Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
eNeuro ; 11(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39266326

RESUMEN

Rett syndrome (RTT), a severe neurodevelopmental disorder caused by mutations in the MeCP2 gene, is characterized by cognitive and social deficits. Previous studies have noted hypoactivity in the medial prefrontal cortex (mPFC) pyramidal neurons of MeCP2-deficient mice (RTT mice) in response to both social and nonsocial stimuli. To further understand the neural mechanisms behind the social deficits of RTT mice, we monitored excitatory pyramidal neurons in the prelimbic region of the mPFC during social interactions in mice. These neurons' activity was closely linked to social preference, especially in wild-type mice. However, RTT mice showed reduced social interest and corresponding hypoactivity in these neurons, indicating that impaired mPFC activity contributes to their social deficits. We identified six mPFC neural ensembles selectively tuned to various stimuli, with RTT mice recruiting fewer neurons to ensembles responsive to social interactions and consistently showing lower stimulus-ON ensemble transient rates. Despite these lower rates, RTT mice exhibited an increase in the percentage of social-ON neurons in later sessions, suggesting a compensatory mechanism for the decreased firing rate. This highlights the limited plasticity in the mPFC caused by MeCP2 deficiency and offers insights into the neural dynamics of social encoding. The presence of multifunctional neurons and those specifically responsive to social or object stimuli in the mPFC emphasizes its crucial role in complex behaviors and cognitive functions, with selective neuron engagement suggesting efficiency in neural activation that optimizes responses to environmental stimuli.


Asunto(s)
Proteína 2 de Unión a Metil-CpG , Corteza Prefrontal , Células Piramidales , Síndrome de Rett , Animales , Corteza Prefrontal/fisiología , Corteza Prefrontal/metabolismo , Proteína 2 de Unión a Metil-CpG/deficiencia , Proteína 2 de Unión a Metil-CpG/genética , Síndrome de Rett/fisiopatología , Síndrome de Rett/genética , Masculino , Células Piramidales/fisiología , Conducta Social , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/fisiología , Neuronas/metabolismo , Modelos Animales de Enfermedad , Potenciales de Acción/fisiología , Interacción Social , Femenino
2.
Cells ; 13(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38891120

RESUMEN

Methyl-CpG-binding protein 2 (Mecp2) is an epigenetic modulator and numerous studies have explored its impact on the central nervous system manifestations. However, little attention has been given to its potential contributions to the peripheral nervous system (PNS). To investigate the regulation of Mecp2 in the PNS on specific central regions, we generated Mecp2fl/flAdvillincre mice with the sensory-neuron-specific deletion of the Mecp2 gene and found the mutant mice had a heightened sensitivity to temperature, which, however, did not affect the sense of motion, social behaviors, and anxiety-like behavior. Notably, in comparison to Mecp2fl/fl mice, Mecp2fl/flAdvillincre mice exhibited improved learning and memory abilities. The levels of hippocampal synaptophysin and PSD95 proteins were higher in Mecp2fl/flAdvillincre mice than in Mecp2fl/fl mice. Golgi staining revealed a significant increase in total spine density, and dendritic arborization in the hippocampal pyramidal neurons of Mecp2fl/flAdvillincre mice compared to Mecp2fl/fl mice. In addition, the activation of the BDNF-TrkB-CREB1 pathway was observed in the hippocampus and spinal cord of Mecp2fl/flAdvillincre mice. Intriguingly, the hippocampal BDNF/CREB1 signaling pathway in mutant mice was initiated within 5 days after birth. Our findings suggest a potential therapeutic strategy targeting the BDNF-TrkB-CREB1 signaling pathway and peripheral somasensory neurons to treat learning and cognitive deficits associated with Mecp2 disorders.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Cognición , Espinas Dendríticas , Hipocampo , Proteína 2 de Unión a Metil-CpG , Animales , Proteína 2 de Unión a Metil-CpG/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/deficiencia , Hipocampo/metabolismo , Hipocampo/patología , Espinas Dendríticas/metabolismo , Ratones , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Receptoras Sensoriales/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Masculino , Transducción de Señal , Ratones Endogámicos C57BL , Receptor trkB/metabolismo , Receptor trkB/genética
3.
Mol Brain ; 15(1): 76, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064580

RESUMEN

Loss of function mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MECP2) cause Rett syndrome (RTT), a postnatal neurological disorder. The loss of motor function is an important clinical feature of RTT that manifests early during the course of the disease. RTT mouse models with mutations in the murine orthologous Mecp2 gene replicate many human phenotypes, including progressive motor impairments. However, relatively little is known about the changes in circuit function during the progression of motor deficit in this model. As the motor cortex is the key node in the motor system for the control of voluntary movement, we measured firing activity in populations of motor cortical neurons during locomotion on a motorized wheel-treadmill. Different populations of neurons intermingled in the motor cortex signal different aspects of the locomotor state of the animal. The proportion of running selective neurons whose activity positively correlates with locomotion speed gradually decreases with weekly training in wild-type mice, but not in Mecp2-null mice. The fraction of rest-selective neurons whose activity negatively correlates with locomotion speed does not change with training in wild-type mice, but is higher and increases with the progression of locomotion deficit in mutant mice. The synchronization of population activity that occurs in WT mice with training did not occur in Mecp2-null mice, a phenotype most clear during locomotion and observable across all functional cell types. Our results could represent circuit-level biomarkers for motor regression in Rett syndrome.


Asunto(s)
Locomoción , Proteína 2 de Unión a Metil-CpG , Corteza Motora , Animales , Modelos Animales de Enfermedad , Aprendizaje/fisiología , Locomoción/genética , Proteína 2 de Unión a Metil-CpG/deficiencia , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/genética , Corteza Motora/metabolismo , Fenotipo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo
4.
BMB Rep ; 55(5): 238-243, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35410641

RESUMEN

Autism or autism spectrum disorder (ASD) is a behavioral syndrome characterized by persistent deficits in social interaction, and repetitive patterns of behavior, interests, or activities. The gene encoding Methyl-CpG binding protein 2 (MeCP2) is one of a few exceptional genes of established causal effect in ASD. Although genetically engineered mice studies may shed light on how MeCP2 loss affects synaptic activity patterns across the whole brain, such studies are not considered practical in ASD patients due to the overall level of impairment, and are technically challenging in mice. For the first time, we show that hippocampal MeCP2 knockdown produces behavioral abnormalities associated with autism-like traits in rats, providing a new strategy to investigate the efficacy of therapeutics in ASD. Ketamine, an N-Methyl-D-aspartate (NMDA) blocker, has been proposed as a possible treatment for autism. Using the MeCP2 knockdown rats in conjunction with a rat model of valproic acid (VPA)-induced ASD, we examined gene expression and ASD behaviors upon ketamine treatment. We report that the core symptoms of autism in MeCP2 knockdown rats with social impairment recovered dramatically following a single treatment with ketamine. [BMB Reports 2022; 55(5): 238-243].


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Ketamina , Proteína 2 de Unión a Metil-CpG , Animales , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastorno Autístico/tratamiento farmacológico , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Ketamina/farmacología , Proteína 2 de Unión a Metil-CpG/deficiencia , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Ratas
5.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34686597

RESUMEN

Complex body movements require complex dynamics and coordination among neurons in motor cortex. Conversely, a long-standing theoretical notion supposes that if many neurons in motor cortex become excessively synchronized, they may lack the necessary complexity for healthy motor coding. However, direct experimental support for this idea is rare and underlying mechanisms are unclear. Here we recorded three-dimensional body movements and spiking activity of many single neurons in motor cortex of rats with enhanced synaptic inhibition and a transgenic rat model of Rett syndrome (RTT). For both cases, we found a collapse of complexity in the motor system. Reduced complexity was apparent in lower-dimensional, stereotyped brain-body interactions, neural synchrony, and simpler behavior. Our results demonstrate how imbalanced inhibition can cause excessive synchrony among movement-related neurons and, consequently, a stereotyped motor code. Excessive inhibition and synchrony may underlie abnormal motor function in RTT.


Asunto(s)
Encéfalo/fisiopatología , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/fisiología , Actividad Motora/genética , Actividad Motora/fisiología , Síndrome de Rett/genética , Síndrome de Rett/fisiopatología , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Animales , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Proteína 2 de Unión a Metil-CpG/deficiencia , Modelos Neurológicos , Corteza Motora/fisiopatología , Neuronas Motoras/fisiología , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Conducta Estereotipada/fisiología
6.
J Clin Invest ; 131(16)2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34228646

RESUMEN

Perineuronal nets (PNNs), a specialized form of extracellular matrix, are abnormal in the brains of people with Rett syndrome (RTT). We previously reported that PNNs function to restrict synaptic plasticity in hippocampal area CA2, which is unusually resistant to long-term potentiation (LTP) and has been linked to social learning in mice. Here we report that PNNs appear elevated in area CA2 of the hippocampus of an individual with RTT and that PNNs develop precociously and remain elevated in area CA2 of a mouse model of RTT (Mecp2-null). Further, we provide evidence that LTP could be induced at CA2 synapses prior to PNN maturation (postnatal day 8-11) in wild-type mice and that this window of plasticity was prematurely restricted at CA2 synapses in Mecp2-null mice. Degrading PNNs in Mecp2-null hippocampus was sufficient to rescue the premature disruption of CA2 plasticity. We identified several molecular targets that were altered in the developing Mecp2-null hippocampus that may explain aberrant PNNs and CA2 plasticity, and we discovered that CA2 PNNs are negatively regulated by neuronal activity. Collectively, our findings demonstrate that CA2 PNN development is regulated by Mecp2 and identify a window of hippocampal plasticity that is disrupted in a mouse model of RTT.


Asunto(s)
Región CA2 Hipocampal/fisiopatología , Proteína 2 de Unión a Metil-CpG/deficiencia , Síndrome de Rett/fisiopatología , Animales , Región CA2 Hipocampal/patología , Modelos Animales de Enfermedad , Matriz Extracelular/patología , Matriz Extracelular/fisiología , Humanos , Potenciación a Largo Plazo/genética , Potenciación a Largo Plazo/fisiología , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/fisiología , Ratones , Ratones Noqueados , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Neuronas , Síndrome de Rett/genética , Síndrome de Rett/patología
7.
Hum Mol Genet ; 30(22): 2161-2176, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34230964

RESUMEN

Severe respiratory impairment is a prominent feature of Rett syndrome, an X-linked disorder caused by mutations in methyl CpG-binding protein 2 (MECP2). Despite MECP2's ubiquitous expression, respiratory anomalies are attributed to neuronal dysfunction. Here, we show that neutral lipids accumulate in mouse Mecp2-mutant lungs, whereas surfactant phospholipids decrease. Conditional deletion of Mecp2 from lipid-producing alveolar epithelial 2 (AE2) cells causes aberrant lung lipids and respiratory symptoms, whereas deletion of Mecp2 from hindbrain neurons results in distinct respiratory abnormalities. Single-cell RNA sequencing of AE2 cells suggests lipid production and storage increase at the expense of phospholipid synthesis. Lipid production enzymes are confirmed as direct targets of MECP2-directed nuclear receptor co-repressor 1/2 transcriptional repression. Remarkably, lipid-lowering fluvastatin improves respiratory anomalies in Mecp2-mutant mice. These data implicate autonomous pulmonary loss of MECP2 in respiratory symptoms for the first time and have immediate impacts on patient care.


Asunto(s)
Metabolismo de los Lípidos , Pulmón/metabolismo , Pulmón/fisiopatología , Proteína 2 de Unión a Metil-CpG/deficiencia , Síndrome de Rett/etiología , Síndrome de Rett/metabolismo , Animales , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Fluvastatina/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Lipogénesis/genética , Masculino , Redes y Vías Metabólicas , Ratones , Ratones Noqueados , Mutación , Co-Represor 1 de Receptor Nuclear , Fenotipo , Unión Proteica , Surfactantes Pulmonares/metabolismo , Síndrome de Rett/diagnóstico , Síndrome de Rett/tratamiento farmacológico
8.
Int J Mol Sci ; 22(10)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34069993

RESUMEN

Rett syndrome (RTT) is a rare neurodevelopmental disorder that is usually caused by mutations of the MECP2 gene. Patients with RTT suffer from severe deficits in motor, perceptual and cognitive domains. Electroencephalogram (EEG) has provided useful information to clinicians and scientists, from the very first descriptions of RTT, and yet no reliable neurophysiological biomarkers related to the pathophysiology of the disorder or symptom severity have been identified to date. To identify consistently observed and potentially informative EEG characteristics of RTT pathophysiology, and ascertain areas most worthy of further systematic investigation, here we review the literature for EEG abnormalities reported in patients with RTT and in its disease models. While pointing to some promising potential EEG biomarkers of RTT, our review identify areas of need to realize the potential of EEG including (1) quantitative investigation of promising clinical-EEG observations in RTT, e.g., shift of mu rhythm frequency and EEG during sleep; (2) closer alignment of approaches between patients with RTT and its animal models to strengthen the translational significance of the work (e.g., EEG measurements and behavioral states); (3) establishment of large-scale consortium research, to provide adequate Ns to investigate age and genotype effects.


Asunto(s)
Electroencefalografía , Síndrome de Rett/diagnóstico , Síndrome de Rett/fisiopatología , Animales , Biomarcadores , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Fenómenos Electrofisiológicos , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Proteína 2 de Unión a Metil-CpG/deficiencia , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/fisiología , Ratones , Mutación , Fenotipo , Ratas , Síndrome de Rett/genética , Investigación Biomédica Traslacional
9.
Elife ; 102021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33494858

RESUMEN

Rett syndrome is a devastating childhood neurological disorder caused by mutations in MECP2. Of the many symptoms, motor deterioration is a significant problem for patients. In mice, deleting Mecp2 from the cortex or basal ganglia causes motor dysfunction, hypoactivity, and tremor, which are abnormalities observed in patients. Little is known about the function of Mecp2 in the cerebellum, a brain region critical for motor function. Here we show that deleting Mecp2 from the cerebellum, but not from its neuronal subtypes, causes a delay in motor learning that is overcome by additional training. We observed irregular firing rates of Purkinje cells and altered heterochromatin architecture within the cerebellum of knockout mice. These findings demonstrate that the motor deficits present in Rett syndrome arise, in part, from cerebellar dysfunction. For Rett syndrome and other neurodevelopmental disorders, our results highlight the importance of understanding which brain regions contribute to disease phenotypes.


Asunto(s)
Cerebelo/química , Eliminación de Gen , Aprendizaje , Proteína 2 de Unión a Metil-CpG/genética , Actividad Motora/genética , Neuronas/química , Síndrome de Rett/genética , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Proteína 2 de Unión a Metil-CpG/deficiencia , Ratones , Ratones Noqueados , Factores de Tiempo
10.
Protein Cell ; 12(8): 639-652, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32851591

RESUMEN

Rett syndrome (RTT) is a progressive neurodevelopmental disorder, mainly caused by mutations in MeCP2 and currently with no cure. We report here that neurons from R106W MeCP2 RTT human iPSCs as well as human embryonic stem cells after MeCP2 knockdown exhibit consistent and long-lasting impairment in maturation as indicated by impaired action potentials and passive membrane properties as well as reduced soma size and spine density. Moreover, RTT-inherent defects in neuronal maturation could be pan-neuronal and occurred in neurons with both dorsal and ventral forebrain features. Knockdown of MeCP2 led to more severe neuronal deficits as compared to RTT iPSC-derived neurons, which appeared to retain partial function. Strikingly, consistent deficits in nuclear size, dendritic complexity and circuitry-dependent spontaneous postsynaptic currents could only be observed in MeCP2 knockdown neurons but not RTT iPSC-derived neurons. Both neuron-intrinsic and circuitry-dependent deficits of MeCP2-deficient neurons could be fully or partially rescued by re-expression of wild type or T158M MeCP2, strengthening the dosage dependency of MeCP2 on disease phenotypes and also the partial function of the mutant. Our findings thus reveal stable neuronal maturation deficits and unexpectedly, graded sensitivities of neuron-inherent and neural transmission phenotypes towards the extent of MeCP2 deficiency, which is informative for future therapeutic development.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/genética , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Prosencéfalo/metabolismo , Síndrome de Rett/genética , Potenciales de Acción/genética , Secuencia de Bases , Diferenciación Celular , Fibroblastos/citología , Fibroblastos/metabolismo , Dosificación de Gen , Expresión Génica , Técnicas de Silenciamiento del Gen , Prueba de Complementación Genética , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Proteína 2 de Unión a Metil-CpG/deficiencia , Células-Madre Neurales/patología , Neuronas/patología , Fenotipo , Cultivo Primario de Células , Prosencéfalo/patología , Síndrome de Rett/metabolismo , Síndrome de Rett/patología , Índice de Severidad de la Enfermedad , Transmisión Sináptica
11.
JCI Insight ; 6(3)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33373327

RESUMEN

Impairment of the GABAergic system has been reported in epilepsy, autism, attention deficit hyperactivity disorder, and schizophrenia. We recently demonstrated that ataxia telangiectasia mutated (ATM) directly shapes the development of the GABAergic system. Here, we show for the first time to our knowledge how the abnormal expression of ATM affects the pathological condition of autism. We exploited 2 different animal models of autism, the methyl CpG binding protein 2-null (Mecp2y/-) mouse model of Rett syndrome and mice prenatally exposed to valproic acid, and found increased ATM levels. Accordingly, treatment with the specific ATM kinase inhibitor KU55933 (KU) normalized molecular, functional, and behavioral defects in these mouse models, such as (a) delayed GABAergic development, (b) hippocampal hyperexcitability, (c) low cognitive performances, and (d) social impairments. Mechanistically, we demonstrate that KU administration to WT hippocampal neurons leads to (a) higher early growth response 4 activity on Kcc2b promoter, (b) increased expression of Mecp2, and (c) potentiated GABA transmission. These results provide evidence and molecular substrates for the pharmacological development of ATM inhibition in autism spectrum disorders.


Asunto(s)
Trastorno del Espectro Autista/tratamiento farmacológico , Animales , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/psicología , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Reparación del ADN , Modelos Animales de Enfermedad , Femenino , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/fisiología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Masculino , Proteína 2 de Unión a Metil-CpG/deficiencia , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Morfolinas/farmacología , Embarazo , Efectos Tardíos de la Exposición Prenatal , Inhibidores de Proteínas Quinasas/farmacología , Pironas/farmacología , Síndrome de Rett/tratamiento farmacológico , Síndrome de Rett/fisiopatología , Síndrome de Rett/psicología , Simportadores/genética , Simportadores/metabolismo , Ácido Valproico/toxicidad , Cotransportadores de K Cl
12.
Neurobiol Dis ; 149: 105235, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33383186

RESUMEN

Rett syndrome (RTT) is a severe X-linked neurodevelopmental disorder that is primarily caused by mutations in the methyl CpG binding protein 2 gene (MECP2). RTT is the second most prevalent genetic cause of intellectual disability in girls, and there is currently no cure for the disease. We have previously shown that gene therapy using a self-complementary AAV9 viral vector expressing a codon-optimized Mecp2 version (AAV9-MCO) significantly improved symptoms and increased survival in male Mecp2-deficient mice. Here, we pursued our studies and investigated the safety and efficacy of long-term gene therapy in the genetically relevant RTT mouse model: the heterozygous (HET) Mecp2 deficient female mouse. These mice were injected with the AAV9-MCO vector through the tail vein and an array of behavioral tests was performed. At 16- and 30-weeks post-injection, this treatment was able to rescue apneas and improved the spontaneous locomotor deficits and circadian locomotor activity in Mecp2 HET mice treated with AAV9-MCO at a dose of 5 × 1011 vg/mouse. To examine whether a higher dose of vector could result in increased improvements, we injected Mecp2 HET mice with a higher MCO vector dose (1012 vg/mouse), which resulted in some severe, sometimes lethal, side effects. In order to confirm these effects, a new cohort of Mecp2 HET mice were administered increasing doses of MCO vector (1011, 5 × 1011 and 1012 vg/mouse). Again, two weeks after vector administration, some Mecp2 HET mice were found dead while others displayed severe side effects and had to be euthanized. These deleterious effects were not observed in Mecp2 HET mice injected with a high dose of AAV9-GFP and were directly proportionate to vector dosage (0, 23 or 54% mortality at an AAV9-MCO dose of 1011, 5 × 1011, 1012 vg/mouse, respectively), and no such lethality was observed in wild-type (WT) mice. In the Mecp2 HET mice treated with the high and medium AAV9-MCO doses, blood chemistry analysis and post-mortem histology showed liver damage with drastically elevated levels of liver transaminases and disorganized liver architecture. Apoptosis was confirmed by the presence of TUNEL- and cleaved-caspase 3-positive cells in the Mecp2 HET mice treated with the higher doses of AAV9-MCO. We then studied the involvement of the unfolded protein response (UPR) in triggering apoptosis since it can be activated by AAV vectors. Increased expression of the C/EBP homologous protein (CHOP), one of UPR downstream effectors, was confirmed in Mecp2 HET mice after vector administration. The toxic reaction seen in some treated mice indicates that, although gene therapy for RTT improved breathing deficits observed in Mecp2 HET mice, further studies are needed to better understand the underlying mechanisms and caution must be exercised before similar attempts are undertaken in female Rett patients.


Asunto(s)
Adenoviridae , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Proteína 2 de Unión a Metil-CpG/deficiencia , Síndrome de Rett/metabolismo , Síndrome de Rett/terapia , Adenoviridae/genética , Administración Intravenosa , Animales , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos/genética , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Síndrome de Rett/genética
13.
Neuropharmacology ; 176: 108221, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32652084

RESUMEN

Motor skill is a specific area of disability of Rett syndrome (RTT), a rare disorder occurring almost exclusively in girls, caused by loss-of-function mutations of the X-linked methyl-CpG-binding protein2 (MECP2) gene, encoding the MECP2 protein, a member of the methyl-CpG-binding domain nuclear proteins family. Brain 5-HT, which is defective in RTT patients and Mecp2 mutant mice, regulates motor circuits and SSRIs enhance motor skill learning and plasticity. In the present study, we used heterozygous (Het) Mecp2 female and Mecp2-null male mice to investigate whether fluoxetine, a SSRI with pleiotropic effects on neuronal circuits, rescues motor coordination deficits. Repeated administration of 10 mg/kg fluoxetine fully rescued rotarod deficit in Mecp2 Het mice regardless of age, route of administration or pre-training to rotarod. The motor improvement was confirmed in the beam walking test while no effect was observed in the hanging-wire test, suggesting a preferential action of fluoxetine on motor coordination. Citalopram mimicked the effects of fluoxetine, while the inhibition of 5-HT synthesis abolished the fluoxetine-induced improvement of motor coordination. Mecp2 null mice, which responded poorly to fluoxetine in the rotarod, showed reduced 5-HT synthesis in the prefrontal cortex, hippocampus and striatum, and reduced efficacy of fluoxetine in raising extracellular 5-HT as compared to female mutants. No sex differences were observed in the ability of fluoxetine to desensitize 5-HT1A autoreceptors upon repeated administration. These findings indicate that fluoxetine rescues motor coordination in Mecp2 Het mice through its ability to enhance brain 5-HT and suggest that drugs enhancing 5-HT neurotransmission may have beneficial effects on motor symptoms of RTT.


Asunto(s)
Encéfalo/metabolismo , Fluoxetina/uso terapéutico , Proteína 2 de Unión a Metil-CpG/deficiencia , Desempeño Psicomotor/efectos de los fármacos , Síndrome de Rett/metabolismo , Serotonina/metabolismo , Animales , Encéfalo/efectos de los fármacos , Femenino , Fluoxetina/farmacología , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Desempeño Psicomotor/fisiología , Síndrome de Rett/tratamiento farmacológico , Síndrome de Rett/genética , Prueba de Desempeño de Rotación con Aceleración Constante/métodos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico
14.
Int J Mol Sci ; 20(20)2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31635390

RESUMEN

The deletion of Mecp2, the gene encoding methyl-CpG-binding protein 2, causes severe breathing defects and developmental anomalies in mammals. In Mecp2-null mice, impaired GABAergic neurotransmission is demonstrated at the early stage of life. GABAergic dysfunction in neurons in the rostral ventrolateral medulla (RVLM) is considered as a primary cause of breathing abnormality in Mecp2-null mice, but its molecular mechanism is unclear. Here, we report that mRNA expression levels of Gad1, which encodes glutamate decarboxylase 67 (GAD67), in the RVLM of Mecp2-null (Mecp2-/y, B6.129P2(C)-Mecp2tm1.1Bird/J) mice is closely related to the methylation status of its promoter, and valproate (VPA) can upregulate transcription from Gad1 through epigenetic mechanisms. The administration of VPA (300 mg/kg/day) together with L-carnitine (30 mg/kg/day) from day 8 to day 14 after birth increased Gad1 mRNA expression in the RVLM and reduced apnea counts in Mecp2-/y mice on postnatal day 15. Cytosine methylation levels in the Gad1 promoter were higher in the RVLM of Mecp2-/y mice compared to wild-type mice born to C57BL/6J females, while VPA treatment decreased the methylation levels in Mecp2-/y mice. Chromatin immunoprecipitation assay revealed that the VPA treatment reduced the binding of methyl-CpG binding domain protein 1 (MBD1) to the Gad1 promoter in Mecp2-/y mice. These results suggest that VPA improves breathing of Mecp2-/y mice by reducing the Gad1 promoter methylation, which potentially leads to the enhancement of GABAergic neurotransmission in the RVLM.


Asunto(s)
Apnea/etiología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Proteína 2 de Unión a Metil-CpG/deficiencia , Regiones Promotoras Genéticas , Activación Transcripcional/efectos de los fármacos , Ácido Valproico/farmacología , Animales , Apnea/tratamiento farmacológico , Apnea/metabolismo , Metilación de ADN , Modelos Animales de Enfermedad , Epigénesis Genética , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Noqueados , Modelos Biológicos , ARN Mensajero/genética
15.
Int J Mol Sci ; 20(15)2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31387202

RESUMEN

Rett syndrome (RTT) is a rare, X-linked neurodevelopmental disorder typically affecting females, resulting in a range of symptoms including autistic features, intellectual impairment, motor deterioration, and autonomic abnormalities. RTT is primarily caused by the genetic mutation of the Mecp2 gene. Initially considered a neuronal disease, recent research shows that glial dysfunction contributes to the RTT disease phenotype. In the following manuscript, we review the evidence regarding glial dysfunction and its effects on disease etiology.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Proteína 2 de Unión a Metil-CpG/deficiencia , Neuroglía/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Animales , Astrocitos/metabolismo , Metabolismo Energético , Estudios de Asociación Genética/métodos , Humanos , Oligodendroglía/metabolismo , Fenotipo , Síndrome de Rett/diagnóstico
16.
Proc Natl Acad Sci U S A ; 116(32): 16086-16094, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31320591

RESUMEN

Exosomes are thought to be released by all cells in the body and to be involved in intercellular communication. We tested whether neural exosomes can regulate the development of neural circuits. We show that exosome treatment increases proliferation in developing neural cultures and in vivo in dentate gyrus of P4 mouse brain. We compared the protein cargo and signaling bioactivity of exosomes released by hiPSC-derived neural cultures lacking MECP2, a model of the neurodevelopmental disorder Rett syndrome, with exosomes released by isogenic rescue control neural cultures. Quantitative proteomic analysis indicates that control exosomes contain multiple functional signaling networks known to be important for neuronal circuit development. Treating MECP2-knockdown human primary neural cultures with control exosomes rescues deficits in neuronal proliferation, differentiation, synaptogenesis, and synchronized firing, whereas exosomes from MECP2-deficient hiPSC neural cultures lack this capability. These data indicate that exosomes carry signaling information required to regulate neural circuit development.


Asunto(s)
Exosomas/metabolismo , Red Nerviosa/metabolismo , Neurogénesis , Potenciales de Acción , Animales , Recuento de Células , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Giro Dentado/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Proteína 2 de Unión a Metil-CpG/deficiencia , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Neuronas/citología , Neuronas/metabolismo , Transducción de Señal , Esferoides Celulares/citología , Sinapsis/metabolismo
17.
Gastroenterology ; 157(5): 1398-1412.e9, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31352003

RESUMEN

BACKGROUND & AIMS: Methyl-CpG binding protein 2, MECP2, which binds to methylated regions of DNA to regulate transcription, is expressed by hepatic stellate cells (HSCs) and is required for development of liver fibrosis in mice. We investigated the effects of MECP2 deletion from HSCs on their transcriptome and of phosphorylation of MECP2 on HSC phenotype and liver fibrosis. METHODS: We isolated HSCs from Mecp2-/y mice and wild-type (control) mice. HSCs were activated in culture and used in array analyses of messenger RNAs and long noncoding RNAs. Kyoto Encyclopedia of Genes and Genomes pathway analyses identified pathways regulated by MECP2. We studied mice that expressed a mutated form of Mecp2 that encodes the S80A substitution, MECP2S80, causing loss of MECP2 phosphorylation at serine 80. Liver fibrosis was induced in these mice by administration of carbon tetrachloride, and liver tissues and HSCs were collected and analyzed. RESULTS: MECP2 deletion altered expression of 284 messenger RNAs and 244 long noncoding RNAs, including those that regulate DNA replication; are members of the minichromosome maintenance protein complex family; or encode CDC7, HAS2, DNA2 (a DNA helicase), or RPA2 (a protein that binds single-stranded DNA). We found that MECP2 regulates the DNA repair Fanconi anemia pathway in HSCs. Phosphorylation of MECP2S80 and its putative kinase, HAS2, were induced during transdifferentiation of HSCs. HSCs from MECP2S80 mice had reduced proliferation, and livers from these mice had reduced fibrosis after carbon tetrachloride administration. CONCLUSIONS: In studies of mice with disruption of Mecp2 or that expressed a form of MECP2 that is not phosphorylated at S80, we found phosphorylation of MECP2 to be required for HSC proliferation and induction of fibrosis. In HSCs, MECP2 regulates expression of genes required for DNA replication and repair. Strategies to inhibit MECP2 phosphorylation at S80 might be developed for treatment of liver fibrosis.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática Experimental/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Acetaminofén , Animales , Tetracloruro de Carbono , Proliferación Celular , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Colágeno/metabolismo , Reparación del ADN , Replicación del ADN , Células Estrelladas Hepáticas/patología , Cirrosis Hepática Experimental/genética , Cirrosis Hepática Experimental/patología , Masculino , Proteína 2 de Unión a Metil-CpG/deficiencia , Proteína 2 de Unión a Metil-CpG/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Serina , Transducción de Señal
18.
Mol Neurobiol ; 56(12): 8277-8295, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31214863

RESUMEN

MeCP2 is an X-linked gene; its mutation causes Rett Syndrome (RTT), a severe neurodevelopmental disability that affects mainly girls. Acting as a transcription factor, the MeCP2 protein is able to regulate several hormone-related genes, such as the thyroid hormones (TH), which are known to play an important role in the development of the central nervous system (CNS). Although only a few studies have associated RTT and TH, TH deficit can lead to neurological deregulation by triggering functional deficiencies during adulthood. Here, we used human-induced pluripotent stem cell (iPSC) to generate MeCP2-knockout neuronal progenitor cells and adult neurons. Using this cellular model, we then investigated the expression of genes associated with TH homeostasis, such as the TH transporters (LAT1, LAT2, MCT8, MCT10, and OATP4A1) and deiodinases (DIO1, 2, and 3). Then, we treated the neural cells with THs and analyzed the expression of several genes related to neurodevelopment and functional maintenance. Our results showed that several TH-related genes, such as deiodinases, are altered in RTT samples when compared to WT cells. Moreover, the treatment of the neural cells with THs increased the amount of MAP2 and synapsin-1 expression in RTT cells. Our work provided evidences that TH homeostasis is compromised in RTT-derived neural cells, which could be an important factor to contribute to the imbalance in the neurodevelopmental phenotype presented in this syndrome and can lead us to better understand other neurodevelopmental diseases.


Asunto(s)
Regulación de la Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Yoduro Peroxidasa/genética , Proteínas de Transporte de Membrana/genética , Proteína 2 de Unión a Metil-CpG/deficiencia , Neuronas/metabolismo , Hormonas Tiroideas/metabolismo , Humanos , Yoduro Peroxidasa/metabolismo , Cariotipificación , Masculino , Proteínas de Transporte de Membrana/metabolismo , Redes y Vías Metabólicas , Modelos Biológicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/patología , Síndrome de Rett/enzimología , Síndrome de Rett/genética
19.
Hum Mol Genet ; 28(2): 245-257, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30277526

RESUMEN

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations or deletions in Methyl-CpG-binding Protein 2 (MeCP2), a brain-enriched transcriptional regulator. MeCP2 is highly expressed during neuronal maturation and its deficiency results in impaired dendritic morphogenesis and reduced dendritic spine numbers in developing neurons. However, whether MeCP2 deficiency impacts the integration of new neurons has not been directly assessed. In this study, we developed a modified rabies virus-mediated monosynaptic retrograde tracing method to interrogate presynaptic integration of MeCP2-deficient new neurons born in the adult hippocampus, a region with lifelong neurogenesis and plasticity. We found that selective deletion of MeCP2 in adult-born new neurons impaired their long-range connectivity to the cortex, whereas their connectivity within the local hippocampal circuits or with subcortical regions was not significantly affected. We further showed that knockdown of MeCP2 in primary hippocampal neurons also resulted in reduced network integration. Interestingly, (1-3) insulin-like growth factor-1 (IGF-1), a small peptide under clinical trial testing for RTT, rescued neuronal integration deficits of MeCP2-deficient neurons in vitro but not in vivo. In addition, (1-3) IGF-1 treatment corrected aberrant excitability and network synchrony of MeCP2-deficient hippocampal neurons. Our results indicate that MeCP2 is essential for immature neurons to establish appropriate network connectivity.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/fisiología , Red Nerviosa , Neurogénesis , Neuronas/citología , Animales , Células Cultivadas , Dendritas , Hipocampo/citología , Hipocampo/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/farmacología , Masculino , Proteína 2 de Unión a Metil-CpG/deficiencia , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Endogámicos C57BL , Técnicas de Trazados de Vías Neuroanatómicas , Neurogénesis/efectos de los fármacos , Neuronas/metabolismo , Retroviridae
20.
Neuroscience ; 397: 107-115, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30458221

RESUMEN

People with Rett Syndrome (RTT), a neurodevelopmental disorder caused by mutations in the MECP2 gene, have breathing abnormalities manifested as periodical hypoventilation with compensatory hyperventilation, which are attributable to a high incidence of sudden death. Similar breathing abnormalities have been found in animal models with Mecp2 disruptions. Although RTT-type hypoventilation is believed to be due to depressed central inspiratory activity, whether this is true remains unknown. Here we show evidence for reshaping in firing activity and patterns of medullary respiratory neurons in RTT-type hypoventilation without evident depression in inspiratory neuronal activity. Experiments were performed in decerebrate rats in vivo. In Mecp2-null rats, abnormalities in breathing patterns were apparent in both decerebrate rats and awake animals, suggesting that RTT-type breathing abnormalities take place in the brainstem without forebrain input. In comparison to their wild-type counterparts, both inspiratory and expiratory neurons in Mecp2-null rats extended their firing duration, and fired more action potentials during each burst. No changes in inspiratory or expiratory neuronal distributions were found. Most inspiratory neurons started firing in the middle of expiration and changed their firing pattern to a phase-spanning type. The proportion of post-inspiratory neurons was reduced in the Mecp2-null rats. With the increased firing activity of both inspiratory and expiratory neurons in null rats, phrenic discharges shifted to a slow and deep breathing pattern. Thus, the RTT-type hypoventilation appears to result from reshaping of firing activity of both inspiratory and expiratory neurons without evident depression in central inspiratory activity.


Asunto(s)
Potenciales de Acción/fisiología , Bulbo Raquídeo/metabolismo , Proteína 2 de Unión a Metil-CpG/deficiencia , Neuronas/metabolismo , Respiración , Síndrome de Rett/metabolismo , Animales , Estado de Descerebración , Modelos Animales de Enfermedad , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Nervio Frénico/metabolismo , Ratas Sprague-Dawley , Ratas Transgénicas , Vigilia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA