Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.238
Filtrar
1.
PLoS One ; 19(8): e0308179, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39088538

RESUMEN

Spinal muscular atrophy (SMA) is an intractable neuromuscular disorder primarily caused by homozygous deletions in exon 7 of the SMN1 gene. Early diagnosis and prompt treatment of patients with SMA have a significant impact on prognosis, and several therapies have recently been developed. Current SMA screening tests require a significant turnaround time to identify patients with suspected SMA, due both to the interval between the birth of a newborn and the collection of blood for newborn mass screening and the difficulty in distinguishing between SMN1 and SMN2, a paralog gene that requires testing in specialized laboratories. The aim of this study was therefore to develop a novel SMA screening assay that can be rapidly performed in ordinary hospitals and clinics to overcome these issues. We designed over 100 combinations of forward and reverse primers with 3' ends targeting SMN1-specific sites around exon 7, and evaluated their specificity and amplification efficiency by quantitative PCR to identify the best primer pair. Furthermore, we performed a single-stranded tag hybridization assay after PCR. To evaluate the accuracy and practicality of the newly developed assay, we analyzed saliva specimens from five patients with SMA and two SMA carriers collected in an outpatient clinic and DNA specimens from three patients with SMA and four SMA carriers from a biobank, together with those from healthy individuals. DNA and raw saliva specimens from all patients with SMA demonstrated a biallelic loss of SMN1, whereas those from carriers and healthy individuals did not. The results of 50 independent experiments were consistent for all samples. The assay could be completed within one hour. This simple and convenient new screening tool has the potential to allow patients with SMA to receive disease-modifying therapies within a shorter timeframe.


Asunto(s)
Cartilla de ADN , Atrofia Muscular Espinal , Proteína 1 para la Supervivencia de la Neurona Motora , Humanos , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/diagnóstico , Cartilla de ADN/genética , Sensibilidad y Especificidad , Hibridación de Ácido Nucleico/métodos , Recién Nacido , Exones/genética , Femenino , Masculino , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Tamizaje Neonatal/métodos
2.
Int J Mol Sci ; 25(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39201486

RESUMEN

Spinal muscular atrophy (SMA) is one of the most frequent causes of death in childhood. The disease's molecular basis is deletion or mutations in the SMN1 gene, which produces reduced survival motor neuron protein (SMN) levels. As a result, there is spinal motor neuron degeneration and a large increase in muscle atrophy, in which the ubiquitin-proteasome system (UPS) plays a significant role. In humans, a paralogue of SMN1, SMN2 encodes the truncated protein SMNΔ7. Structural differences between SMN and SMNΔ7 affect the interaction of the proteins with UPS and decrease the stability of the truncated protein. SMN loss affects the general ubiquitination process by lowering the levels of UBA1, one of the main enzymes in the ubiquitination process. We discuss how SMN loss affects both SMN stability and the general ubiquitination process, and how the proteins involved in ubiquitination could be used as future targets for SMA treatment.


Asunto(s)
Atrofia Muscular Espinal , Proteína 1 para la Supervivencia de la Neurona Motora , Ubiquitinación , Humanos , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/terapia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Enzimas Activadoras de Ubiquitina
3.
Nat Commun ; 15(1): 6191, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048567

RESUMEN

Defect in the SMN1 gene causes spinal muscular atrophy (SMA), which shows loss of motor neurons, muscle weakness and atrophy. While current treatment strategies, including small molecules or viral vectors, have shown promise in improving motor function and survival, achieving a definitive and long-term correction of SMA's endogenous mutations and phenotypes remains highly challenging. We have previously developed a CRISPR-Cas9 based homology-independent targeted integration (HITI) strategy, enabling unidirectional DNA knock-in in both dividing and non-dividing cells in vivo. In this study, we demonstrated its utility by correcting an SMA mutation in mice. When combined with Smn1 cDNA supplementation, it exhibited long-term therapeutic benefits in SMA mice. Our observations may provide new avenues for the long-term and efficient treatment of inherited diseases.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Terapia Genética , Atrofia Muscular Espinal , Proteína 1 para la Supervivencia de la Neurona Motora , Atrofia Muscular Espinal/terapia , Atrofia Muscular Espinal/genética , Animales , Edición Génica/métodos , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Ratones , Terapia Genética/métodos , Modelos Animales de Enfermedad , Humanos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Mutación , Masculino , Femenino
4.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39000416

RESUMEN

5q-Spinal muscular atrophy (5q-SMA) is one of the most common neuromuscular diseases due to homozygous mutations in the SMN1 gene. This leads to a loss of function of the SMN1 gene, which in the end determines lower motor neuron degeneration. Since the generation of the first mouse models of SMA neuropathology, a complex degenerative involvement of the neuromuscular junction and peripheral axons of motor nerves, alongside lower motor neurons, has been described. The involvement of the neuromuscular junction in determining disease symptoms offers a possible parallel therapeutic target. This narrative review aims at providing an overview of the current knowledge about the pathogenesis and significance of neuromuscular junction dysfunction in SMA, circulating biomarkers, outcome measures and available or developing therapeutic approaches.


Asunto(s)
Neuronas Motoras , Atrofia Muscular Espinal , Unión Neuromuscular , Proteína 1 para la Supervivencia de la Neurona Motora , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/metabolismo , Humanos , Animales , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Biomarcadores , Modelos Animales de Enfermedad , Mutación , Ratones
5.
Cell Rep Med ; 5(8): 101659, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39067446

RESUMEN

Whether neurodevelopmental defects underlie postnatal neuronal death in neurodegeneration is an intriguing hypothesis only recently explored. Here, we focus on spinal muscular atrophy (SMA), a neuromuscular disorder caused by reduced survival of motor neuron (SMN) protein levels leading to spinal motor neuron (MN) loss and muscle wasting. Using the first isogenic patient-derived induced pluripotent stem cell (iPSC) model and a spinal cord organoid (SCO) system, we show that SMA SCOs exhibit abnormal morphological development, reduced expression of early neural progenitor markers, and accelerated expression of MN progenitor and MN markers. Longitudinal single-cell RNA sequencing reveals marked defects in neural stem cell specification and fewer MNs, favoring mesodermal progenitors and muscle cells, a bias also seen in early SMA mouse embryos. Surprisingly, SMN2-to-SMN1 conversion does not fully reverse these developmental abnormalities. These suggest that early neurodevelopmental defects may underlie later MN degeneration, indicating that postnatal SMN-increasing interventions might not completely amend SMA pathology in all patients.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neuronas Motoras , Atrofia Muscular Espinal , Organoides , Proteína 1 para la Supervivencia de la Neurona Motora , Proteína 2 para la Supervivencia de la Neurona Motora , Organoides/patología , Organoides/metabolismo , Humanos , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Neuronas Motoras/patología , Neuronas Motoras/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Animales , Ratones , Médula Espinal/patología , Médula Espinal/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología
6.
Genes (Basel) ; 15(7)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39062735

RESUMEN

During the expanded neonatal screening program conducted in 2023, we analyzed samples obtained from 1,227,130 out of 1,256,187 newborns in the Russian Federation in order to detect 5q spinal muscular atrophy (5q SMA). Within the 253-sample risk group formed based on the results of the first screening stage, 5 samples showed a discrepancy between the examination results obtained via various screening methods and quantitative MLPA (used as reference). The discrepancy between the results was caused by the presence of either a c.835-18C>T intronic variant or a c.842G>C p.(Arg281Thr) missense variant in the SMN1 gene, both of which are located in the region complementary to the sequences of annealing probes for ligation and real-time PCR. Three newborns had the c.835-18C>T variant in a compound heterozygous state with a deletion of exons 7-8 of the SMN1 gene, one newborn with two copies of the SMN1 gene had the same variant in a heterozygous state, and one newborn had both variants-c.835-18C>T and c.842G>C p.(Arg281Thr)-in a compound heterozygous state. Additional examination was carried out for these variants, involving segregation analysis in families, carriage analysis in population cohorts, and RNA analysis. Based on the obtained results, according to the ACMG criteria, the c.835-18C>T intronic variant should be classified as likely benign, and the c.842G>C p.(Arg281Thr) missense substitution as a variant of uncertain clinical significance. All five probands are under dynamic monitoring. No 5q SMA symptoms were detected in these newborns neonatally or during a 1-year follow-up period.


Asunto(s)
Atrofia Muscular Espinal , Tamizaje Neonatal , Proteína 1 para la Supervivencia de la Neurona Motora , Humanos , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Recién Nacido , Tamizaje Neonatal/métodos , Femenino , Masculino , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/diagnóstico , Mutación Missense , Heterocigoto , Exones/genética , Federación de Rusia/epidemiología
7.
Int J Biol Macromol ; 275(Pt 2): 133663, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38969036

RESUMEN

Spinal muscular atrophy (SMA) is a disease that results from mutations in the Survival of Motor Neuron (SMN) gene 1, leading to muscle atrophy due to motor neurons degeneration. SMN plays a crucial role in the assembly of spliceosomal small nuclear ribonucleoprotein complexes via binding to the arginine-glycine rich C-terminal tails of Sm proteins recognized by SMN Tudor domain. E134K Tudor mutation, cause of the more severe type I SMA, compromises the SMN-Sm interaction without a perturbation of the domain fold. By molecular dynamics simulations, we investigated the mechanism of Tudor-SmD1 interaction, and the effects on it of E134K mutation. It was observed that E134 is crucial to catch the positive dimethylated arginines (DMRs) of the SmD1 tail that, wrapping around the acidic Tudor surface, enters a central DMR into an aromatic cage. The flexible cage residue Y130 must be blocked from the wrapped tail to assure a stable binding. The charge inversion in E134K mutation causes the loss of a critical anchor point, disfavoring the tail wrapping and leaving Y130 free to swing, leading to DMR detachments and exposition of the C-terminal region of the tail. This could suggest new hypotheses regarding a possible autoimmune response by anti-Sm autoantibodies.


Asunto(s)
Atrofia Muscular Espinal , Mutación , Unión Proteica , Proteína 1 para la Supervivencia de la Neurona Motora , Humanos , Simulación de Dinámica Molecular , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/química
8.
Cell Rep ; 43(8): 114537, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39052476

RESUMEN

Various ribonucleoprotein complexes (RNPs) often function in the form of membraneless organelles derived from multivalence-driven liquid-liquid phase separation (LLPS). Post-translational modifications, such as phosphorylation and arginine methylation, govern the assembly and disassembly of membraneless organelles. This study reveals that asymmetric dimethylation of arginine can create extra binding sites for multivalent Tudor domain-containing proteins like survival of motor neuron (SMN) protein, thereby lowering the threshold for LLPS of RNPs, such as fused in sarcoma (FUS). Accordingly, FUS hypomethylation or knockdown of SMN disrupts the formation and transport of neuronal granules in axons. Wild-type SMN, but not the spinal muscular atrophy-associated form of SMN, SMN-Δ7, rescues neuronal defects due to SMN knockdown. Importantly, a fusion of SMN-Δ7 to an exogenous oligomeric protein is sufficient to rescue axon length defects caused by SMN knockdown. Our findings highlight the significant role of arginine methylation-enabled multivalent interactions in LLPS and suggest their potential impact on various aspects of neuronal activities in neurodegenerative diseases.


Asunto(s)
Arginina , Gránulos Citoplasmáticos , Proteína FUS de Unión a ARN , Proteína FUS de Unión a ARN/metabolismo , Arginina/metabolismo , Metilación , Humanos , Animales , Gránulos Citoplasmáticos/metabolismo , Ratones , Neuronas/metabolismo , Axones/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Separación de Fases
9.
Molecules ; 29(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38893532

RESUMEN

Spinal muscular atrophy (SMA) is a severe neuromuscular disorder that is caused by mutations in the survival motor neuron 1 (SMN1) gene, hindering the production of functional survival motor neuron (SMN) proteins. Antisense oligonucleotides (ASOs), a versatile DNA-like drug, are adept at binding to target RNA to prevent translation or promote alternative splicing. Nusinersen is an FDA-approved ASO for the treatment of SMA. It effectively promotes alternative splicing in pre-mRNA transcribed from the SMN2 gene, an analog of the SMN1 gene, to produce a greater amount of full-length SMN protein, to compensate for the loss of functional protein translated from SMN1. Despite its efficacy in ameliorating SMA symptoms, the cellular uptake of these ASOs is suboptimal, and their inability to penetrate the CNS necessitates invasive lumbar punctures. Cell-penetrating peptides (CPPs), which can be conjugated to ASOs, represent a promising approach to improve the efficiency of these treatments for SMA and have the potential to transverse the blood-brain barrier to circumvent the need for intrusive intrathecal injections and their associated adverse effects. This review provides a comprehensive analysis of ASO therapies, their application for the treatment of SMA, and the encouraging potential of CPPs as delivery systems to improve ASO uptake and overall efficiency.


Asunto(s)
Péptidos de Penetración Celular , Atrofia Muscular Espinal , Oligonucleótidos Antisentido , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacología , Humanos , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Oligonucleótidos Antisentido/uso terapéutico , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/farmacología , Animales , Oligonucleótidos/química , Oligonucleótidos/farmacología , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos
10.
Front Immunol ; 15: 1375428, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863697

RESUMEN

Spinal Muscular Atrophy (SMA), a neurodegenerative disorder, extends its impact beyond the nervous system. The central protein implicated in SMA, Survival Motor Neuron (SMN) protein, is ubiquitously expressed and functions in fundamental processes such as alternative splicing, translation, cytoskeletal dynamics and signaling. These processes are relevant for all cellular systems, including cells of the immune system such as macrophages. Macrophages are capable of modulating their splicing, cytoskeleton and expression profile in order to fulfil their role in tissue homeostasis and defense. However, less is known about impairment or dysfunction of macrophages lacking SMN and the subsequent impact on the immune system of SMA patients. We aimed to review the potential overlaps between SMN functions and macrophage mechanisms highlighting the need for future research, as well as the current state of research addressing the role of macrophages in SMA.


Asunto(s)
Macrófagos , Atrofia Muscular Espinal , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/inmunología , Animales , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Transducción de Señal
11.
Artículo en Ruso | MEDLINE | ID: mdl-38884441

RESUMEN

Advances in the treatment of spinal muscular atrophy (SMA) have revolutionized the field. SMA is a rare autosomal recessive neurodegenerative motor neuron disease in which wide phenotypic variability has been described. The rate of increase in neurological deficit and the severity of the disease is mainly determined by the amount of functional SMN (Survival of Motor Neuron) protein. However, the clinical picture may differ significantly in patients carrying homozygous deletions of the SMN1 gene (Survival of Motor Neuron 1) and an identical number of copies of the SMN2 gene (Survival of Motor Neuron 2). A family clinical case of adult patients with spinal muscular atrophy 5q with a homozygous deletion of the SMN1 gene and the same number of copies of the SMN2 gene, having a different clinical picture of the disease, is presented, and the dynamics of the condition against the background of oral pathogenetic therapy is presented.


Asunto(s)
Atrofia Muscular Espinal , Proteína 1 para la Supervivencia de la Neurona Motora , Proteína 2 para la Supervivencia de la Neurona Motora , Humanos , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/diagnóstico , Masculino , Homocigoto , Eliminación de Gen , Adulto , Femenino , Compuestos Azo , Pirimidinas
12.
Neurol Sci ; 45(9): 4583-4588, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38806879

RESUMEN

Spinal Muscular Atrophy (SMA) emerges as a prominent genetic neuromuscular disorder primarily caused by variants in the survival motor neuron (SMN) gene. However, it is noteworthy that alternative variants impacting DYNC1H1 have also been linked to a subtype known as spinal muscular atrophy lower extremity predominant (SMA-LED). This observation underscores the complexity of SMA and highlights the necessity for tailored, gene-specific management strategies. Our study elucidates how similar approaches to managing SMA can yield distinct outcomes, emphasizing the imperative for personalized gene-based interventions in effectively addressing these conditions. Two patients were referred for further management due to clinical suspicion of type-3 SMA. The definitive diagnosis was confirmed through the polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) technique, as well as whole-exome sequencing (WES). The analysis revealed deletions in exon-7 and 8 of SMN1 in the first patient and a likely pathogenic mutation (NM_001376.5(DYNC1H1):c.1867 T > C (NP_001367.2: p.Phe623Leu)) in DYNC1H1 in the second patient. Both patients presented with lower limb muscle weakness. However, while the first patient exhibited a gradual increase in severity over the years, the second patient displayed no progressive symptoms. The management was adjusted accordingly based on the genetic findings. Our observation underscores the complexity of SMA and highlights the necessity for tailored, gene-specific management strategies. Our study elucidates how similar approaches to managing SMA can yield distinct outcomes, emphasizing the imperative for personalized gene-based interventions in effectively addressing these conditions.


Asunto(s)
Dineínas Citoplasmáticas , Atrofia Muscular Espinal , Mutación , Proteína 1 para la Supervivencia de la Neurona Motora , Humanos , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Dineínas Citoplasmáticas/genética , Masculino , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Femenino
13.
Hum Mol Genet ; 33(15): 1367-1377, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38704739

RESUMEN

Spinal Muscular Atrophy is caused by partial loss of survival of motoneuron (SMN) protein expression. The numerous interaction partners and mechanisms influenced by SMN loss result in a complex disease. Current treatments restore SMN protein levels to a certain extent, but do not cure all symptoms. The prolonged survival of patients creates an increasing need for a better understanding of SMA. Although many SMN-protein interactions, dysregulated pathways, and organ phenotypes are known, the connections among them remain largely unexplored. Monogenic diseases are ideal examples for the exploration of cause-and-effect relationships to create a network describing the disease-context. Machine learning tools can utilize such knowledge to analyze similarities between disease-relevant molecules and molecules not described in the disease so far. We used an artificial intelligence-based algorithm to predict new genes of interest. The transcriptional regulation of 8 out of 13 molecules selected from the predicted set were successfully validated in an SMA mouse model. This bioinformatic approach, using the given experimental knowledge for relevance predictions, enhances efficient targeted research in SMA and potentially in other disease settings.


Asunto(s)
Inteligencia Artificial , Biología Computacional , Modelos Animales de Enfermedad , Atrofia Muscular Espinal , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Animales , Ratones , Humanos , Biología Computacional/métodos , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Aprendizaje Automático , Algoritmos , Regulación de la Expresión Génica/genética
14.
Clin Lab ; 70(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38747911

RESUMEN

BACKGROUND: This study aims to evaluate the ability of laboratories to perform spinal muscular atrophy (SMA) genetic testing in newborns based on dried blood spot (DBS) samples, and to provide reference data and advance preparation for establishing the pilot external quality assessment (EQA) scheme for SMA genetic testing of newborns in China. METHODS: The pilot EQA scheme contents and evaluation principles of this project were designed by National Center for Clinical Laboratories (NCCL), National Health Commission. Two surveys were carried out in 2022, and 5 batches of blood spots were submitted to the participating laboratory each time. All participating laboratories conducted testing upon receiving samples, and test results were submitted to NCCL within the specified date. RESULTS: The return rates were 75.0% (21/28) and 95.2% (20/21) in the first and second surveys, respectively. The total return rate of the two examinations was 83.7% (41/49). Nineteen laboratories (19/21, 90.5%) had a full score passing on the first survey, while in the second survey twenty laboratories (20/20, 100%) scored full. CONCLUSIONS: This pilot EQA survey provides a preliminary understanding of the capability of SMA genetic testing for newborns across laboratories in China. A few laboratories had technical or operational problems in testing. It is, therefore, of importance to strengthen laboratory management and to improve testing capacity for the establishment of a national EQA scheme for newborn SMA genetic testing.


Asunto(s)
Pruebas Genéticas , Atrofia Muscular Espinal , Tamizaje Neonatal , Humanos , Recién Nacido , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Proyectos Piloto , Pruebas Genéticas/normas , Pruebas Genéticas/métodos , Tamizaje Neonatal/normas , Tamizaje Neonatal/métodos , China , Pruebas con Sangre Seca/normas , Pruebas con Sangre Seca/métodos , Garantía de la Calidad de Atención de Salud , Laboratorios Clínicos/normas , Proteína 1 para la Supervivencia de la Neurona Motora/genética
15.
Ann Clin Transl Neurol ; 11(7): 1868-1878, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38817128

RESUMEN

OBJECTIVE: Compare efficacy of gene therapy alone (monotherapy) or in combination with an SMN2 augmentation agent (dual therapy) for treatment of children at risk for spinal muscular atrophy type 1. METHODS: Eighteen newborns with biallelic SMN1 deletions and two SMN2 copies were treated preemptively with monotherapy (n = 11) or dual therapy (n = 7) and followed for a median of 3 years. Primary outcomes were independent sitting and walking. Biomarkers were serial muscle ultrasonography (efficacy) and sensory action potentials (safety). RESULTS: Gene therapy was administered by 7-43 postnatal days; dual therapy with risdiplam (n = 6) or nusinersen (n = 1) was started by 15-39 days. Among 18 children enrolled, 17 sat, 15 walked, and 44% had motor delay (i.e., delay or failure to achieve prespecified milestones). Those on dual therapy sat but did not walk at an earlier age. 91% of muscle ultrasounds conducted within 60 postnatal days were normal but by 3-61 months, 94% showed echogenicity and/or fasciculation of at least one muscle group; these changes were indistinguishable between monotherapy and dual therapy cohorts. Five children with three SMN2 copies were treated with monotherapy in parallel: all sat and walked on time and had normal muscle sonograms at all time points. No child on dual therapy experienced treatment-associated adverse events. All 11 participants who completed sensory testing (including six on dual therapy) had intact sural sensory responses. INTERPRETATION: Preemptive dual therapy is well tolerated and may provide modest benefit for children at risk for severe spinal muscular atrophy but does not prevent widespread degenerative changes.


Asunto(s)
Terapia Genética , Atrofias Musculares Espinales de la Infancia , Proteína 1 para la Supervivencia de la Neurona Motora , Proteína 2 para la Supervivencia de la Neurona Motora , Humanos , Masculino , Femenino , Lactante , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Atrofias Musculares Espinales de la Infancia/tratamiento farmacológico , Atrofias Musculares Espinales de la Infancia/genética , Terapia Genética/métodos , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Oligonucleótidos/administración & dosificación , Oligonucleótidos/farmacología , Recién Nacido , Preescolar , Resultado del Tratamiento , Terapia Combinada , Compuestos Azo , Pirimidinas
16.
Pediatr Neurol ; 156: 147-154, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38781723

RESUMEN

BACKGROUND: This study presents the findings of a newborn screening (NBS) pilot project for 5q-spinal muscular atrophy (5q-SMA) in multiple regions across Russia for during the year 2022. The aim was to assess the feasibility and reproducibility of NBS for SMA5q in diverse populations and estimate the real prevalence of 5q-SMA in Russia as well as the distribution of patients with different number of SMN2 copies. METHODS: The pilot project of NBS here was based on data, involving the analysis of 202,908 newborns. SMA screening assay was performed using a commercially available real-time polymerase chain reaction kit, the Eonis SCID-SMA. RESULTS: In one year, 202,908 newborns were screened, identifying 26 infants with homozygous deletion of SMN1 exon 7, yielding an estimated 5q-SMA incidence of 1:7804 newborns. It was found that 38.46% had two SMN2 copies, 42.31% had three copies, 15.38% had four copies, and 3.85% had five copies of SMN2. Immediate treatment was proposed for patients with two or three SMN2 copies. Infants with four or more SMN2 copies warranted further investigation on management and treatment. Short-term monitoring after gene therapy showed motor function improvements. Delays in treatment initiation were observed, including the testing for adeno-associated virus 9 antibodies and nonmedical factors. CONCLUSIONS: The study emphasizes the need for a standardized algorithm for early diagnosis and management through NBS to benefit affected families. Overall, the NBS program for 5q-SMA in Russia demonstrated the potential to improve outcomes and transform SMA from a devastating disease to a chronic condition with evolving medical requirements.


Asunto(s)
Atrofia Muscular Espinal , Tamizaje Neonatal , Proteína 1 para la Supervivencia de la Neurona Motora , Proteína 2 para la Supervivencia de la Neurona Motora , Humanos , Proyectos Piloto , Recién Nacido , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/epidemiología , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/terapia , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Federación de Rusia/epidemiología , Masculino , Femenino , Prevalencia , Incidencia
17.
Int J Biol Macromol ; 269(Pt 1): 131960, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697430

RESUMEN

Rare diseases, defined by their low prevalence, present significant challenges, including delayed detection, expensive treatments, and limited research. This study delves into the genetic basis of two noteworthy rare diseases in Saudi Arabia: Phenylketonuria (PKU) and Spinal Muscular Atrophy (SMA). PKU, resulting from mutations in the phenylalanine hydroxylase (PAH) gene, exhibits geographical variability and impacts intellectual abilities. SMA, characterized by motor neuron loss, is linked to mutations in the survival of motor neuron 1 (SMN1) gene. Recognizing the importance of unveiling signature genomics in rare diseases, we conducted a quantitative study on PAH and SMN1 proteins of multiple organisms by employing various quantitative techniques to assess genetic variations. The derived signature-genomics contributes to a deeper understanding of these critical genes, paving the way for enhanced diagnostics for disorders associated with PAH and SMN1.


Asunto(s)
Genómica , Atrofia Muscular Espinal , Fenilalanina Hidroxilasa , Fenilcetonurias , Enfermedades Raras , Proteína 1 para la Supervivencia de la Neurona Motora , Atrofia Muscular Espinal/genética , Fenilcetonurias/genética , Humanos , Fenilalanina Hidroxilasa/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Genómica/métodos , Enfermedades Raras/genética , Mutación , Arabia Saudita/epidemiología
18.
Nat Commun ; 15(1): 4120, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750052

RESUMEN

5q-associated spinal muscular atrophy (SMA) is a motoneuron disease caused by mutations in the survival motor neuron 1 (SMN1) gene. Adaptive immunity may contribute to SMA as described in other motoneuron diseases, yet mechanisms remain elusive. Nusinersen, an antisense treatment, enhances SMN2 expression, benefiting SMA patients. Here we have longitudinally investigated SMA and nusinersen effects on local immune responses in the cerebrospinal fluid (CSF) - a surrogate of central nervous system parenchyma. Single-cell transcriptomics (SMA: N = 9 versus Control: N = 9) reveal NK cell and CD8+ T cell expansions in untreated SMA CSF, exhibiting activation and degranulation markers. Spatial transcriptomics coupled with multiplex immunohistochemistry elucidate cytotoxicity near chromatolytic motoneurons (N = 4). Post-nusinersen treatment, CSF shows unaltered protein/transcriptional profiles. These findings underscore cytotoxicity's role in SMA pathogenesis and propose it as a therapeutic target. Our study illuminates cell-mediated cytotoxicity as shared features across motoneuron diseases, suggesting broader implications.


Asunto(s)
Encéfalo , Células Asesinas Naturales , Neuronas Motoras , Atrofia Muscular Espinal , Oligonucleótidos , Humanos , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/genética , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Neuronas Motoras/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/efectos de los fármacos , Encéfalo/patología , Encéfalo/efectos de los fármacos , Femenino , Masculino , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Análisis de la Célula Individual , Citotoxicidad Inmunológica/efectos de los fármacos , Lactante , Preescolar , Niño , Transcriptoma
19.
Sci Rep ; 14(1): 10442, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714739

RESUMEN

Spinal muscular atrophy (SMA) genes, SMN1 and SMN2 (hereinafter referred to as SMN1/2), produce multiple circular RNAs (circRNAs), including C2A-2B-3-4 that encompasses early exons 2A, 2B, 3 and 4. C2A-2B-3-4 is a universally and abundantly expressed circRNA of SMN1/2. Here we report the transcriptome- and proteome-wide effects of overexpression of C2A-2B-3-4 in inducible HEK293 cells. Our RNA-Seq analysis revealed altered expression of ~ 15% genes (4172 genes) by C2A-2B-3-4. About half of the affected genes by C2A-2B-3-4 remained unaffected by L2A-2B-3-4, a linear transcript encompassing exons 2A, 2B, 3 and 4 of SMN1/2. These findings underscore the unique role of the structural context of C2A-2B-3-4 in gene regulation. A surprisingly high number of upregulated genes by C2A-2B-3-4 were located on chromosomes 4 and 7, whereas many of the downregulated genes were located on chromosomes 10 and X. Supporting a cross-regulation of SMN1/2 transcripts, C2A-2B-3-4 and L2A-2B-3-4 upregulated and downregulated SMN1/2 mRNAs, respectively. Proteome analysis revealed 61 upregulated and 57 downregulated proteins by C2A-2B-3-4 with very limited overlap with those affected by L2A-2B-3-4. Independent validations confirmed the effect of C2A-2B-3-4 on expression of genes associated with chromatin remodeling, transcription, spliceosome function, ribosome biogenesis, lipid metabolism, cytoskeletal formation, cell proliferation and neuromuscular junction formation. Our findings reveal a broad role of C2A-2B-3-4, and expands our understanding of functions of SMN1/2 genes.


Asunto(s)
Exones , Atrofia Muscular Espinal , Proteoma , ARN Circular , Proteína 1 para la Supervivencia de la Neurona Motora , Proteína 2 para la Supervivencia de la Neurona Motora , Transcriptoma , Humanos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Proteoma/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Células HEK293 , Exones/genética , Regulación de la Expresión Génica
20.
Cells ; 13(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38727321

RESUMEN

Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by deficiency of the survival motor neuron (SMN) protein. Although SMA is a genetic disease, environmental factors contribute to disease progression. Common pathogen components such as lipopolysaccharides (LPS) are considered significant contributors to inflammation and have been associated with muscle atrophy, which is considered a hallmark of SMA. In this study, we used the SMNΔ7 experimental mouse model of SMA to scrutinize the effect of systemic LPS administration, a strong pro-inflammatory stimulus, on disease outcome. Systemic LPS administration promoted a reduction in SMN expression levels in CNS, peripheral lymphoid organs, and skeletal muscles. Moreover, peripheral tissues were more vulnerable to LPS-induced damage compared to CNS tissues. Furthermore, systemic LPS administration resulted in a profound increase in microglia and astrocytes with reactive phenotypes in the CNS of SMNΔ7 mice. In conclusion, we hereby show for the first time that systemic LPS administration, although it may not precipitate alterations in terms of deficits of motor functions in a mouse model of SMA, it may, however, lead to a reduction in the SMN protein expression levels in the skeletal muscles and the CNS, thus promoting synapse damage and glial cells' reactive phenotype.


Asunto(s)
Modelos Animales de Enfermedad , Lipopolisacáridos , Atrofia Muscular Espinal , Animales , Lipopolisacáridos/farmacología , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/metabolismo , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Microglía/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Ratones Endogámicos C57BL , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/patología , Inflamación/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA