenic effects in endothelial cells in vitro and inhibited pathological ocular angiogenesis in vivo. Mechanistically, tsRNA-1599 exhibited little effect on VEGF signaling but could cause reduced glycolysis and NAD+/NADH production in endothelial cells by regulating the expression of HK2 gene through interacting with YBX1, thus affecting endothelial effects. Conclusions: Targeting glycolytic reprogramming of endothelial cells by a tRNA-derived small RNA represents an exploitable therapeutic approach for ocular neovascular diseases.


Asunto(s)
Neovascularización Coroidal , Células Endoteliales , Glucólisis , Animales , Glucólisis/efectos de los fármacos , Ratones , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Coroidal/metabolismo , Humanos , Proteína 1 de Unión a la Caja Y/metabolismo , Proteína 1 de Unión a la Caja Y/genética , Inhibidores de la Angiogénesis/farmacología , Hexoquinasa/metabolismo , Hexoquinasa/genética , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ratones Endogámicos C57BL , Masculino , Modelos Animales de Enfermedad , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Neovascularización Patológica/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/metabolismo , Retinopatía Diabética/genética , Células Endoteliales de la Vena Umbilical Humana , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo
3.
Cell Death Dis ; 15(7): 494, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987564

RESUMEN

Ewing's sarcoma (ES) represents a rare yet exceedingly aggressive neoplasm that poses a significant health risk to the pediatric and adolescent population. The clinical outcomes for individuals with relapsed or refractory ES are notably adverse, primarily attributed to the constrained therapeutic alternatives available. Despite significant advancements in the field, molecular pathology-driven therapeutic strategies have yet to achieve a definitive reduction in the mortality rates associated with ES. Consequently, there exists an imperative need to discover innovative therapeutic targets to effectively combat ES. To reveal the mechanism of the SETD8 (also known as lysine methyltransferase 5A) inhibitor UNC0379, cell death manners were analyzed with different inhibitors. The contributions of SETD8 to the processes of apoptosis and ferroptosis in ES cells were evaluated employing the histone methyltransferase inhibitor UNC0379 in conjunction with RNA interference techniques. The molecular regulatory mechanisms of SETD8 in ES were examined through the application of RNA sequencing (RNA-seq) and mass spectrometry-based proteomic analysis. Moreover, nude mouse xenograft models were established to explore the role of SETD8 in ES in vivo. SETD8, a sole nucleosome-specific methyltransferase that catalyzes mono-methylation of histone H4 at lysine 20 (H4K20me1), was found to be upregulated in ES, and its overexpression was associated with dismal outcomes of patients. SETD8 knockdown dramatically induced the apoptosis and ferroptosis of ES cells in vitro and suppressed tumorigenesis in vivo. Mechanistic investigations revealed that SETD8 facilitated the nuclear translocation of YBX1 through post-transcriptional regulatory mechanisms, which subsequently culminated in the transcriptional upregulation of RAC3. In summary, SETD8 inhibits the apoptosis and ferroptosis of ES cells through the YBX1/RAC3 axis, which provides new insights into the mechanism of tumorigenesis of ES. SETD8 may be a potential target for clinical intervention in ES patients.


Asunto(s)
Apoptosis , Ferroptosis , N-Metiltransferasa de Histona-Lisina , Ratones Desnudos , Sarcoma de Ewing , Humanos , Ferroptosis/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Animales , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patología , Sarcoma de Ewing/genética , Ratones , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína 1 de Unión a la Caja Y
4.
Clin Transl Med ; 14(7): e1753, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967349

RESUMEN

BACKGROUND: Lysine methyltransferase 2D (KMT2D) mediates mono-methylation of histone H3 lysine 4 (H3K4me1) in mammals. H3K4me1 mark is involved in establishing an active chromatin structure to promote gene transcription. However, the precise molecular mechanism underlying the KMT2D-mediated H3K4me1 mark modulates gene expression in triple-negative breast cancer (TNBC) progression is unresolved. METHODS AND RESULTS: We recognized Y-box-binding protein 1 (YBX1) as a "reader" of the H3K4me1 mark, and a point mutation of YBX1 (E121A) disrupted this interaction. We found that KMT2D and YBX1 cooperatively promoted cell growth and metastasis of TNBC cells in vitro and in vivo. The expression levels of KMT2D and YBX1 were both upregulated in tumour tissues and correlated with poor prognosis for breast cancer patients. Combined analyses of ChIP-seq and RNA-seq data indicated that YBX1 was co-localized with KMT2D-mediated H3K4me1 in the promoter regions of c-Myc and SENP1, thereby activating their expressions in TNBC cells. Moreover, we demonstrated that YBX1 activated the expressions of c-Myc and SENP1 in a KMT2D-dependent manner. CONCLUSION: Our results suggest that KMT2D-mediated H3K4me1 recruits YBX1 to facilitate TNBC progression through epigenetic activation of c-Myc and SENP1. These results together unveil a crucial interplay between histone mark and gene regulation in TNBC progression, thus providing novel insights into targeting the KMT2D-H3K4me1-YBX1 axis for TNBC treatment. HIGHLIGHTS: YBX1 is a KMT2D-mediated H3K4me1-binding effector protein and mutation of YBX1 (E121A) disrupts its binding to H3K4me1. KMT2D and YBX1 cooperatively promote TNBC proliferation and metastasis by activating c-Myc and SENP1 expression in vitro and in vivo. YBX1 is colocalized with H3K4me1 in the c-Myc and SENP1 promoter regions in TNBC cells and increased YBX1 expression predicts a poor prognosis in breast cancer patients.


Asunto(s)
Epigénesis Genética , Neoplasias de la Mama Triple Negativas , Proteína 1 de Unión a la Caja Y , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Humanos , Proteína 1 de Unión a la Caja Y/metabolismo , Proteína 1 de Unión a la Caja Y/genética , Femenino , Epigénesis Genética/genética , Animales , Progresión de la Enfermedad , Ratones , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Histonas/metabolismo , Histonas/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Lisina/análogos & derivados
5.
Breast Cancer Res ; 26(1): 94, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844963

RESUMEN

BACKGROUND: RNA m5C methylation has been extensively implicated in the occurrence and development of tumors. As the main methyltransferase, NSUN2 plays a crucial regulatory role across diverse tumor types. However, the precise impact of NSUN2-mediated m5C modification on breast cancer (BC) remains unclear. Our study aims to elucidate the molecular mechanism underlying how NSUN2 regulates the target gene HGH1 (also known as FAM203) through m5C modification, thereby promoting BC progression. Additionally, this study targets at preliminarily clarifying the biological roles of NSUN2 and HGH1 in BC. METHODS: Tumor and adjacent tissues from 5 BC patients were collected, and the m5C modification target HGH1 in BC was screened through RNA sequencing (RNA-seq) and single-base resolution m5C methylation sequencing (RNA-BisSeq). Methylation RNA immunoprecipitation-qPCR (MeRIP-qPCR) and RNA-binding protein immunoprecipitation-qPCR (RIP-qPCR) confirmed that the methylation molecules NSUN2 and YBX1 specifically recognized and bound to HGH1 through m5C modification. In addition, proteomics, co-immunoprecipitation (co-IP), and Ribosome sequencing (Ribo-Seq) were used to explore the biological role of HGH1 in BC. RESULTS: As the main m5C methylation molecule, NSUN2 is abnormally overexpressed in BC and increases the overall level of RNA m5C. Knocking down NSUN2 can inhibit BC progression in vitro or in vivo. Combined RNA-seq and RNA-BisSeq analysis identified HGH1 as a potential target of abnormal m5C modifications. We clarified the mechanism by which NSUN2 regulates HGH1 expression through m5C modification, a process that involves interactions with the YBX1 protein, which collectively impacts mRNA stability and protein synthesis. Furthermore, this study is the first to reveal the binding interaction between HGH1 and the translation elongation factor EEF2, providing a comprehensive understanding of its ability to regulate transcript translation efficiency and protein synthesis in BC cells. CONCLUSIONS: This study preliminarily clarifies the regulatory role of the NSUN2-YBX1-m5C-HGH1 axis from post-transcriptional modification to protein translation, revealing the key role of abnormal RNA m5C modification in BC and suggesting that HGH1 may be a new epigenetic biomarker and potential therapeutic target for BC.


Asunto(s)
Neoplasias de la Mama , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Metiltransferasas , Estabilidad del ARN , Proteína 1 de Unión a la Caja Y , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Metilación , Metiltransferasas/metabolismo , Metiltransferasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína 1 de Unión a la Caja Y/metabolismo , Proteína 1 de Unión a la Caja Y/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
6.
Cell Rep Med ; 5(5): 101552, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38729158

RESUMEN

Y-box binding protein-1 (YB-1) is a proto-oncogenic protein associated with protein translation regulation. It plays a crucial role in the development and progression of triple-negative breast cancer (TNBC). In this study, we describe a promising approach to inhibit YB-1 using SU056, a small-molecule inhibitor. SU056 physically interacts with YB-1 and reduces its expression, which helps to restrain the progression of TNBC. Proteome profiling analysis indicates that the inhibition of YB-1 by SU056 can alter the proteins that regulate protein translation, an essential process for cancer cell growth. Preclinical studies on human cells, mice, and patient-derived xenograft tumor models show the effectiveness of SU056. Moreover, toxicological studies have shown that SU056 treatment and dosing are well tolerated without any adverse effects. Overall, our study provides a strong foundation for the further development of SU056 as a potential treatment option for patients with TNBC by targeting YB-1.


Asunto(s)
Biosíntesis de Proteínas , Neoplasias de la Mama Triple Negativas , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína 1 de Unión a la Caja Y , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Humanos , Animales , Proteína 1 de Unión a la Caja Y/metabolismo , Proteína 1 de Unión a la Caja Y/genética , Femenino , Línea Celular Tumoral , Ratones , Biosíntesis de Proteínas/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones Desnudos
7.
J Transl Med ; 22(1): 466, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755651

RESUMEN

BACKGROUND: Neuroinflammation is a characteristic pathological change of Alzheimer's Diseases (AD). Microglia have been reported to participate in inflammatory responses within the central nervous system. However, the mechanism of microglia released exosome (EXO) contribute to communication within AD microenvironment remains obscure. METHODS: The interaction between microglia and AD was investigated in vitro and in vivo. RNA-binding protein immunoprecipitation (RIP) was used to investigate the mechanisms of miR-223 and YB-1. The association between microglia derived exosomal YB-1/miR-223 axis and nerve cell damage were assessed using Western blot, immunofluorescence, RT-PCR, ELISA and wound healing assay. RESULTS: Here, we reported AD model was responsible for the M1-like (pro-inflammatory) polarization of microglia which in turn induced nerve cell damage. While M2-like (anti-inflammatory) microglia could release miR-223-enriched EXO which reduced neuroinflammation and ameliorated nerve damage in AD model in vivo and in vitro. Moreover, YB-1 directly interacted with miR-223 both in cell and EXO, and participated in microglia exosomal miR-223 loading. CONCLUSION: These results indicate that anti-inflammatory microglia-mediated neuroprotection form inflammatory damage involves exporting miR-223 via EXO sorted by YB-1. Consequently, YB-1-mediated microglia exosomal sorting of miR-223 improved the nerve cell damage repair, representing a promising therapeutic target for AD.


Asunto(s)
Enfermedad de Alzheimer , Cognición , Exosomas , MicroARNs , Microglía , Proteína 1 de Unión a la Caja Y , Exosomas/metabolismo , Microglía/metabolismo , Microglía/patología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Animales , MicroARNs/metabolismo , MicroARNs/genética , Proteína 1 de Unión a la Caja Y/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Neuronas/metabolismo , Neuronas/patología , Ratones , Secuencia de Bases , Factores de Transcripción
8.
Life Sci ; 348: 122674, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692507

RESUMEN

AIMS: Ubiquitin specific peptidase 5 (USP5), a member of deubiquitinating enzymes, has garnered significant attention for its crucial role in cancer progression. This study aims to explore the role of USP5 and its potential molecular mechanisms in cholangiocarcinoma (CCA). MAIN METHODS: To explore the effect of USP5 on CCA, gain-of-function and loss-of-function assays were conducted in human CCA cell lines RBE and HCCC9810. The CCK8, colony-forming assay, EDU, flow cytometry, transwell assay and xenografts were used to assess cell proliferation, migration and tumorigenesis. Western blot and immunohistochemistry were performed to measure the expression of related proteins. Immunoprecipitation and immunofluorescence were applied to identify the interaction between USP5 and Y box-binding protein 1 (YBX1). Ubiquitination assays and cycloheximide chase assays were carried out to confirm the effect of USP5 on YBX1. KEY FINDINGS: We found USP5 is highly expressed in CCA tissues, and upregulated USP5 is required for the cancer progression. Knockdown of USP5 inhibited cell proliferation, migration and epithelial-mesenchymal transition (EMT) in vitro, along with suppressed xenograft tumor growth and metastasis in vivo. Mechanistically, USP5 could interact with YBX1 and stabilize YBX1 by deubiquitination in CCA cells. Additionally, silencing of USP5 hindered the phosphorylation of YBX1 at serine 102 and its subsequent translocation to the nucleus. Notably, the effect induced by USP5 overexpression in CCA cells was reversed by YBX1 silencing. SIGNIFICANCE: Our findings reveal that USP5 is required for cell proliferation, migration and EMT in CCA by stabilizing YBX1, suggesting USP5-YBX1 axis as a promising therapeutic target for CCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Movimiento Celular , Proliferación Celular , Colangiocarcinoma , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Ratones Desnudos , Proteína 1 de Unión a la Caja Y , Humanos , Colangiocarcinoma/patología , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/genética , Animales , Ratones , Línea Celular Tumoral , Proteína 1 de Unión a la Caja Y/metabolismo , Proteína 1 de Unión a la Caja Y/genética , Ubiquitinación , Ratones Endogámicos BALB C , Masculino , Endopeptidasas/metabolismo , Endopeptidasas/genética , Regulación Neoplásica de la Expresión Génica , Femenino
9.
Nat Commun ; 15(1): 4405, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782923

RESUMEN

Zonula occludens-1 (ZO-1) is involved in the regulation of cell-cell junctions between endothelial cells (ECs). Here we identify the ZO-1 protein interactome and uncover ZO-1 interactions with RNA-binding proteins that are part of stress granules (SGs). Downregulation of ZO-1 increased SG formation in response to stress and protected ECs from cellular insults. The ZO-1 interactome uncovered an association between ZO-1 and Y-box binding protein 1 (YB-1), a constituent of SGs. Arsenite treatment of ECs decreased the interaction between ZO-1 and YB-1, and drove SG assembly. YB-1 expression is essential for SG formation and for the cytoprotective effects induced by ZO-1 downregulation. In the developing retinal vascular plexus of newborn mice, ECs at the front of growing vessels express less ZO-1 but display more YB-1-positive granules than ECs located in the vascular plexus. Endothelial-specific deletion of ZO-1 in mice at post-natal day 7 markedly increased the presence of YB-1-positive granules in ECs of retinal blood vessels, altered tip EC morphology and vascular patterning, resulting in aberrant endothelial proliferation, and arrest in the expansion of the retinal vasculature. Our findings suggest that, through its interaction with YB-1, ZO-1 controls SG formation and the response of ECs to stress during angiogenesis.


Asunto(s)
Células Endoteliales , Proteína 1 de Unión a la Caja Y , Proteína de la Zonula Occludens-1 , Animales , Proteína 1 de Unión a la Caja Y/metabolismo , Proteína 1 de Unión a la Caja Y/genética , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética , Ratones , Humanos , Células Endoteliales/metabolismo , Gránulos de Estrés/metabolismo , Neovascularización Fisiológica , Vasos Retinianos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Angiogénesis , Factores de Transcripción
10.
Front Immunol ; 15: 1382520, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698857

RESUMEN

Background: The Y-box-binding proteins (YBX) act as a multifunctional role in tumor progression, metastasis, drug resistance by regulating the transcription and translation process. Nevertheless, their functions in a pan-cancer setting remain unclear. Methods: This study examined the clinical features expression, prognostic value, mutations, along with methylation patterns of three genes from the YBX family (YBX1, YBX2, and YBX3) in 28 different types of cancer. Data used for analysis were obtained from Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. A novel YBXs score was created using the ssGSEA algorithm for the single sample gene set enrichment analysis. Additionally, we explored the YBXs score's association with the tumor microenvironment (TME), response to various treatments, and drug resistance. Results: Our analysis revealed that YBX family genes contribute to tumor progression and are indicative of prognosis in diverse cancer types. We determined that the YBXs score correlates significantly with numerous malignant pathways in pan-cancer. Moreover, this score is also linked with multiple immune-related characteristics. The YBXs score proved to be an effective predictor for the efficacy of a range of treatments in various cancers, particularly immunotherapy. To summarize, the involvement of YBX family genes is vital in pan-cancer and exhibits a significant association with TME. An elevated YBXs score indicates an immune-activated TME and responsiveness to diverse therapies, highlighting its potential as a biomarker in individuals with tumors. Finally, experimental validations were conducted to explore that YBX2 might be a potential biomarker in liver cancer. Conclusion: The creation of YBXs score in our study offered new insights into further studies. Besides, YBX2 was found as a potential therapeutic target, significantly contributing to the improvement of HCC diagnosis and treatment strategies.


Asunto(s)
Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , Microambiente Tumoral , Humanos , Biomarcadores de Tumor/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/diagnóstico , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Pronóstico , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismo , Mutación , Resistencia a Antineoplásicos/genética , Perfilación de la Expresión Génica , Línea Celular Tumoral , Metilación de ADN
11.
Cell Biol Toxicol ; 40(1): 29, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700571

RESUMEN

Premature ovarian failure (POF) affects many adult women less than 40 years of age and leads to infertility. Mesenchymal stem cells-derived small extracellular vesicles (MSCs-sEVs) are attractive candidates for ovarian function restoration and folliculogenesis for POF due to their safety and efficacy, however, the key mediator in MSCs-sEVs that modulates this response and underlying mechanisms remains elusive. Herein, we reported that YB-1 protein was markedly downregulated in vitro and in vivo models of POF induced with H2O2 and CTX respectively, accompanied by granulosa cells (GCs) senescence phenotype. Notably, BMSCs-sEVs transplantation upregulated YB-1, attenuated oxidative damage-induced cellular senescence in GCs, and significantly improved the ovarian function of POF rats, but that was reversed by YB-1 depletion. Moreover, YB-1 showed an obvious decline in serum and GCs in POF patients. Mechanistically, YB-1 as an RNA-binding protein (RBP) physically interacted with a long non-coding RNA, MALAT1, and increased its stability, further, MALAT1 acted as a competing endogenous RNA (ceRNA) to elevate FOXO3 levels by sequestering miR-211-5p to prevent its degradation, leading to repair of ovarian function. In summary, we demonstrated that BMSCs-sEVs improve ovarian function by releasing YB-1, which mediates MALAT1/miR-211-5p/FOXO3 axis regulation, providing a possible therapeutic target for patients with POF.


Asunto(s)
Exosomas , Proteína Forkhead Box O3 , Células de la Granulosa , Células Madre Mesenquimatosas , MicroARNs , Insuficiencia Ovárica Primaria , ARN Largo no Codificante , Proteína 1 de Unión a la Caja Y , Animales , Femenino , Humanos , Ratas , Senescencia Celular , Exosomas/metabolismo , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Células de la Granulosa/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Ovario/metabolismo , Insuficiencia Ovárica Primaria/metabolismo , Insuficiencia Ovárica Primaria/genética , Ratas Sprague-Dawley , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteína 1 de Unión a la Caja Y/metabolismo , Proteína 1 de Unión a la Caja Y/genética
12.
Cancer Lett ; 590: 216868, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38593920

RESUMEN

While previous studies have indicated the involvement of Isthmin 1 (ISM1), a secreted protein, in cancer development, the precise mechanisms have remained elusive. In this study, we unveiled that ISM1 is significantly overexpressed in both the blood and tissue samples of colorectal cancer (CRC) patients, correlating with their poor prognosis. Functional experiments demonstrated that enforced ISM1 expression significantly enhances CRC proliferation, migration, invasion and tumor growth. Notably, our investigation reveals an interaction of ISM1 with epidermal growth factor receptor (EGFR), a member of the receptor tyrosine kinase (RTK) family of CRC cells. The binding of ISM1 triggered EGFR activation and initiate downstream signaling pathways. Meanwhile, intracellular ISM1 interacted with Y-box binding protein 1 (YBX1), enhancing its transcriptional regulation on EGFR. Furthermore, our research uncovered the regulation of ISM1 expression by the hypoxia-inducible transcription factor HIF-1α in CRC cells. Mechanistically, we identified HIF-1α as a direct regulator of ISM1, binding to a hypoxia response element on its promoter. This novel mechanism illuminated potential therapeutic targets, offering insights into restraining HIF-1α/ISM1/EGFR-driven CRC progression and metastasis.


Asunto(s)
Proliferación Celular , Neoplasias Colorrectales , Progresión de la Enfermedad , Receptores ErbB , Regulación Neoplásica de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia , Proteína 1 de Unión a la Caja Y , Humanos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Proteína 1 de Unión a la Caja Y/metabolismo , Proteína 1 de Unión a la Caja Y/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Animales , Movimiento Celular , Línea Celular Tumoral , Ratones , Masculino , Transducción de Señal , Femenino , Ratones Desnudos , Células HCT116 , Pronóstico
13.
J Gene Med ; 26(5): e3689, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38676365

RESUMEN

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is a highly aggressive malignancy characterized by a poor prognosis and closely linked to tumor stemness. However, the key molecules that regulate ICC stemness remain elusive. Although Y-box binding protein 1 (YBX1) negatively affects prognosis in various cancers by enhancing stemness and chemoresistance, its effect on stemness and cisplatin sensitivity in ICC remains unclear. METHODS: Three bulk and single-cell RNA-seq datasets were analyzed to investigate YBX1 expression in ICC and its association with stemness. Clinical samples and colony/sphere formation assays validated the role of YBX1 in stemness and sensitivity to cisplatin. AZD5363 and KYA1979K explored the interaction of YBX1 with the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) and WNT/ß-catenin pathways. RESULTS: YBX1 was significantly upregulated in ICC, correlated with worse overall survival and shorter postoperative recurrence time, and was higher in chemotherapy-non-responsive ICC tissues. The YBX1-high group exhibited significantly elevated stemness scores, and genes linked to YBX1 upregulation were enriched in multiple stemness-related pathways. Moreover, YBX1 expression is significantly correlated with several stemness-related genes (SOX9, OCT4, CD133, CD44 and EPCAM). Additionally, YBX1 overexpression significantly enhanced the colony- and spheroid-forming abilities of ICC cells, accelerated tumor growth in vivo and reduced their sensitivity to cisplatin. Conversely, the downregulation of YBX1 exerted the opposite effect. The transcriptomic analysis highlighted the link between YBX1 and the PI3K/AKT and WNT/ß-catenin pathways. Further, AZD5363 and KYA1979K were used to clarify that YBX1 promoted ICC stemness through the regulation of the AKT/ß-catenin axis. CONCLUSIONS: YBX1 is upregulated in ICC and promotes stemness and cisplatin insensitivity via the AKT/ß-catenin axis. Our study describes a novel potential therapeutic target for improving ICC prognosis.


Asunto(s)
Colangiocarcinoma , Cisplatino , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Proteína 1 de Unión a la Caja Y , beta Catenina , Animales , Femenino , Humanos , Masculino , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , beta Catenina/metabolismo , beta Catenina/genética , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/patología , Colangiocarcinoma/mortalidad , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , Células Madre Neoplásicas/metabolismo , Pronóstico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Vía de Señalización Wnt , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína 1 de Unión a la Caja Y/metabolismo , Proteína 1 de Unión a la Caja Y/genética
14.
Adv Sci (Weinh) ; 11(20): e2302379, 2024 May.
Artículo en Italiano | MEDLINE | ID: mdl-38566431

RESUMEN

The modification and recognition of 5-methylcytosine (m5C) are involved in the initiation and progression of various tumor types. However, the precise role and potential mechanism of Y-box-binding protein 1 (YBX1) in esophageal squamous cell carcinoma (ESCC) remains unclear. Here, it is found that YBX1 is frequently upregulated in ESCC compared with matched nontumor tissues. Gain- and loss-of-function assays show that YBX1 promoted the proliferation and metastasis of ESCC cells both in vitro and in vivo. Functional studies revealed that NOP2/Sun RNA methyltransferase family member 2 (NSUN2) is a critical RNA methyltransferase that facilitates YBX1-mediated ESCC progression. Mechanistically, integrated analysis based on RNA immunoprecipitation sequencing (RIP-seq) and m5C methylated RNA immunoprecipitation and sequencing (MeRIP-seq) assays identified spermine oxidase (SMOX) as a target gene containing an m5C site in its coding sequence (CDS) region, which coincided well with the binding site of YBX1. Overexpression of SMOX-WT but not SMOX-Mut partially restored the proliferation and invasion ability of ESCC cells curbed by YBX1 knockdown. Moreover, YBX1 activated the mTORC1 signaling pathway by stabilizing SMOX mRNA. The study reveals that YBX1 promotes ESCC development by stabilizing SMOX mRNA in an m5C-dependent manner, thus providing a valuable therapeutic target for ESCC.


Asunto(s)
Progresión de la Enfermedad , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Estabilidad del ARN , Proteína 1 de Unión a la Caja Y , Humanos , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Estabilidad del ARN/genética , Ratones , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Modelos Animales de Enfermedad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Metiltransferasas
15.
Cell Death Dis ; 15(4): 244, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575607

RESUMEN

The immunosuppressive microenvironment caused by several intrinsic and extrinsic mechanism has brought great challenges to the immunotherapy of pancreatic cancer. We identified GFPT2, the key enzyme in hexosamine biosynthesis pathway (HBP), as an immune-related prognostic gene in pancreatic cancer using transcriptome sequencing and further confirmed that GFPT2 promoted macrophage M2 polarization and malignant phenotype of pancreatic cancer. HBP is a glucose metabolism pathway leading to the generation of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), which is further utilized for protein O-GlcNAcylation. We confirmed GFPT2-mediated O-GlcNAcylation played an important role in regulating immune microenvironment. Through cellular proteomics, we identified IL-18 as a key downstream of GFPT2 in regulating the immune microenvironment. Through CO-IP and protein mass spectrum, we confirmed that YBX1 was O-GlcNAcylated and nuclear translocated by GFPT2-mediated O-GlcNAcylation. Then, YBX1 functioned as a transcription factor to promote IL-18 transcription. Our study elucidated the relationship between the metabolic pathway of HBP in cancer cells and the immune microenvironment, which might provide some insights into the combination therapy of HBP vulnerability and immunotherapy in pancreatic cancer.


Asunto(s)
Interleucina-18 , Neoplasias Pancreáticas , Humanos , Glicosilación , Interleucina-18/metabolismo , Neoplasias Pancreáticas/patología , Proteínas/metabolismo , Vías Biosintéticas , Hexosaminas , Microambiente Tumoral , Proteína 1 de Unión a la Caja Y/metabolismo , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/genética
16.
J Gene Med ; 26(3): e3680, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448368

RESUMEN

BACKGROUND: Y-box binding protein 1 (YBX1) plays a variety of roles in progression of multiple tumors. However, the role of YBX1 in prognostic value and immune regulation for liver hepatocellular carcinoma (LIHC) remains unclear. The present study aimed to examine the effect of YBX1 on the regulation of tumor immunity and survival prediction in LIHC patients. METHODS: YBX1-related expression profiles and single-cell and bulk sequencing analysis were performed using online databases. YBX1 expression was validated by a quantitative real-time PCR (qRT-PCR), western blotting and immunohistochemistry. Univariate/multivariate Cox regression analysis was performed to determine independent predictors of overall survival (OS). The ESTIMATE (i.e., Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data) algorithm and Tumor Immune Dysfunction and Exclusion (TIDE) analysis were used to assess the relationships between YBX1 and LIHC immunity. RESULTS: YBX1 was over-expressed in LIHC tissues and cell lines. High YBX1 expression was significantly associated with poor OS. Univariate/multivariate Cox regression analysis revealed that YBX1 was an independent prognostic factor for LIHC. Gene set enrichment analysis revealed that YBX1 was associated with multiple signaling pathways correlated to LIHC. Additionally, YBX1 was expressed in multiple immune cells and was significantly correlated with immune cells, immune checkpoint markers and tumor immune microenvironment. The TIDE analysis demonstrated that LIHC patients with high YBX1 expression showed a higher T-cell dysfunction score and a higher exclusion score, as well as poorer immunotherapy response. CONCLUSIONS: YBX1 plays crucial oncogenic roles in LIHC and is closely associated with the immune defense system. YBX1 inhibition may serve as a potential treatment for LIHC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Pronóstico , Neoplasias Hepáticas/genética , Algoritmos , Microambiente Tumoral/genética , Proteína 1 de Unión a la Caja Y/genética
17.
J Extracell Vesicles ; 13(3): e12417, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38499475

RESUMEN

Small extracellular vesicles (sEVs) released by acute myeloid leukaemia (AML) cells have been reported to influence the trilineage differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs). However, it remains elusive which biological cargo from AML-sEVs is responsible for this effect. In this study, sEVs were isolated from cell-conditioned media and blood plasma using size-exclusion chromatography and ultrafiltration and characterized according to MISEV2018 guidelines. Our results demonstrated that AML-sEVs increased the proliferation of BM-MSCs. Conversely, key proteins that are important for normal haematopoiesis were downregulated in BM-MSCs. Additionally, we revealed that AML-sEVs significantly reduced the differentiation of BM-MSCs to osteoblasts without affecting adipogenic or chondrogenic differentiation. Next, LC-MS/MS proteomics elucidated that various proteins, including Y-box-binding protein 1 (YBX1), were upregulated in both AML-sEVs and BM-MSCs treated with AML-sEVs. Clinically relevant, we found that YBX1 is considerably upregulated in most paediatric AML patient-derived sEVs compared to healthy controls. Interestingly, sEVs isolated after the downregulation of YBX1 in AML cells remarkably rescued the osteoblastic differentiation of BM-MSCs. Altogether, our data demonstrate for the first time that YBX1 containing AML-sEVs is one of the key players that disrupt the normal function of bone marrow microenvironment by reducing the osteogenic differentiation of BM-MSCs.


Asunto(s)
Vesículas Extracelulares , Leucemia Mieloide Aguda , Células Madre Mesenquimatosas , Niño , Humanos , Cromatografía Liquida , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteoblastos , Osteogénesis , Espectrometría de Masas en Tándem , Microambiente Tumoral , Proteína 1 de Unión a la Caja Y/metabolismo
18.
Allergol Immunopathol (Madr) ; 52(2): 60-67, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38459892

RESUMEN

OBJECTIVE: To explore the role of Y-box binding protein 1 (YBX-1) in the lipopolysaccharide (LPS)-stimulated inflammation and oxidative stress of BEAS-2B cell line and clarify the underlying mechanism. METHODS: LPS-stimulated BEAS-2B cells were used as a cell model of sepsis-stimulated acute lung injury (ALI). Immunoblot and quantitative polymerase chain reaction assays were used to detect the expression of YBX-1 in LPS-stimulated BEAS-2B cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide, TdT-mediated dUTP nick end labeling, and immunoblot assays were conducted to determine the effects of YBX-1 on cell survival. JC-1 staining and adenosine triphosphate production were used to detect the effects of YBX-1 on mitochondrial function. Immunostaining and enzyme-linked immunosorbent serologic assay were performed to examine the effects of YBX-1 on the inflammation and oxidative stress of cells. Immunoblot assay was conducted to confirm the mechanism. RESULTS: YBX-1 was lowly expressed in LPS-stimulated BEAS-2B cells and enhanced the survival of LPS-stimulated lung epithelial cells. In addition, YBX-1 improved mitochondrial function of LPS-stimulated BEAS-2B cells. YBX-1 inhibited the inflammation and oxidative stress of LPS-stimulated BEAS-2B cells. Mechanically, YBX-1 inhibited mitogen-activated protein kinase (MAPK) axis, thereby alleviating sepsis-stimulated ALI. CONCLUSION: YBX-1 alleviated inflammation and oxidative stress of LPS-stimulated BEAS-2B cells via MAPK axis.


Asunto(s)
Lesión Pulmonar Aguda , Sepsis , Proteína 1 de Unión a la Caja Y , Humanos , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Células Epiteliales , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Pulmón , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo , Proteína 1 de Unión a la Caja Y/metabolismo
19.
J Exp Clin Cancer Res ; 43(1): 89, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38520004

RESUMEN

BACKGROUND: The evasion of the immune response by tumor cells through programmed death-ligand 1 (PD-L1) has been identified as a factor contributing to resistance to radioimmunotherapy in lung cancer patients. However, the precise molecular mechanisms underlying the regulation of PD-L1 remain incompletely understood. This study aimed to investigate the role of cyclin-dependent kinase-like 1 (CDKL1) in the modulation of PD-L1 expression and the response to radioimmunotherapy in lung cancer. METHODS: The tumorigenic roles of CDKL1 were assessed via cell growth, colony formation, and EdU assays and an in vivo nude mouse xenograft model. The in vitro radiosensitization effect of CDKL1 was evaluated using a neutral comet assay, γH2AX foci formation analysis, and a clonogenic cell survival assay. The protein‒protein interactions were confirmed via coimmunoprecipitation and GST pulldown assays. The regulation of PD-L1 by CDKL1 was evaluated via chromatin immunoprecipitation (ChIP), real-time quantitative PCR, and flow cytometry analysis. An in vitro conditioned culture model and an in vivo C57BL/6J mouse xenograft model were developed to detect the activation markers of CD8+ T cells and evaluate the efficacy of CDKL1 overexpression combined with radiotherapy (RT) and an anti-PD-L1 antibody in treating lung cancer. RESULTS: CDKL1 was downregulated and suppressed the growth and proliferation of lung cancer cells and increased radiosensitivity in vitro and in vivo. Mechanistically, CDKL1 interacted with the transcription factor YBX1 and decreased the binding affinity of YBX1 for the PD-L1 gene promoter, which consequently inhibits the expression of PD-L1, ultimately leading to the activation of CD8+ T cells and the inhibition of immune evasion in lung cancer. Moreover, the combination of CDKL1 overexpression, RT, and anti-PD-L1 antibody therapy exhibited the most potent antitumor efficacy against lung cancer. CONCLUSIONS: Our findings demonstrate that CDKL1 plays a crucial role in regulating PD-L1 expression, thereby enhancing the antitumor effects of radioimmunotherapy. These results suggest that CDKL1 may be a promising therapeutic target for the treatment of lung cancer.


Asunto(s)
Neoplasias Pulmonares , Humanos , Animales , Ratones , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamiento farmacológico , Factores de Transcripción , Linfocitos T CD8-positivos/metabolismo , Antígeno B7-H1/metabolismo , Radioinmunoterapia , Ratones Endogámicos C57BL , Línea Celular Tumoral , Proteínas del Tejido Nervioso/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Proteína 1 de Unión a la Caja Y
20.
Cell Mol Life Sci ; 81(1): 113, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436697

RESUMEN

APE1 is an essential gene involved in DNA damage repair, the redox regulation of transcriptional factors (TFs) and RNA processing. APE1 overexpression is common in cancers and correlates with poor patient survival. Stress granules (SGs) are phase-separated cytoplasmic assemblies that cells form in response to environmental stresses. Precise regulation of SGs is pivotal to cell survival, whereas their dysregulation is increasingly linked to diseases. Whether APE1 engages in modulating SG dynamics is worthy of investigation. In this study, we demonstrate that APE1 colocalizes with SGs and promotes their formation. Through phosphoproteome profiling, we discover that APE1 significantly alters the phosphorylation landscape of ovarian cancer cells, particularly the phosphoprofile of SG proteins. Notably, APE1 promotes the phosphorylation of Y-Box binding protein 1 (YBX1) at S174 and S176, leading to enhanced SG formation and cell survival. Moreover, expression of the phosphomutant YBX1 S174/176E mimicking hyperphosphorylation in APE1-knockdown cells recovered the impaired SG formation. These findings shed light on the functional importance of APE1 in SG regulation and highlight the importance of YBX1 phosphorylation in SG dynamics.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa , Neoplasias Ováricas , Gránulos de Estrés , Proteína 1 de Unión a la Caja Y , Femenino , Humanos , Endodesoxirribonucleasas , Neoplasias Ováricas/genética , Fosforilación , Gránulos de Estrés/metabolismo , Proteína 1 de Unión a la Caja Y/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA