Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.781
Filtrar
1.
BMC Pulm Med ; 24(1): 404, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174992

RESUMEN

BACKGROUND: The serum markers Krebs von den Lungen-6 (KL-6), surfactant protein A (SP-A), and surfactant protein D (SP-D) have been used for the diagnosis, differential diagnosis, and prognosis prediction of interstitial pneumonia. However, the significance of measuring the serum and bronchoalveolar lavage fluid (BALF) KL-6, SP-D, and SP-A levels in predicting the prognosis of chronic fibrosing interstitial pneumonia (CFIP), idiopathic pulmonary fibrosis, and idiopathic nonspecific interstitial pneumonia remains unclear. We aimed to clarify the significance of measuring the serum and BALF KL-6, SP-A, and SP-D levels in predicting the prognosis of patients with CFIP. METHODS: Among 173 patients who were diagnosed with CFIP between September 2008 and February 2021, 39 who underwent bronchoalveolar lavage were included in this study. Among these, patients experiencing an annual decrease in forced vital capacity (FVC) of ≥10% or those facing challenges in undergoing follow-up pulmonary function tests owing to significant deterioration in pulmonary function were categorized as the rapidly progress group. Conversely, individuals with an annual decrease in the FVC of <10% were classified into the slowly progress group. The serum and BALF KL-6, SP-D, and SP-A levels, as well as BALF/serum SP-D and SP-A ratios were compared between the two groups. RESULTS: Among the patients with CFIP, the BALF SP-D level (p=0.0111), BALF SP-A level (p<0.0010), BALF/serum SP-D ratio (p=0.0051), and BALF/serum SP-A ratio (p<0.0010) were significantly lower in the rapidly than in the slowly progress group (p<0.0010). The receiver operating characteristics analysis results demonstrated excellent performance for diagnosing patients with CFIP, with the BALF SP-D level (area under the curve [AUC], 0.7424), BALF SP-A level (AUC, 0.8842), BALF/serum SP-D ratio (AUC, 0.7673), and BALF/serum SP-A ratio (AUC, 0.8556). Moreover, the BALF SP-A level showed a notably superior CFIP diagnostic capability. Survival analysis using the Kaplan-Meier method revealed that patients with a BALF SP-A level of <1500 ng/mL and BALF/serum SP-A ratio of <15.0 had poor prognoses. CONCLUSIONS: Our results suggest that BALF SP-A measurement may be useful for predicting the prognosis in patients with CFIP.


Asunto(s)
Biomarcadores , Líquido del Lavado Bronquioalveolar , Mucina-1 , Proteína A Asociada a Surfactante Pulmonar , Proteína D Asociada a Surfactante Pulmonar , Humanos , Proteína D Asociada a Surfactante Pulmonar/sangre , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Líquido del Lavado Bronquioalveolar/química , Mucina-1/sangre , Mucina-1/análisis , Femenino , Masculino , Estudios Retrospectivos , Proteína A Asociada a Surfactante Pulmonar/sangre , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Proteína A Asociada a Surfactante Pulmonar/análisis , Anciano , Persona de Mediana Edad , Pronóstico , Biomarcadores/sangre , Biomarcadores/análisis , Fibrosis Pulmonar Idiopática/sangre , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/metabolismo , Enfermedades Pulmonares Intersticiales/sangre , Enfermedades Pulmonares Intersticiales/diagnóstico , Enfermedades Pulmonares Intersticiales/metabolismo , Curva ROC , Capacidad Vital , Enfermedad Crónica
2.
Trans Am Clin Climatol Assoc ; 134: 94-112, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135597

RESUMEN

Surfactant Protein A (SP-A) is an innate immune modulator produced by the lung with known protective effects against bacteria and viruses. Its role in asthma, an inflammatory lung disease that affects 10% of the world's population, is not entirely known. In this review, we demonstrate that SP-A confers protection against exposure to interleukin-13, a type 2 cytokine integral to eosinophilic asthma, in a mouse model of SP-A deficiency, a house dust mite model of asthma, and in human bronchial epithelial cells from participants with asthma. We also show that small peptides derived from SP-A, such as the major allele of single nucleotide polymorphism (SNP) rs1965708, which includes the carbohydrate recognition domain of SP-A2 at position 223, reduce airway hyperresponsiveness, airway eosinophils, and mucus in a mouse model of asthma. These data suggest that SP-A has beneficial effects relevant to asthma and that an SP-A peptide may have a new therapeutic use in asthma.


Asunto(s)
Asma , Modelos Animales de Enfermedad , Inmunidad Innata , Proteína A Asociada a Surfactante Pulmonar , Asma/inmunología , Asma/tratamiento farmacológico , Animales , Proteína A Asociada a Surfactante Pulmonar/genética , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Proteína A Asociada a Surfactante Pulmonar/inmunología , Humanos , Ratones , Polimorfismo de Nucleótido Simple , Interleucina-13/metabolismo , Interleucina-13/inmunología , Interleucina-13/genética , Pulmón/inmunología , Pulmón/metabolismo , Antiasmáticos/farmacología , Antiasmáticos/uso terapéutico , Pyroglyphidae/inmunología
3.
Int J Mol Sci ; 25(14)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39062960

RESUMEN

Human papillomavirus (HPV) infection poses a significant health challenge, particularly in low- and middle-income countries (LMIC), where limited healthcare access and awareness hinder vaccine accessibility. To identify alternative HPV targeting interventions, we previously reported on surfactant protein A (SP-A) as a novel molecule capable of recognising HPV16 pseudovirions (HPV16-PsVs) and reducing infection in a murine cervicovaginal HPV challenge model. Building on these findings, our current study aimed to assess SP-A's suitability as a broad-spectrum HPV-targeting molecule and its impact on innate immune responses. We demonstrate SP-A's ability to agglutinate and opsonise multiple oncogenic HPV-PsVs types, enhancing their uptake and clearance by RAW264.7 murine macrophages and THP-1 human-derived immune cells. The SP-A opsonisation of HPV not only led to increased lysosomal accumulation in macrophages and HaCaT keratinocytes but also resulted in a decreased infection of HaCaT cells, which was further decreased when co-cultured with innate immune cells. An analysis of human innate immune cell cytokine profiles revealed a significant inflammatory response upon SP-A exposure, potentially contributing to the overall inhibition of HPV infection. These results highlight the multi-layered impact of SP-A on HPV, innate immune cells and keratinocytes and lay the basis for the development of alternative prophylactic interventions against diverse HPV types.


Asunto(s)
Macrófagos , Infecciones por Papillomavirus , Proteína A Asociada a Surfactante Pulmonar , Humanos , Animales , Ratones , Infecciones por Papillomavirus/prevención & control , Infecciones por Papillomavirus/inmunología , Infecciones por Papillomavirus/virología , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Proteína A Asociada a Surfactante Pulmonar/inmunología , Células RAW 264.7 , Macrófagos/inmunología , Macrófagos/metabolismo , Inmunidad Innata , Queratinocitos/metabolismo , Queratinocitos/virología , Queratinocitos/inmunología , Citocinas/metabolismo , Células HaCaT , Células THP-1 , Femenino
4.
Brain Res ; 1840: 149108, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38964703

RESUMEN

BACKGROUND: One of the most common entry gates for systemic infection is the lung. In humans, pulmonary infections can lead to significant neurological impairment, ranging from acute sickness behavior to long-term disorders. Surfactant proteins (SP), essential parts of the pulmonary innate immune defense, have been detected in the brain of rats and humans. Recent evidence suggests that SP-A, the major protein component of surfactant, also plays a functional role in modulating neuroinflammation. This study aimed to determine whether SP-A deficiency affects the inflammatory response in the brain of adult mice during pulmonary infection. EXPERIMENTAL PROCEDURE: Adult male wild-type (WT, n = 72) and SP-A-deficient (SP-A-/-, n = 72) mice were oropharyngeally challenged with lipopolysaccharide (LPS), Pseudomonas aeruginosa (P. aeruginosa), or PBS (control). Both, behavioral assessment and subsequent brain tissue analysis, were performed 24, 48, and 72 h after challenge. The brain concentrations of the pro-inflammatory cytokines TNF-α, IL-6, and IL-1ß were determined by ELISA. Quantitative rtPCR was used to detect SP-A mRNA expression in brain homogenates and immunohistochemistry was applied for the detection of SP-A protein expression in brain coronal slices. RESULTS: SP-A mRNA and histological evidence of protein expression were detected in both the lungs and brains of WT mice, with significantly higher amounts in lung samples. SP-A-/- mice exhibited significantly higher baseline concentrations of brain TNF-α, IL-6, and IL-1ß compared to WT mice. Oropharyngeal application of either LPS or P. aeruginosa elicited significantly higher brain levels of TNF-α and IL-1ß in SP-A-/- mice compared to WT mice at all time points. In comparison, behavioral impairment as a measure of sickness behavior, was significantly stronger in WT than in SP-A-/- mice, particularly after LPS application. CONCLUSION: SP-A is known for its anti-inflammatory role in the pulmonary immune response to bacterial infection. Recent evidence suggests that in an abdominal sepsis model SP-A deficiency can lead to increased cytokine levels in the brain. Our results extend this perception and provide evidence for an anti-inflammatory role of SP-A in the brain of adult WT mice after pulmonary infection.


Asunto(s)
Encéfalo , Citocinas , Lipopolisacáridos , Enfermedades Neuroinflamatorias , Pseudomonas aeruginosa , Proteína A Asociada a Surfactante Pulmonar , Animales , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Masculino , Ratones , Encéfalo/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Citocinas/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL , Infecciones por Pseudomonas/metabolismo , Pulmón/metabolismo , Inflamación/metabolismo
5.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891806

RESUMEN

Given the various clinical manifestations that characterize Coronavirus Disease 2019 (COVID-19), the scientific community is constantly searching for biomarkers with prognostic value. Surfactant proteins A (SP-A) and D (SP-D) are collectins that play a crucial role in ensuring proper alveolar function and an alteration of their serum levels was reported in several pulmonary diseases characterized by Acute Respiratory Distress Syndrome (ARDS) and pulmonary fibrosis. Considering that such clinical manifestations can also occur during Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, we wondered if these collectins could act as prognostic markers. In this regard, serum levels of SP-A and SP-D were measured by enzyme immunoassay in patients with SARS-CoV-2 infection (n = 51) at admission (T0) and after seven days (T1) and compared with healthy donors (n = 11). SP-D increased in COVID-19 patients compared to healthy controls during the early phases of infection, while a significant reduction was observed at T1. Stratifying SARS-CoV-2 patients according to disease severity, increased serum SP-D levels were observed in severe compared to mild patients. In light of these results, SP-D, but not SP-A, seems to be an eligible marker of COVID-19 pneumonia, and the early detection of SP-D serum levels could be crucial for preventive clinical management.


Asunto(s)
Biomarcadores , COVID-19 , Proteína A Asociada a Surfactante Pulmonar , Proteína D Asociada a Surfactante Pulmonar , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Humanos , COVID-19/sangre , COVID-19/diagnóstico , Masculino , Femenino , Proteína D Asociada a Surfactante Pulmonar/sangre , Biomarcadores/sangre , Persona de Mediana Edad , Proteína A Asociada a Surfactante Pulmonar/sangre , SARS-CoV-2/aislamiento & purificación , Anciano , Adulto , Pronóstico
6.
Respir Res ; 25(1): 193, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702733

RESUMEN

BACKGROUND: Influenza A virus (IAV) infection is a significant risk factor for respiratory diseases, but the host defense mechanisms against IAV remain to be defined. Immune regulators such as surfactant protein A (SP-A) and Toll-interacting protein (Tollip) have been shown to be involved in IAV infection, but whether SP-A and Tollip cooperate in more effective host defense against IAV infection has not been investigated. METHODS: Wild-type (WT), Tollip knockout (KO), SP-A KO, and Tollip/SP-A double KO (dKO) mice were infected with IAV for four days. Lung macrophages were isolated for bulk RNA sequencing. Precision-cut lung slices (PCLS) from WT and dKO mice were pre-treated with SP-A and then infected with IAV for 48 h. RESULTS: Viral load was significantly increased in bronchoalveolar lavage (BAL) fluid of dKO mice compared to all other strains of mice. dKO mice had significantly less recruitment of neutrophils into the lung compared to Tollip KO mice. SP-A treatment of PCLS enhanced expression of TNF and reduced viral load in dKO mouse lung tissue. Pathway analysis of bulk RNA sequencing data suggests that macrophages from IAV-infected dKO mice reduced expression of genes involved in neutrophil recruitment, IL-17 signaling, and Toll-like receptor signaling. CONCLUSIONS: Our data suggests that both Tollip and SP-A are essential for the lung to exert more effective innate defense against IAV infection.


Asunto(s)
Virus de la Influenza A , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Orthomyxoviridae , Proteína A Asociada a Surfactante Pulmonar , Animales , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Proteína A Asociada a Surfactante Pulmonar/genética , Ratones , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/metabolismo , Virus de la Influenza A/inmunología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/virología
7.
Front Immunol ; 15: 1370511, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596675

RESUMEN

Introduction: SARS coronavirus 2 (SARS-CoV-2) infects human angiotensin-converting enzyme 2 (hACE2)-expressing lung epithelial cells through its spike (S) protein. The S protein is highly glycosylated and could be a target for lectins. Surfactant protein A (SP-A) is a collagen-containing C-type lectin, expressed by mucosal epithelial cells and mediates its antiviral activities by binding to viral glycoproteins. Objective: This study examined the mechanistic role of human SP-A in SARS-CoV-2 infectivity and lung injury in vitro and in vivo. Results: Human SP-A can bind both SARS-CoV-2 S protein and hACE2 in a dose-dependent manner (p<0.01). Pre-incubation of SARS-CoV-2 (Delta) with human SP-A inhibited virus binding and entry and reduced viral load in human lung epithelial cells, evidenced by the dose-dependent decrease in viral RNA, nucleocapsid protein (NP), and titer (p<0.01). We observed significant weight loss, increased viral burden, and mortality rate, and more severe lung injury in SARS-CoV-2 infected hACE2/SP-A KO mice (SP-A deficient mice with hACE2 transgene) compared to infected hACE2/mSP-A (K18) and hACE2/hSP-A1 (6A2) mice (with both hACE2 and human SP-A1 transgenes) 6 Days Post-infection (DPI). Furthermore, increased SP-A level was observed in the saliva of COVID-19 patients compared to healthy controls (p<0.05), but severe COVID-19 patients had relatively lower SP-A levels than moderate COVID-19 patients (p<0.05). Discussion: Collectively, human SP-A attenuates SARS-CoV-2-induced acute lung injury (ALI) by directly binding to the S protein and hACE2, and inhibiting its infectivity; and SP-A level in the saliva of COVID-19 patients might serve as a biomarker for COVID-19 severity.


Asunto(s)
Lesión Pulmonar Aguda , COVID-19 , Glicoproteína de la Espiga del Coronavirus , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Lectinas Tipo C , Proteína A Asociada a Surfactante Pulmonar/genética , SARS-CoV-2
8.
Eur Respir J ; 63(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38575158

RESUMEN

BACKGROUND: Several rare surfactant-related gene (SRG) variants associated with interstitial lung disease are suspected to be associated with lung cancer, but data are missing. We aimed to study the epidemiology and phenotype of lung cancer in an international cohort of SRG variant carriers. METHODS: We conducted a cross-sectional study of all adults with SRG variants in the OrphaLung network and compared lung cancer risk with telomere-related gene (TRG) variant carriers. RESULTS: We identified 99 SRG adult variant carriers (SFTPA1 (n=18), SFTPA2 (n=31), SFTPC (n=24), ABCA3 (n=14) and NKX2-1 (n=12)), including 20 (20.2%) with lung cancer (SFTPA1 (n=7), SFTPA2 (n=8), SFTPC (n=3), NKX2-1 (n=2) and ABCA3 (n=0)). Among SRG variant carriers, the odds of lung cancer was associated with age (OR 1.04, 95% CI 1.01-1.08), smoking (OR 20.7, 95% CI 6.60-76.2) and SFTPA1/SFTPA2 variants (OR 3.97, 95% CI 1.39-13.2). Adenocarcinoma was the only histological type reported, with programmed death ligand-1 expression ≥1% in tumour cells in three samples. Cancer staging was localised (I/II) in eight (40%) individuals, locally advanced (III) in two (10%) and metastatic (IV) in 10 (50%). We found no somatic variant eligible for targeted therapy. Seven cancers were surgically removed, 10 received systemic therapy, and three received the best supportive care according to their stage and performance status. The median overall survival was 24 months, with stage I/II cancers showing better survival. We identified 233 TRG variant carriers. The comparative risk (subdistribution hazard ratio) for lung cancer in SRG patients versus TRG patients was 18.1 (95% CI 7.1-44.7). CONCLUSIONS: The high risk of lung cancer among SRG variant carriers suggests specific screening and diagnostic and therapeutic challenges. The benefit of regular computed tomography scan follow-up should be evaluated.


Asunto(s)
Neoplasias Pulmonares , Proteína A Asociada a Surfactante Pulmonar , Proteína C Asociada a Surfactante Pulmonar , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estudios Transversales , Proteína C Asociada a Surfactante Pulmonar/genética , Proteína A Asociada a Surfactante Pulmonar/genética , Adulto , Factor Nuclear Tiroideo 1/genética , Transportadoras de Casetes de Unión a ATP/genética , Factores de Riesgo , Predisposición Genética a la Enfermedad , Enfermedades Pulmonares Intersticiales/genética , Heterocigoto , Proteínas Asociadas a Surfactante Pulmonar/genética
9.
Vet Res Commun ; 48(4): 2671-2676, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38635105

RESUMEN

Surfactant protein A (SP-A) and Surfactant protein D (SP-D) glycoproteins play a crucial role in maintaining lung homeostasis and lung host defense. Interestingly, these proteins are also expressed in extra-pulmonary tissues, including the female genital tract. The ovarian tissue, where SP-A and SP-D expression increases with follicular development, may serve as the primary site of defense for this tissue. However, their functions in these tissues are not well understood and are currently an active area of research. Therefore, the objective of this study is to investigate the expression of SP-A and SP-D in the ovine ovary throughout the ovarian cycle using immunohistochemistry by semiquantitative intensity classification and Western blotting techniques. These findings revealed the presence of SP-A and SP-D in various compartments of the ovary, such as the follicular epithelium, granulosa cells, cumulus cells, theca cells, oocyte I, follicular fluid, and luteal cells of Graafian follicles, excluding the corpus albicans. SP-A and SP-D likely act as a first line of defense against potential pathogens that infiltrate the ovaries. Further investigation of the differential expression of SP-A and SP-D proteins in ovarian follicles will provide a basis for understanding their interactions with key proteins involved in oogenesis.


Asunto(s)
Folículo Ovárico , Ovario , Proteína A Asociada a Surfactante Pulmonar , Proteína D Asociada a Surfactante Pulmonar , Animales , Femenino , Ovinos , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Proteína A Asociada a Surfactante Pulmonar/genética , Folículo Ovárico/metabolismo , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Proteína D Asociada a Surfactante Pulmonar/genética , Ovario/metabolismo , Inmunohistoquímica/veterinaria
10.
Sci Rep ; 14(1): 7464, 2024 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553537

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) remains the most common cause of liver disease in the United States due to the increased incidence of metabolic dysfunction and obesity. Surfactant protein A (SPA) regulates macrophage function, strongly binds to lipids, and is implicated in renal and idiopathic pulmonary fibrosis (IPF). However, the role of SPA in lipid accumulation, inflammation, and hepatic fibrosis that characterize MASLD remains unknown. SPA deficient (SPA-/-) and age-matched wild-type (WT) control mice were fed a Western diet for 8 weeks to induce MASLD. Blood and liver samples were collected and used to analyze pathological features associated with MASLD. SPA expression was significantly upregulated in livers of mice with MASLD. SPA deficiency attenuated lipid accumulation along with downregulation of genes involved in fatty acid uptake and reduction of hepatic inflammation as evidenced by the diminished macrophage activation, decreased monocyte infiltration, and reduced production of inflammatory cytokines. Moreover, SPA-/- inhibited stellate cell activation, collagen deposit, and liver fibrosis. These results highlight the novel role of SPA in promoting fatty acid uptake into hepatocytes, causing excessive lipid accumulation, inflammation, and fibrosis implicated in the pathogenesis of MASLD.


Asunto(s)
Hígado Graso , Proteína A Asociada a Surfactante Pulmonar , Ratones , Animales , Dieta Occidental/efectos adversos , Hígado Graso/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/complicaciones , Fibrosis , Inflamación/complicaciones , Lípidos , Ácidos Grasos
11.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L524-L538, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38375572

RESUMEN

Lung surfactant collectins, surfactant protein A (SP-A) and D (SP-D), are oligomeric C-type lectins involved in lung immunity. Through their carbohydrate recognition domain, they recognize carbohydrates at pathogen surfaces and initiate lung innate immune response. Here, we propose that they may also be able to bind to other carbohydrates present in typical cell surfaces, such as the alveolar epithelial glycocalyx. To test this hypothesis, we analyzed and quantified the binding affinity of SP-A and SP-D to different sugars and glycosaminoglycans (GAGs) by microscale thermophoresis (MST). In addition, by changing the calcium concentration, we aimed to characterize any consequences on the binding behavior. Our results show that both oligomeric proteins bind with high affinity (in nanomolar range) to GAGs, such as hyaluronan (HA), heparan sulfate (HS) and chondroitin sulfate (CS). Binding to HS and CS was calcium-independent, as it was not affected by changing calcium concentration in the buffer. Quantification of GAGs in bronchoalveolar lavage (BAL) fluid from animals deficient in either SP-A or SP-D showed changes in GAG composition, and electron micrographs showed differences in alveolar glycocalyx ultrastructure in vivo. Taken together, SP-A and SP-D bind to model sulfated glycosaminoglycans of the alveolar epithelial glycocalyx in a multivalent and calcium-independent way. These findings provide a potential mechanism for SP-A and SP-D as an integral part of the alveolar epithelial glycocalyx binding and interconnecting free GAGs, proteoglycans, and other glycans in glycoproteins, which may influence glycocalyx composition and structure.NEW & NOTEWORTHY SP-A and SP-D function has been related to innate immunity of the lung based on their binding to sugar residues at pathogen surfaces. However, their function in the healthy alveolus was considered as limited to interaction with surfactant lipids. Here, we demonstrated that these proteins bind to glycosaminoglycans present at typical cell surfaces like the alveolar epithelial glycocalyx. We propose a model where these proteins play an important role in interconnecting alveolar epithelial glycocalyx components.


Asunto(s)
Calcio , Glicocálix , Glicosaminoglicanos , Alveolos Pulmonares , Proteína A Asociada a Surfactante Pulmonar , Proteína D Asociada a Surfactante Pulmonar , Animales , Humanos , Ratones , Células Epiteliales Alveolares/metabolismo , Líquido del Lavado Bronquioalveolar , Calcio/metabolismo , Glicocálix/metabolismo , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Ratones Endogámicos C57BL , Unión Proteica , Alveolos Pulmonares/metabolismo , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Proteína D Asociada a Surfactante Pulmonar/metabolismo
12.
Int J Legal Med ; 138(4): 1583-1592, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38379061

RESUMEN

In forensic cases, detailed identification of pneumonia is important. Our objective was to statistically determine the applicability of three interstitial lung disease (ILD) markers for forensic diagnosis using serum collected from dead bodies with various postmortem intervals (PMIs). We retrospectively analyzed the levels of postmortem serum Krebs von den Lungen-6 (KL-6) and pulmonary surfactant-associated proteins A and D (SP-A and SP-D) using 221 samples obtained during forensic autopsy at our facility from 2019 to 2023. We evaluated the diagnostic efficacy of ILD markers for various pneumonias against the pathological diagnosis, and examined the assessment of the severity of ILD. When comparing the ILD group with bacterial pneumonia (BP) versus the control group, there was a significant increase in KL-6 in the ILD group. When comparing the severe ILD (SILD) group with the mild ILD (MILD) group, there was a significant increase in KL-6 and SP-D in the SILD group. The optimal cutoff values for differentiating SILD were 607.0 U/mL for KL-6, 55.5 ng/mL for SP-A, and 160.0 ng/mL for SP-D, and the sensitivity/specificity (%) of KL-6, SP-A, and SP-D for SILD were 84.1/95.2, 55.6/85.7, and 66.7/74.6, respectively. This is the first study to examine KL-6 in postmortem serum in forensic medicine. By analyzing dead bodies with various PMIs, our results confirmed statistically that postmortem serum KL-6 specifically detects ILD, postmortem serum SP-A has high sensitivity to lung injury, and postmortem serum SP-D is potentially useful in assessing the severity of ILD.


Asunto(s)
Biomarcadores , Enfermedades Pulmonares Intersticiales , Mucina-1 , Proteína A Asociada a Surfactante Pulmonar , Proteína D Asociada a Surfactante Pulmonar , Humanos , Mucina-1/sangre , Enfermedades Pulmonares Intersticiales/sangre , Proteína D Asociada a Surfactante Pulmonar/sangre , Biomarcadores/sangre , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Proteína A Asociada a Surfactante Pulmonar/sangre , Anciano , Adulto , Sensibilidad y Especificidad , Anciano de 80 o más Años , Neumonía/sangre , Patologia Forense , Neumonía Bacteriana/sangre , Neumonía Bacteriana/diagnóstico
13.
Am J Physiol Lung Cell Mol Physiol ; 326(4): L508-L513, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38349123

RESUMEN

Prolonged labor can lead to infection, fetal distress, asphyxia, and life-threatening harm to both the mother and the baby. Surfactant protein A (SP-A) was shown to contribute to the maintenance of pregnancy and timing of term labor. SP-A modulates the stoichiometric expression of the SP-R210L and SP-R210S isoforms of the SP-R210 receptor on alveolar macrophages (AMs). Lack of SP-R210L dysregulates macrophage inflammatory responses. We asked whether SP-A alters normal and inflammation-induced parturition through SP-R210 using SP-A- and SP-R210L-deficient mice. Labor and delivery of time-pregnant mice were monitored in real time using a time-lapse infrared camera. Intrauterine injection with either vehicle or Escherichia coli lipopolysaccharide (LPS) on embryonic (E) day 18.5 post coitus was used to assess the effect of gene disruption in chorioamnionitis-induced labor. We report that either lack of SP-A or disruption of SP-R210L delays parturition by 0.40 and 0.55 days compared with controls, respectively. LPS induced labor at 0.60, 1.01, 0.40, 1.00, and 1.31 days earlier than PBS controls in wild type (WT), SP-A-deficient, littermate controls, heterozygous, and homozygous SP-R210L-deficient mice, respectively. Lack of SP-A reduced litter size in PBS-treated mice, whereas the total number of pups delivered was similar in all LPS-treated mice. The number of live pups, however, was significantly reduced by 50%-70% in SP-A and SP-R210L-deficient mice compared with controls. Differences in gestational length were not associated with intrauterine growth restriction. The present findings support the novel concept that the SP-A/SP-R210 pathway modulates timely labor and delivery and supports fetal lung barrier integrity during fetal-to-neonatal transition in term pregnancy.NEW & NOTEWORTHY To our knowledge, this study is the first to report that SP-A prevents delay of labor and inflammation-induced stillbirth through the receptor SP-R210L.


Asunto(s)
Lipopolisacáridos , Proteína A Asociada a Surfactante Pulmonar , Femenino , Embarazo , Animales , Ratones , Lipopolisacáridos/efectos adversos , Proteína A Asociada a Surfactante Pulmonar/genética , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Parto/metabolismo , Feto/metabolismo , Inflamación/metabolismo
14.
Am J Physiol Lung Cell Mol Physiol ; 326(4): L458-L467, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38349117

RESUMEN

This study addressed the efficacy of a liposome-encapsulated nine amino acid peptide [peroxiredoxin 6 PLA2 inhibitory peptide-2 (PIP-2)] for the prevention or treatment of acute lung injury (ALI) +/- sepsis. PIP-2 inhibits the PLA2 activity of peroxiredoxin 6 (Prdx6), thereby preventing rac release and activation of NADPH oxidases (NOXes), types 1 and 2. Female Yorkshire pigs were infused intravenously with lipopolysaccharide (LPS) + liposomes (untreated) or LPS + PIP-2 encapsulated in liposomes (treated). Pigs were mechanically ventilated and continuously monitored; they were euthanized after 8 h or earlier if preestablished humane endpoints were reached. Control pigs (mechanical ventilation, no LPS) were essentially unchanged over the 8 h study. LPS administration resulted in systemic inflammation with manifestations of clinical sepsis-like syndrome, decreased lung compliance, and a marked decrease in the arterial Po2 with vascular instability leading to early euthanasia of 50% of untreated animals. PIP-2 treatment significantly reduced the requirement for supportive vasopressors and the manifestations of lung injury so that only 25% of animals required early euthanasia. Bronchoalveolar lavage fluid from PIP-2-treated versus untreated pigs showed markedly lower levels of total protein, cytokines (TNF-α, IL-6, IL-1ß), and myeloperoxidase. Thus, the porcine LPS-induced sepsis-like model was associated with moderate to severe lung pathophysiology compatible with ALI, whereas treatment with PIP-2 markedly decreased lung injury, cardiovascular instability, and early euthanasia. These results indicate that inhibition of reactive oxygen species (ROS) production via NOX1/2 has a beneficial effect in treating pigs with LPS-induced ALI plus or minus a sepsis-like syndrome, suggesting a potential role for PIP-2 in the treatment of ALI and/or sepsis in humans.NEW & NOTEWORTHY Currently available treatments that can alter lung inflammation have failed to significantly alter mortality of acute lung injury (ALI). Peroxiredoxin 6 PLA2 inhibitory peptide-2 (PIP-2) targets the liberation of reactive O2 species (ROS) that is associated with adverse cell signaling events, thereby decreasing the tissue oxidative injury that occurs early in the ALI syndrome. We propose that treatment with PIP-2 may be effective in preventing progression of early disease into its later stages with irreversible lung damage and relatively high mortality.


Asunto(s)
Lesión Pulmonar Aguda , Sepsis , Humanos , Femenino , Animales , Porcinos , Lipopolisacáridos/farmacología , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Peroxiredoxina VI/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Liposomas/metabolismo , Liposomas/farmacología , Liposomas/uso terapéutico , Pulmón/metabolismo , Lesión Pulmonar Aguda/metabolismo , Péptidos/farmacología , Sepsis/metabolismo , NADPH Oxidasa 1/metabolismo , NADPH Oxidasa 1/farmacología
15.
Mol Immunol ; 166: 58-64, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38244369

RESUMEN

Surfactant protein A (SP-A), a natural immune molecule, plays an important role in lung health. SP-A recognizes and binds microbial surface glycogroups through the C-type carbohydrate recognition domain, and then binds corresponding cell surface receptors (such as C1qRp, CRT-CD91 complex, CD14, SP-R210, Toll-like receptor, SIRP-α, CR3, etc.) through collagen-like region, and subsequently mediates biological effects. SP-A regulates lung innate immunity by promoting surfactant absorption by alveolar type II epithelial cells and phagocytosis of pathogenic microorganisms by alveolar macrophages. SP-A also regulates lung adaptive immunity by inhibiting DC maturation, and T cell proliferation and differentiation. This article reviews latest relationships between SP-A and adaptive and intrinsic immunity.


Asunto(s)
Macrófagos Alveolares , Proteína A Asociada a Surfactante Pulmonar , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Pulmón/metabolismo , Fagocitosis , Inmunidad Innata , Proteína D Asociada a Surfactante Pulmonar
16.
Pediatr Int ; 65(1): e15672, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37888536

RESUMEN

BACKGROUND: Interactions among single nucleotide polymorphisms (SNPs) of surfactant protein (SP) are associated with acute respiratory failure (ARF) and its short-term outcome, pulmonary dysfunction at discharge (PDAD) in children. However, genetic association studies using individual SNPs have not been conducted before. We hypothesize that SP genetic variants are associated with pediatric ARF and its short-term complications by themselves. METHODS: We used available genotype and clinical data in the Floros biobank consisting of 248 children aged ≤24 months with ARF; 86 developed PDAD. A logistic regression analysis was performed for each of the 14 selected SNPs, SP-A1 and SP-A2 genotypes. A p-value less than the Bonferroni correction threshold was considered significant. A likelihood ratio test was done to compare two models (one with demographic data and another with genetic variants). RESULTS: Before Bonferroni correction, female sex is associated with a decreased risk of ARF. Black race and the rs721917 of the SFTPD are associated with increased risk of ARF. After Bonferroni correction, the 1A0 1A1 genotype of SFTPA2 was associated with decreased risk of ARF. The likelihood ratio test showed that the model of the genotype information with demographic data was a better fit to predict ARF risk. None of the SP SNPs and SP-A1, SP-A2 genotypes were associated with PDAD. CONCLUSION: Our results indicate that SNPs and genotypes of SPs involved in innate immunity and host defense play an important role in ARF and, in the future, may be used as biomarkers.


Asunto(s)
Surfactantes Pulmonares , Insuficiencia Respiratoria , Humanos , Niño , Femenino , Proteína A Asociada a Surfactante Pulmonar/genética , Polimorfismo de Nucleótido Simple , Tensoactivos , Insuficiencia Respiratoria/genética
17.
Clin Biochem ; 118: 110609, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37414329

RESUMEN

BACKGROUND: Interstitial lung abnormalities (ILAs) are associated with the risk of progression to interstitial lung diseases (ILDs). Krebs von den Lungen 6 (KL-6) and surfactant protein (SP)-A have been used as biomarkers of ILDs. In this study, we evaluated the levels of these biomarkers and identified their clinical correlations in healthy individuals to assess their usefulness in the diagnosis of ILAs. METHODS: The patient samples were categorized into three groups: healthy, disease, and ILD groups. We used the automated immunoassay HISCL KL-6 and SP-A assay kits. The analytical performance evaluation involved precision, linearity, comparison, establishment of reference intervals, and determination of the cutoff points. We also analyzed the correlations between presence of abnormalities on chest radiography and computed tomography (CT) or pulmonary function test (PFT) and serum levels in the healthy group. RESULTS: KL-6 and SP-A assays showed good analytical performance. The KL-6 and SP-A cutoff values were 304 U/mL and 43.5 ng/mL between the ILD and healthy groups, respectively, which were lower than the values recommended by the manufacturer. In the clinical correlations with radiological findings, SP-A values in subjects with lung abnormalities on CT scans were significantly higher than those in normal scans. There was no significant difference in KL-6 and SP-A levels among PFT patterns; however, both serum levels in the mixed pattern showed higher values than those in the other patterns. CONCLUSIONS: The results revealed a positive association between increased serum levels of SP-A and KL-6 and clinical characteristics as incidental findings on chest imaging and reduced lung function.


Asunto(s)
Enfermedades Pulmonares Intersticiales , Proteína A Asociada a Surfactante Pulmonar , Humanos , Enfermedades Pulmonares Intersticiales/diagnóstico por imagen , Enfermedades Pulmonares Intersticiales/complicaciones , Biomarcadores , Tomografía Computarizada por Rayos X/métodos , Mucina-1 , Pruebas de Función Respiratoria
18.
Front Immunol ; 14: 1188023, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37256132

RESUMEN

Introduction: Pneumonia-induced sepsis can cause multiple organ dysfunction including acute lung and kidney injury (ALI and AKI). Surfactant protein A (SP-A), a critical innate immune molecule, is expressed in the lung and kidney. Extracellular vesicles like exosomes are involved in the processes of pathophysiology. Here we tested one hypothesis that SP-A regulates pneumonia-induced AKI through the modulation of exosomes and cell death. Methods: Wild-type (WT), SP-A knockout (KO), and humanized SP-A transgenic (hTG, lung-specific SP-A expression) mice were used in this study. Results: After intratracheal infection with Pseudomonas aeruginosa, KO mice showed increased mortality, higher injury scores, more severe inflammation in the lung and kidney, and increased serum TNF-α, IL-1ß, and IL-6 levels compared to WT and hTG mice. Infected hTG mice exhibited similar lung injury but more severe kidney injury than infected WT mice. Increased renal tubular apoptosis and pyroptosis in the kidney of KO mice were found when compared with WT and hTG mice. We found that serum exosomes from septic mice cause ALI and AKI through mediating apoptosis and proptosis when mice were injected intravenously. Furthermore, primary proximal tubular epithelial cells isolated from KO mice showed more sensitivity than those from WT mice after exposure to septic serum exosomes. Discussion: Collectively, SP-A attenuates pneumonia-induced ALI and AKI by regulating inflammation, apoptosis and pyroptosis; serum exosomes are important mediators in the pathogenesis of AKI.


Asunto(s)
Lesión Renal Aguda , Exosomas , Neumonía , Animales , Ratones , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Exosomas/metabolismo , Lesión Renal Aguda/metabolismo , Neumonía/complicaciones , Inflamación , Riñón/patología , Pulmón/patología
19.
Toxicol Ind Health ; 39(5): 267-280, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37082971

RESUMEN

Toxic pneumonitis and related respiratory symptoms are common among waste management workers (WMWs). Products of different cellular responses following exposure to toxic components of wastes can lead to the production of a variety of biomolecules. There is a growing recognition of the importance of biomarkers in risk assessment and a strong advocacy for their determination and use as indicators of health and safety. This study assessed the prevalence of respiratory symptoms and the relevance of pulmonary surfactant protein A (SP-A) and Clara cell 16 protein (CC16) as indicators of occupational inhalation exposure to toxic substances and irritants in WMW. A total of 172 subjects consisting of 112 WMWs and 60 Non-WMWs were recruited by purposive sampling. Data on socio-economic and work-related symptoms were collected using structured questionnaire. CC16 and SP-A were determined by ELISA in serum samples. Clinical history reveals a slightly higher prevalence of respiratory symptoms in WMWs relative to control subjects. Increased permeability of the lung-blood barrier, characterized by significant elevation of serum SP-A and serum CC16, was associated with respiratory symptoms in WMWs. Steady increases in SP-A and CC16, respectively, in relation to occupational duration were observed in WMWs relative to control. Receiver operating characteristic curve and multivariate analyses revealed SP-A and CC16 as important lung biomarkers for assessing sub-clinical effects of occupational exposure. Our data suggest SP-A and CC16 may be relevant indicators for assessing occupational inhalation exposure to toxic substances and irritants among WMWs.


Asunto(s)
Proteína A Asociada a Surfactante Pulmonar , Administración de Residuos , Humanos , Residuos Sólidos , Uteroglobina , Nigeria , Irritantes , Biomarcadores
20.
Brain Res ; 1807: 148308, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36871846

RESUMEN

Surfactant protein A (SP-A) has important roles in innate immunity and modulation of pulmonary and extrapulmonary inflammation. Given SP-A has been detected in rat and human brain, we sought to determine if SP-A has a role in modulating inflammation in the neonatal mouse brain. Neonatal wildtype (WT) and SP-A-deficient (SP-A-/-) mice were subjected to three models of brain inflammation: systemic sepsis, intraventricular hemorrhage (IVH) and hypoxic-ischemic encephalopathy (HIE). Following each intervention, RNA was isolated from brain tissue and expression of cytokine and SP-A mRNA was determined by real-time quantitative RT-PCR analysis. In the sepsis model, expression of most cytokine mRNAs was significantly increased in brains of WT and SP-A-/- mice with significantly greater expression of all cytokine mRNA levels in SP-A-/- mice compared to WT. In the IVH model, expression of all cytokine mRNAs was significantly increased in WT and SP-A-/- mice and levels of most cytokine mRNAs were significantly increased in SP-A-/- mice compared to WT. In the HIE model, only TNF-α mRNA levels were significantly increased in WT brain tissue while all pro-inflammtory cytokine mRNAs were significantly increased in SP-A-/- mice, and all pro-inflammatory cytokine mRNA levels were significantly higher in SP-A-/- mice compared to WT. SP-A mRNA was not detectable in brain tissue of adult WT mice nor in WT neonates subjected to these models. These results suggest that SP-A-/- neonatal mice subjected to models of neuroinflammation are more susceptible to both generalized and localized neuroinflammation compared to WT mice, thus supporting the hypothesis that SP-A attenuates inflammation in neonatal mouse brain.


Asunto(s)
Proteína A Asociada a Surfactante Pulmonar , Sepsis , Humanos , Animales , Ratones , Ratas , Animales Recién Nacidos , Enfermedades Neuroinflamatorias , Inflamación/metabolismo , Citocinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA